Home | Metamath
Proof Explorer Theorem List (p. 237 of 466) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-29289) |
Hilbert Space Explorer
(29290-30812) |
Users' Mathboxes
(30813-46532) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | mopntopon 23601 | The set of open sets of a metric space 𝑋 is a topology on 𝑋. Remark in [Kreyszig] p. 19. This theorem connects the two concepts and makes available the theorems for topologies for use with metric spaces. (Contributed by Mario Carneiro, 24-Aug-2015.) |
⊢ 𝐽 = (MetOpen‘𝐷) ⇒ ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ (TopOn‘𝑋)) | ||
Theorem | mopntop 23602 | The set of open sets of a metric space is a topology. (Contributed by NM, 28-Aug-2006.) (Revised by Mario Carneiro, 12-Nov-2013.) |
⊢ 𝐽 = (MetOpen‘𝐷) ⇒ ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ Top) | ||
Theorem | mopnuni 23603 | The union of all open sets in a metric space is its underlying set. (Contributed by NM, 4-Sep-2006.) (Revised by Mario Carneiro, 12-Nov-2013.) |
⊢ 𝐽 = (MetOpen‘𝐷) ⇒ ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝑋 = ∪ 𝐽) | ||
Theorem | elmopn 23604* | The defining property of an open set of a metric space. (Contributed by NM, 1-Sep-2006.) (Revised by Mario Carneiro, 12-Nov-2013.) |
⊢ 𝐽 = (MetOpen‘𝐷) ⇒ ⊢ (𝐷 ∈ (∞Met‘𝑋) → (𝐴 ∈ 𝐽 ↔ (𝐴 ⊆ 𝑋 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ ran (ball‘𝐷)(𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝐴)))) | ||
Theorem | mopnfss 23605 | The family of open sets of a metric space is a collection of subsets of the base set. (Contributed by NM, 3-Sep-2006.) (Revised by Mario Carneiro, 12-Nov-2013.) |
⊢ 𝐽 = (MetOpen‘𝐷) ⇒ ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ⊆ 𝒫 𝑋) | ||
Theorem | mopnm 23606 | The base set of a metric space is open. Part of Theorem T1 of [Kreyszig] p. 19. (Contributed by NM, 4-Sep-2006.) (Revised by Mario Carneiro, 12-Nov-2013.) |
⊢ 𝐽 = (MetOpen‘𝐷) ⇒ ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝑋 ∈ 𝐽) | ||
Theorem | elmopn2 23607* | A defining property of an open set of a metric space. (Contributed by NM, 5-May-2007.) (Revised by Mario Carneiro, 12-Nov-2013.) |
⊢ 𝐽 = (MetOpen‘𝐷) ⇒ ⊢ (𝐷 ∈ (∞Met‘𝑋) → (𝐴 ∈ 𝐽 ↔ (𝐴 ⊆ 𝑋 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ ℝ+ (𝑥(ball‘𝐷)𝑦) ⊆ 𝐴))) | ||
Theorem | mopnss 23608 | An open set of a metric space is a subspace of its base set. (Contributed by NM, 3-Sep-2006.) |
⊢ 𝐽 = (MetOpen‘𝐷) ⇒ ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ 𝐽) → 𝐴 ⊆ 𝑋) | ||
Theorem | isxms 23609 | Express the predicate "〈𝑋, 𝐷〉 is an extended metric space" with underlying set 𝑋 and distance function 𝐷. (Contributed by Mario Carneiro, 2-Sep-2015.) |
⊢ 𝐽 = (TopOpen‘𝐾) & ⊢ 𝑋 = (Base‘𝐾) & ⊢ 𝐷 = ((dist‘𝐾) ↾ (𝑋 × 𝑋)) ⇒ ⊢ (𝐾 ∈ ∞MetSp ↔ (𝐾 ∈ TopSp ∧ 𝐽 = (MetOpen‘𝐷))) | ||
Theorem | isxms2 23610 | Express the predicate "〈𝑋, 𝐷〉 is an extended metric space" with underlying set 𝑋 and distance function 𝐷. (Contributed by Mario Carneiro, 2-Sep-2015.) |
⊢ 𝐽 = (TopOpen‘𝐾) & ⊢ 𝑋 = (Base‘𝐾) & ⊢ 𝐷 = ((dist‘𝐾) ↾ (𝑋 × 𝑋)) ⇒ ⊢ (𝐾 ∈ ∞MetSp ↔ (𝐷 ∈ (∞Met‘𝑋) ∧ 𝐽 = (MetOpen‘𝐷))) | ||
Theorem | isms 23611 | Express the predicate "〈𝑋, 𝐷〉 is a metric space" with underlying set 𝑋 and distance function 𝐷. (Contributed by NM, 27-Aug-2006.) (Revised by Mario Carneiro, 24-Aug-2015.) |
⊢ 𝐽 = (TopOpen‘𝐾) & ⊢ 𝑋 = (Base‘𝐾) & ⊢ 𝐷 = ((dist‘𝐾) ↾ (𝑋 × 𝑋)) ⇒ ⊢ (𝐾 ∈ MetSp ↔ (𝐾 ∈ ∞MetSp ∧ 𝐷 ∈ (Met‘𝑋))) | ||
Theorem | isms2 23612 | Express the predicate "〈𝑋, 𝐷〉 is a metric space" with underlying set 𝑋 and distance function 𝐷. (Contributed by NM, 27-Aug-2006.) (Revised by Mario Carneiro, 24-Aug-2015.) |
⊢ 𝐽 = (TopOpen‘𝐾) & ⊢ 𝑋 = (Base‘𝐾) & ⊢ 𝐷 = ((dist‘𝐾) ↾ (𝑋 × 𝑋)) ⇒ ⊢ (𝐾 ∈ MetSp ↔ (𝐷 ∈ (Met‘𝑋) ∧ 𝐽 = (MetOpen‘𝐷))) | ||
Theorem | xmstopn 23613 | The topology component of an extended metric space coincides with the topology generated by the metric component. (Contributed by Mario Carneiro, 26-Aug-2015.) |
⊢ 𝐽 = (TopOpen‘𝐾) & ⊢ 𝑋 = (Base‘𝐾) & ⊢ 𝐷 = ((dist‘𝐾) ↾ (𝑋 × 𝑋)) ⇒ ⊢ (𝐾 ∈ ∞MetSp → 𝐽 = (MetOpen‘𝐷)) | ||
Theorem | mstopn 23614 | The topology component of a metric space coincides with the topology generated by the metric component. (Contributed by Mario Carneiro, 26-Aug-2015.) |
⊢ 𝐽 = (TopOpen‘𝐾) & ⊢ 𝑋 = (Base‘𝐾) & ⊢ 𝐷 = ((dist‘𝐾) ↾ (𝑋 × 𝑋)) ⇒ ⊢ (𝐾 ∈ MetSp → 𝐽 = (MetOpen‘𝐷)) | ||
Theorem | xmstps 23615 | An extended metric space is a topological space. (Contributed by Mario Carneiro, 26-Aug-2015.) |
⊢ (𝑀 ∈ ∞MetSp → 𝑀 ∈ TopSp) | ||
Theorem | msxms 23616 | A metric space is an extended metric space. (Contributed by Mario Carneiro, 26-Aug-2015.) |
⊢ (𝑀 ∈ MetSp → 𝑀 ∈ ∞MetSp) | ||
Theorem | mstps 23617 | A metric space is a topological space. (Contributed by Mario Carneiro, 26-Aug-2015.) |
⊢ (𝑀 ∈ MetSp → 𝑀 ∈ TopSp) | ||
Theorem | xmsxmet 23618 | The distance function, suitably truncated, is an extended metric on 𝑋. (Contributed by Mario Carneiro, 2-Sep-2015.) |
⊢ 𝑋 = (Base‘𝑀) & ⊢ 𝐷 = ((dist‘𝑀) ↾ (𝑋 × 𝑋)) ⇒ ⊢ (𝑀 ∈ ∞MetSp → 𝐷 ∈ (∞Met‘𝑋)) | ||
Theorem | msmet 23619 | The distance function, suitably truncated, is a metric on 𝑋. (Contributed by Mario Carneiro, 12-Nov-2013.) |
⊢ 𝑋 = (Base‘𝑀) & ⊢ 𝐷 = ((dist‘𝑀) ↾ (𝑋 × 𝑋)) ⇒ ⊢ (𝑀 ∈ MetSp → 𝐷 ∈ (Met‘𝑋)) | ||
Theorem | msf 23620 | The distance function of a metric space is a function into the real numbers. (Contributed by NM, 30-Aug-2006.) (Revised by Mario Carneiro, 12-Nov-2013.) |
⊢ 𝑋 = (Base‘𝑀) & ⊢ 𝐷 = ((dist‘𝑀) ↾ (𝑋 × 𝑋)) ⇒ ⊢ (𝑀 ∈ MetSp → 𝐷:(𝑋 × 𝑋)⟶ℝ) | ||
Theorem | xmsxmet2 23621 | The distance function, suitably truncated, is an extended metric on 𝑋. (Contributed by Mario Carneiro, 2-Oct-2015.) |
⊢ 𝑋 = (Base‘𝑀) & ⊢ 𝐷 = (dist‘𝑀) ⇒ ⊢ (𝑀 ∈ ∞MetSp → (𝐷 ↾ (𝑋 × 𝑋)) ∈ (∞Met‘𝑋)) | ||
Theorem | msmet2 23622 | The distance function, suitably truncated, is a metric on 𝑋. (Contributed by Mario Carneiro, 2-Oct-2015.) |
⊢ 𝑋 = (Base‘𝑀) & ⊢ 𝐷 = (dist‘𝑀) ⇒ ⊢ (𝑀 ∈ MetSp → (𝐷 ↾ (𝑋 × 𝑋)) ∈ (Met‘𝑋)) | ||
Theorem | mscl 23623 | Closure of the distance function of a metric space. (Contributed by NM, 30-Aug-2006.) (Revised by Mario Carneiro, 2-Oct-2015.) |
⊢ 𝑋 = (Base‘𝑀) & ⊢ 𝐷 = (dist‘𝑀) ⇒ ⊢ ((𝑀 ∈ MetSp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐷𝐵) ∈ ℝ) | ||
Theorem | xmscl 23624 | Closure of the distance function of an extended metric space. (Contributed by Mario Carneiro, 2-Oct-2015.) |
⊢ 𝑋 = (Base‘𝑀) & ⊢ 𝐷 = (dist‘𝑀) ⇒ ⊢ ((𝑀 ∈ ∞MetSp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐷𝐵) ∈ ℝ*) | ||
Theorem | xmsge0 23625 | The distance function in an extended metric space is nonnegative. (Contributed by Mario Carneiro, 4-Oct-2015.) |
⊢ 𝑋 = (Base‘𝑀) & ⊢ 𝐷 = (dist‘𝑀) ⇒ ⊢ ((𝑀 ∈ ∞MetSp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → 0 ≤ (𝐴𝐷𝐵)) | ||
Theorem | xmseq0 23626 | The distance between two points in an extended metric space is zero iff the two points are identical. (Contributed by Mario Carneiro, 2-Oct-2015.) |
⊢ 𝑋 = (Base‘𝑀) & ⊢ 𝐷 = (dist‘𝑀) ⇒ ⊢ ((𝑀 ∈ ∞MetSp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝐴𝐷𝐵) = 0 ↔ 𝐴 = 𝐵)) | ||
Theorem | xmssym 23627 | The distance function in an extended metric space is symmetric. (Contributed by Mario Carneiro, 2-Oct-2015.) |
⊢ 𝑋 = (Base‘𝑀) & ⊢ 𝐷 = (dist‘𝑀) ⇒ ⊢ ((𝑀 ∈ ∞MetSp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐷𝐵) = (𝐵𝐷𝐴)) | ||
Theorem | xmstri2 23628 | Triangle inequality for the distance function of an extended metric. (Contributed by Mario Carneiro, 2-Oct-2015.) |
⊢ 𝑋 = (Base‘𝑀) & ⊢ 𝐷 = (dist‘𝑀) ⇒ ⊢ ((𝑀 ∈ ∞MetSp ∧ (𝐶 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝐴𝐷𝐵) ≤ ((𝐶𝐷𝐴) +𝑒 (𝐶𝐷𝐵))) | ||
Theorem | mstri2 23629 | Triangle inequality for the distance function of a metric space. (Contributed by Mario Carneiro, 2-Oct-2015.) |
⊢ 𝑋 = (Base‘𝑀) & ⊢ 𝐷 = (dist‘𝑀) ⇒ ⊢ ((𝑀 ∈ MetSp ∧ (𝐶 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝐴𝐷𝐵) ≤ ((𝐶𝐷𝐴) + (𝐶𝐷𝐵))) | ||
Theorem | xmstri 23630 | Triangle inequality for the distance function of a metric space. Definition 14-1.1(d) of [Gleason] p. 223. (Contributed by Mario Carneiro, 2-Oct-2015.) |
⊢ 𝑋 = (Base‘𝑀) & ⊢ 𝐷 = (dist‘𝑀) ⇒ ⊢ ((𝑀 ∈ ∞MetSp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐴𝐷𝐵) ≤ ((𝐴𝐷𝐶) +𝑒 (𝐶𝐷𝐵))) | ||
Theorem | mstri 23631 | Triangle inequality for the distance function of a metric space. Definition 14-1.1(d) of [Gleason] p. 223. (Contributed by Mario Carneiro, 2-Oct-2015.) |
⊢ 𝑋 = (Base‘𝑀) & ⊢ 𝐷 = (dist‘𝑀) ⇒ ⊢ ((𝑀 ∈ MetSp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐴𝐷𝐵) ≤ ((𝐴𝐷𝐶) + (𝐶𝐷𝐵))) | ||
Theorem | xmstri3 23632 | Triangle inequality for the distance function of an extended metric. (Contributed by Mario Carneiro, 2-Oct-2015.) |
⊢ 𝑋 = (Base‘𝑀) & ⊢ 𝐷 = (dist‘𝑀) ⇒ ⊢ ((𝑀 ∈ ∞MetSp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐴𝐷𝐵) ≤ ((𝐴𝐷𝐶) +𝑒 (𝐵𝐷𝐶))) | ||
Theorem | mstri3 23633 | Triangle inequality for the distance function of a metric space. (Contributed by Mario Carneiro, 2-Oct-2015.) |
⊢ 𝑋 = (Base‘𝑀) & ⊢ 𝐷 = (dist‘𝑀) ⇒ ⊢ ((𝑀 ∈ MetSp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐴𝐷𝐵) ≤ ((𝐴𝐷𝐶) + (𝐵𝐷𝐶))) | ||
Theorem | msrtri 23634 | Reverse triangle inequality for the distance function of a metric space. (Contributed by Mario Carneiro, 4-Oct-2015.) |
⊢ 𝑋 = (Base‘𝑀) & ⊢ 𝐷 = (dist‘𝑀) ⇒ ⊢ ((𝑀 ∈ MetSp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (abs‘((𝐴𝐷𝐶) − (𝐵𝐷𝐶))) ≤ (𝐴𝐷𝐵)) | ||
Theorem | xmspropd 23635 | Property deduction for an extended metric space. (Contributed by Mario Carneiro, 4-Oct-2015.) |
⊢ (𝜑 → 𝐵 = (Base‘𝐾)) & ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) & ⊢ (𝜑 → ((dist‘𝐾) ↾ (𝐵 × 𝐵)) = ((dist‘𝐿) ↾ (𝐵 × 𝐵))) & ⊢ (𝜑 → (TopOpen‘𝐾) = (TopOpen‘𝐿)) ⇒ ⊢ (𝜑 → (𝐾 ∈ ∞MetSp ↔ 𝐿 ∈ ∞MetSp)) | ||
Theorem | mspropd 23636 | Property deduction for a metric space. (Contributed by Mario Carneiro, 4-Oct-2015.) |
⊢ (𝜑 → 𝐵 = (Base‘𝐾)) & ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) & ⊢ (𝜑 → ((dist‘𝐾) ↾ (𝐵 × 𝐵)) = ((dist‘𝐿) ↾ (𝐵 × 𝐵))) & ⊢ (𝜑 → (TopOpen‘𝐾) = (TopOpen‘𝐿)) ⇒ ⊢ (𝜑 → (𝐾 ∈ MetSp ↔ 𝐿 ∈ MetSp)) | ||
Theorem | setsmsbas 23637 | The base set of a constructed metric space. (Contributed by Mario Carneiro, 28-Aug-2015.) (Proof shortened by AV, 12-Nov-2024.) |
⊢ (𝜑 → 𝑋 = (Base‘𝑀)) & ⊢ (𝜑 → 𝐷 = ((dist‘𝑀) ↾ (𝑋 × 𝑋))) & ⊢ (𝜑 → 𝐾 = (𝑀 sSet 〈(TopSet‘ndx), (MetOpen‘𝐷)〉)) ⇒ ⊢ (𝜑 → 𝑋 = (Base‘𝐾)) | ||
Theorem | setsmsbasOLD 23638 | Obsolete proof of setsmsbas 23637 as of 12-Nov-2024. The base set of a constructed metric space. (Contributed by Mario Carneiro, 28-Aug-2015.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝜑 → 𝑋 = (Base‘𝑀)) & ⊢ (𝜑 → 𝐷 = ((dist‘𝑀) ↾ (𝑋 × 𝑋))) & ⊢ (𝜑 → 𝐾 = (𝑀 sSet 〈(TopSet‘ndx), (MetOpen‘𝐷)〉)) ⇒ ⊢ (𝜑 → 𝑋 = (Base‘𝐾)) | ||
Theorem | setsmsds 23639 | The distance function of a constructed metric space. (Contributed by Mario Carneiro, 28-Aug-2015.) (Proof shortened by AV, 11-Nov-2024.) |
⊢ (𝜑 → 𝑋 = (Base‘𝑀)) & ⊢ (𝜑 → 𝐷 = ((dist‘𝑀) ↾ (𝑋 × 𝑋))) & ⊢ (𝜑 → 𝐾 = (𝑀 sSet 〈(TopSet‘ndx), (MetOpen‘𝐷)〉)) ⇒ ⊢ (𝜑 → (dist‘𝑀) = (dist‘𝐾)) | ||
Theorem | setsmsdsOLD 23640 | Obsolete proof of setsmsds 23639 as of 11-Nov-2024. The distance function of a constructed metric space. (Contributed by Mario Carneiro, 28-Aug-2015.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝜑 → 𝑋 = (Base‘𝑀)) & ⊢ (𝜑 → 𝐷 = ((dist‘𝑀) ↾ (𝑋 × 𝑋))) & ⊢ (𝜑 → 𝐾 = (𝑀 sSet 〈(TopSet‘ndx), (MetOpen‘𝐷)〉)) ⇒ ⊢ (𝜑 → (dist‘𝑀) = (dist‘𝐾)) | ||
Theorem | setsmstset 23641 | The topology of a constructed metric space. (Contributed by Mario Carneiro, 28-Aug-2015.) |
⊢ (𝜑 → 𝑋 = (Base‘𝑀)) & ⊢ (𝜑 → 𝐷 = ((dist‘𝑀) ↾ (𝑋 × 𝑋))) & ⊢ (𝜑 → 𝐾 = (𝑀 sSet 〈(TopSet‘ndx), (MetOpen‘𝐷)〉)) & ⊢ (𝜑 → 𝑀 ∈ 𝑉) ⇒ ⊢ (𝜑 → (MetOpen‘𝐷) = (TopSet‘𝐾)) | ||
Theorem | setsmstopn 23642 | The topology of a constructed metric space. (Contributed by Mario Carneiro, 28-Aug-2015.) |
⊢ (𝜑 → 𝑋 = (Base‘𝑀)) & ⊢ (𝜑 → 𝐷 = ((dist‘𝑀) ↾ (𝑋 × 𝑋))) & ⊢ (𝜑 → 𝐾 = (𝑀 sSet 〈(TopSet‘ndx), (MetOpen‘𝐷)〉)) & ⊢ (𝜑 → 𝑀 ∈ 𝑉) ⇒ ⊢ (𝜑 → (MetOpen‘𝐷) = (TopOpen‘𝐾)) | ||
Theorem | setsxms 23643 | The constructed metric space is a metric space iff the provided distance function is a metric. (Contributed by Mario Carneiro, 28-Aug-2015.) |
⊢ (𝜑 → 𝑋 = (Base‘𝑀)) & ⊢ (𝜑 → 𝐷 = ((dist‘𝑀) ↾ (𝑋 × 𝑋))) & ⊢ (𝜑 → 𝐾 = (𝑀 sSet 〈(TopSet‘ndx), (MetOpen‘𝐷)〉)) & ⊢ (𝜑 → 𝑀 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝐾 ∈ ∞MetSp ↔ 𝐷 ∈ (∞Met‘𝑋))) | ||
Theorem | setsms 23644 | The constructed metric space is a metric space iff the provided distance function is a metric. (Contributed by Mario Carneiro, 28-Aug-2015.) |
⊢ (𝜑 → 𝑋 = (Base‘𝑀)) & ⊢ (𝜑 → 𝐷 = ((dist‘𝑀) ↾ (𝑋 × 𝑋))) & ⊢ (𝜑 → 𝐾 = (𝑀 sSet 〈(TopSet‘ndx), (MetOpen‘𝐷)〉)) & ⊢ (𝜑 → 𝑀 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝐾 ∈ MetSp ↔ 𝐷 ∈ (Met‘𝑋))) | ||
Theorem | tmsval 23645 | For any metric there is an associated metric space. (Contributed by Mario Carneiro, 2-Sep-2015.) |
⊢ 𝑀 = {〈(Base‘ndx), 𝑋〉, 〈(dist‘ndx), 𝐷〉} & ⊢ 𝐾 = (toMetSp‘𝐷) ⇒ ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐾 = (𝑀 sSet 〈(TopSet‘ndx), (MetOpen‘𝐷)〉)) | ||
Theorem | tmslem 23646 | Lemma for tmsbas 23648, tmsds 23649, and tmstopn 23650. (Contributed by Mario Carneiro, 2-Sep-2015.) |
⊢ 𝑀 = {〈(Base‘ndx), 𝑋〉, 〈(dist‘ndx), 𝐷〉} & ⊢ 𝐾 = (toMetSp‘𝐷) ⇒ ⊢ (𝐷 ∈ (∞Met‘𝑋) → (𝑋 = (Base‘𝐾) ∧ 𝐷 = (dist‘𝐾) ∧ (MetOpen‘𝐷) = (TopOpen‘𝐾))) | ||
Theorem | tmslemOLD 23647 | Obsolete version of tmslem 23646 as of 28-Oct-2024. Lemma for tmsbas 23648, tmsds 23649, and tmstopn 23650. (Contributed by Mario Carneiro, 2-Sep-2015.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ 𝑀 = {〈(Base‘ndx), 𝑋〉, 〈(dist‘ndx), 𝐷〉} & ⊢ 𝐾 = (toMetSp‘𝐷) ⇒ ⊢ (𝐷 ∈ (∞Met‘𝑋) → (𝑋 = (Base‘𝐾) ∧ 𝐷 = (dist‘𝐾) ∧ (MetOpen‘𝐷) = (TopOpen‘𝐾))) | ||
Theorem | tmsbas 23648 | The base set of a constructed metric space. (Contributed by Mario Carneiro, 2-Sep-2015.) |
⊢ 𝐾 = (toMetSp‘𝐷) ⇒ ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝑋 = (Base‘𝐾)) | ||
Theorem | tmsds 23649 | The metric of a constructed metric space. (Contributed by Mario Carneiro, 2-Sep-2015.) |
⊢ 𝐾 = (toMetSp‘𝐷) ⇒ ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐷 = (dist‘𝐾)) | ||
Theorem | tmstopn 23650 | The topology of a constructed metric. (Contributed by Mario Carneiro, 2-Sep-2015.) |
⊢ 𝐾 = (toMetSp‘𝐷) & ⊢ 𝐽 = (MetOpen‘𝐷) ⇒ ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐽 = (TopOpen‘𝐾)) | ||
Theorem | tmsxms 23651 | The constructed metric space is an extended metric space. (Contributed by Mario Carneiro, 2-Sep-2015.) |
⊢ 𝐾 = (toMetSp‘𝐷) ⇒ ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐾 ∈ ∞MetSp) | ||
Theorem | tmsms 23652 | The constructed metric space is a metric space given a metric. (Contributed by Mario Carneiro, 2-Sep-2015.) |
⊢ 𝐾 = (toMetSp‘𝐷) ⇒ ⊢ (𝐷 ∈ (Met‘𝑋) → 𝐾 ∈ MetSp) | ||
Theorem | imasf1obl 23653 | The image of a metric space ball. (Contributed by Mario Carneiro, 28-Aug-2015.) |
⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) & ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) & ⊢ (𝜑 → 𝐹:𝑉–1-1-onto→𝐵) & ⊢ (𝜑 → 𝑅 ∈ 𝑍) & ⊢ 𝐸 = ((dist‘𝑅) ↾ (𝑉 × 𝑉)) & ⊢ 𝐷 = (dist‘𝑈) & ⊢ (𝜑 → 𝐸 ∈ (∞Met‘𝑉)) & ⊢ (𝜑 → 𝑃 ∈ 𝑉) & ⊢ (𝜑 → 𝑆 ∈ ℝ*) ⇒ ⊢ (𝜑 → ((𝐹‘𝑃)(ball‘𝐷)𝑆) = (𝐹 “ (𝑃(ball‘𝐸)𝑆))) | ||
Theorem | imasf1oxms 23654 | The image of a metric space is a metric space. (Contributed by Mario Carneiro, 28-Aug-2015.) |
⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) & ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) & ⊢ (𝜑 → 𝐹:𝑉–1-1-onto→𝐵) & ⊢ (𝜑 → 𝑅 ∈ ∞MetSp) ⇒ ⊢ (𝜑 → 𝑈 ∈ ∞MetSp) | ||
Theorem | imasf1oms 23655 | The image of a metric space is a metric space. (Contributed by Mario Carneiro, 28-Aug-2015.) |
⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) & ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) & ⊢ (𝜑 → 𝐹:𝑉–1-1-onto→𝐵) & ⊢ (𝜑 → 𝑅 ∈ MetSp) ⇒ ⊢ (𝜑 → 𝑈 ∈ MetSp) | ||
Theorem | prdsbl 23656* |
A ball in the product metric for finite index set is the Cartesian
product of balls in all coordinates. For infinite index set this is no
longer true; instead the correct statement is that a *closed ball* is
the product of closed balls in each coordinate (where closed ball means
a set of the form in blcld 23670) - for a counterexample the point 𝑝 in
ℝ↑ℕ whose 𝑛-th
coordinate is 1 − 1 / 𝑛 is in
X𝑛 ∈ ℕball(0, 1) but is not
in the 1-ball of the
product (since 𝑑(0, 𝑝) = 1).
The last assumption, 0 < 𝐴, is needed only in the case 𝐼 = ∅, when the right side evaluates to {∅} and the left evaluates to ∅ if 𝐴 ≤ 0 and {∅} if 0 < 𝐴. (Contributed by Mario Carneiro, 28-Aug-2015.) |
⊢ 𝑌 = (𝑆Xs(𝑥 ∈ 𝐼 ↦ 𝑅)) & ⊢ 𝐵 = (Base‘𝑌) & ⊢ 𝑉 = (Base‘𝑅) & ⊢ 𝐸 = ((dist‘𝑅) ↾ (𝑉 × 𝑉)) & ⊢ 𝐷 = (dist‘𝑌) & ⊢ (𝜑 → 𝑆 ∈ 𝑊) & ⊢ (𝜑 → 𝐼 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝑅 ∈ 𝑍) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝐸 ∈ (∞Met‘𝑉)) & ⊢ (𝜑 → 𝑃 ∈ 𝐵) & ⊢ (𝜑 → 𝐴 ∈ ℝ*) & ⊢ (𝜑 → 0 < 𝐴) ⇒ ⊢ (𝜑 → (𝑃(ball‘𝐷)𝐴) = X𝑥 ∈ 𝐼 ((𝑃‘𝑥)(ball‘𝐸)𝐴)) | ||
Theorem | mopni 23657* | An open set of a metric space includes a ball around each of its points. (Contributed by NM, 3-Sep-2006.) (Revised by Mario Carneiro, 12-Nov-2013.) |
⊢ 𝐽 = (MetOpen‘𝐷) ⇒ ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ 𝐽 ∧ 𝑃 ∈ 𝐴) → ∃𝑥 ∈ ran (ball‘𝐷)(𝑃 ∈ 𝑥 ∧ 𝑥 ⊆ 𝐴)) | ||
Theorem | mopni2 23658* | An open set of a metric space includes a ball around each of its points. (Contributed by NM, 2-May-2007.) (Revised by Mario Carneiro, 12-Nov-2013.) |
⊢ 𝐽 = (MetOpen‘𝐷) ⇒ ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ 𝐽 ∧ 𝑃 ∈ 𝐴) → ∃𝑥 ∈ ℝ+ (𝑃(ball‘𝐷)𝑥) ⊆ 𝐴) | ||
Theorem | mopni3 23659* | An open set of a metric space includes an arbitrarily small ball around each of its points. (Contributed by NM, 20-Sep-2007.) (Revised by Mario Carneiro, 12-Nov-2013.) |
⊢ 𝐽 = (MetOpen‘𝐷) ⇒ ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ 𝐽 ∧ 𝑃 ∈ 𝐴) ∧ 𝑅 ∈ ℝ+) → ∃𝑥 ∈ ℝ+ (𝑥 < 𝑅 ∧ (𝑃(ball‘𝐷)𝑥) ⊆ 𝐴)) | ||
Theorem | blssopn 23660 | The balls of a metric space are open sets. (Contributed by NM, 12-Sep-2006.) (Revised by Mario Carneiro, 23-Dec-2013.) |
⊢ 𝐽 = (MetOpen‘𝐷) ⇒ ⊢ (𝐷 ∈ (∞Met‘𝑋) → ran (ball‘𝐷) ⊆ 𝐽) | ||
Theorem | unimopn 23661 | The union of a collection of open sets of a metric space is open. Theorem T2 of [Kreyszig] p. 19. (Contributed by NM, 4-Sep-2006.) (Revised by Mario Carneiro, 23-Dec-2013.) |
⊢ 𝐽 = (MetOpen‘𝐷) ⇒ ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ⊆ 𝐽) → ∪ 𝐴 ∈ 𝐽) | ||
Theorem | mopnin 23662 | The intersection of two open sets of a metric space is open. (Contributed by NM, 4-Sep-2006.) (Revised by Mario Carneiro, 23-Dec-2013.) |
⊢ 𝐽 = (MetOpen‘𝐷) ⇒ ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ 𝐽 ∧ 𝐵 ∈ 𝐽) → (𝐴 ∩ 𝐵) ∈ 𝐽) | ||
Theorem | mopn0 23663 | The empty set is an open set of a metric space. Part of Theorem T1 of [Kreyszig] p. 19. (Contributed by NM, 4-Sep-2006.) |
⊢ 𝐽 = (MetOpen‘𝐷) ⇒ ⊢ (𝐷 ∈ (∞Met‘𝑋) → ∅ ∈ 𝐽) | ||
Theorem | rnblopn 23664 | A ball of a metric space is an open set. (Contributed by NM, 12-Sep-2006.) |
⊢ 𝐽 = (MetOpen‘𝐷) ⇒ ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ ran (ball‘𝐷)) → 𝐵 ∈ 𝐽) | ||
Theorem | blopn 23665 | A ball of a metric space is an open set. (Contributed by NM, 9-Mar-2007.) (Revised by Mario Carneiro, 12-Nov-2013.) |
⊢ 𝐽 = (MetOpen‘𝐷) ⇒ ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*) → (𝑃(ball‘𝐷)𝑅) ∈ 𝐽) | ||
Theorem | neibl 23666* | The neighborhoods around a point 𝑃 of a metric space are those subsets containing a ball around 𝑃. Definition of neighborhood in [Kreyszig] p. 19. (Contributed by NM, 8-Nov-2007.) (Revised by Mario Carneiro, 23-Dec-2013.) |
⊢ 𝐽 = (MetOpen‘𝐷) ⇒ ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋) → (𝑁 ∈ ((nei‘𝐽)‘{𝑃}) ↔ (𝑁 ⊆ 𝑋 ∧ ∃𝑟 ∈ ℝ+ (𝑃(ball‘𝐷)𝑟) ⊆ 𝑁))) | ||
Theorem | blnei 23667 | A ball around a point is a neighborhood of the point. (Contributed by NM, 8-Nov-2007.) (Revised by Mario Carneiro, 24-Aug-2015.) |
⊢ 𝐽 = (MetOpen‘𝐷) ⇒ ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ+) → (𝑃(ball‘𝐷)𝑅) ∈ ((nei‘𝐽)‘{𝑃})) | ||
Theorem | lpbl 23668* | Every ball around a limit point 𝑃 of a subset 𝑆 includes a member of 𝑆 (even if 𝑃 ∉ 𝑆). (Contributed by NM, 9-Nov-2007.) (Revised by Mario Carneiro, 23-Dec-2013.) |
⊢ 𝐽 = (MetOpen‘𝐷) ⇒ ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋 ∧ 𝑃 ∈ ((limPt‘𝐽)‘𝑆)) ∧ 𝑅 ∈ ℝ+) → ∃𝑥 ∈ 𝑆 𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) | ||
Theorem | blsscls2 23669* | A smaller closed ball is contained in a larger open ball. (Contributed by Mario Carneiro, 10-Jan-2014.) |
⊢ 𝐽 = (MetOpen‘𝐷) & ⊢ 𝑆 = {𝑧 ∈ 𝑋 ∣ (𝑃𝐷𝑧) ≤ 𝑅} ⇒ ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋) ∧ (𝑅 ∈ ℝ* ∧ 𝑇 ∈ ℝ* ∧ 𝑅 < 𝑇)) → 𝑆 ⊆ (𝑃(ball‘𝐷)𝑇)) | ||
Theorem | blcld 23670* | A "closed ball" in a metric space is actually closed. (Contributed by Mario Carneiro, 31-Dec-2013.) (Revised by Mario Carneiro, 24-Aug-2015.) |
⊢ 𝐽 = (MetOpen‘𝐷) & ⊢ 𝑆 = {𝑧 ∈ 𝑋 ∣ (𝑃𝐷𝑧) ≤ 𝑅} ⇒ ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*) → 𝑆 ∈ (Clsd‘𝐽)) | ||
Theorem | blcls 23671* | The closure of an open ball in a metric space is contained in the corresponding closed ball. (Equality need not hold; for example, with the discrete metric, the closed ball of radius 1 is the whole space, but the open ball of radius 1 is just a point, whose closure is also a point.) (Contributed by Mario Carneiro, 31-Dec-2013.) |
⊢ 𝐽 = (MetOpen‘𝐷) & ⊢ 𝑆 = {𝑧 ∈ 𝑋 ∣ (𝑃𝐷𝑧) ≤ 𝑅} ⇒ ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*) → ((cls‘𝐽)‘(𝑃(ball‘𝐷)𝑅)) ⊆ 𝑆) | ||
Theorem | blsscls 23672 | If two concentric balls have different radii, the closure of the smaller one is contained in the larger one. (Contributed by Mario Carneiro, 5-Jan-2014.) |
⊢ 𝐽 = (MetOpen‘𝐷) ⇒ ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋) ∧ (𝑅 ∈ ℝ* ∧ 𝑆 ∈ ℝ* ∧ 𝑅 < 𝑆)) → ((cls‘𝐽)‘(𝑃(ball‘𝐷)𝑅)) ⊆ (𝑃(ball‘𝐷)𝑆)) | ||
Theorem | metss 23673* | Two ways of saying that metric 𝐷 generates a finer topology than metric 𝐶. (Contributed by Mario Carneiro, 12-Nov-2013.) (Revised by Mario Carneiro, 24-Aug-2015.) |
⊢ 𝐽 = (MetOpen‘𝐶) & ⊢ 𝐾 = (MetOpen‘𝐷) ⇒ ⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑋)) → (𝐽 ⊆ 𝐾 ↔ ∀𝑥 ∈ 𝑋 ∀𝑟 ∈ ℝ+ ∃𝑠 ∈ ℝ+ (𝑥(ball‘𝐷)𝑠) ⊆ (𝑥(ball‘𝐶)𝑟))) | ||
Theorem | metequiv 23674* | Two ways of saying that two metrics generate the same topology. Two metrics satisfying the right-hand side are said to be (topologically) equivalent. (Contributed by Jeff Hankins, 21-Jun-2009.) (Revised by Mario Carneiro, 12-Nov-2013.) |
⊢ 𝐽 = (MetOpen‘𝐶) & ⊢ 𝐾 = (MetOpen‘𝐷) ⇒ ⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑋)) → (𝐽 = 𝐾 ↔ ∀𝑥 ∈ 𝑋 (∀𝑟 ∈ ℝ+ ∃𝑠 ∈ ℝ+ (𝑥(ball‘𝐷)𝑠) ⊆ (𝑥(ball‘𝐶)𝑟) ∧ ∀𝑎 ∈ ℝ+ ∃𝑏 ∈ ℝ+ (𝑥(ball‘𝐶)𝑏) ⊆ (𝑥(ball‘𝐷)𝑎)))) | ||
Theorem | metequiv2 23675* | If there is a sequence of radii approaching zero for which the balls of both metrics coincide, then the generated topologies are equivalent. (Contributed by Mario Carneiro, 26-Aug-2015.) |
⊢ 𝐽 = (MetOpen‘𝐶) & ⊢ 𝐾 = (MetOpen‘𝐷) ⇒ ⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑋)) → (∀𝑥 ∈ 𝑋 ∀𝑟 ∈ ℝ+ ∃𝑠 ∈ ℝ+ (𝑠 ≤ 𝑟 ∧ (𝑥(ball‘𝐶)𝑠) = (𝑥(ball‘𝐷)𝑠)) → 𝐽 = 𝐾)) | ||
Theorem | metss2lem 23676* | Lemma for metss2 23677. (Contributed by Mario Carneiro, 14-Sep-2015.) |
⊢ 𝐽 = (MetOpen‘𝐶) & ⊢ 𝐾 = (MetOpen‘𝐷) & ⊢ (𝜑 → 𝐶 ∈ (Met‘𝑋)) & ⊢ (𝜑 → 𝐷 ∈ (Met‘𝑋)) & ⊢ (𝜑 → 𝑅 ∈ ℝ+) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (𝑥𝐶𝑦) ≤ (𝑅 · (𝑥𝐷𝑦))) ⇒ ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑆 ∈ ℝ+)) → (𝑥(ball‘𝐷)(𝑆 / 𝑅)) ⊆ (𝑥(ball‘𝐶)𝑆)) | ||
Theorem | metss2 23677* | If the metric 𝐷 is "strongly finer" than 𝐶 (meaning that there is a positive real constant 𝑅 such that 𝐶(𝑥, 𝑦) ≤ 𝑅 · 𝐷(𝑥, 𝑦)), then 𝐷 generates a finer topology. (Using this theorem twice in each direction states that if two metrics are strongly equivalent, then they generate the same topology.) (Contributed by Mario Carneiro, 14-Sep-2015.) |
⊢ 𝐽 = (MetOpen‘𝐶) & ⊢ 𝐾 = (MetOpen‘𝐷) & ⊢ (𝜑 → 𝐶 ∈ (Met‘𝑋)) & ⊢ (𝜑 → 𝐷 ∈ (Met‘𝑋)) & ⊢ (𝜑 → 𝑅 ∈ ℝ+) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (𝑥𝐶𝑦) ≤ (𝑅 · (𝑥𝐷𝑦))) ⇒ ⊢ (𝜑 → 𝐽 ⊆ 𝐾) | ||
Theorem | comet 23678* | The composition of an extended metric with a monotonic subadditive function is an extended metric. (Contributed by Mario Carneiro, 21-Mar-2015.) |
⊢ (𝜑 → 𝐷 ∈ (∞Met‘𝑋)) & ⊢ (𝜑 → 𝐹:(0[,]+∞)⟶ℝ*) & ⊢ ((𝜑 ∧ 𝑥 ∈ (0[,]+∞)) → ((𝐹‘𝑥) = 0 ↔ 𝑥 = 0)) & ⊢ ((𝜑 ∧ (𝑥 ∈ (0[,]+∞) ∧ 𝑦 ∈ (0[,]+∞))) → (𝑥 ≤ 𝑦 → (𝐹‘𝑥) ≤ (𝐹‘𝑦))) & ⊢ ((𝜑 ∧ (𝑥 ∈ (0[,]+∞) ∧ 𝑦 ∈ (0[,]+∞))) → (𝐹‘(𝑥 +𝑒 𝑦)) ≤ ((𝐹‘𝑥) +𝑒 (𝐹‘𝑦))) ⇒ ⊢ (𝜑 → (𝐹 ∘ 𝐷) ∈ (∞Met‘𝑋)) | ||
Theorem | stdbdmetval 23679* | Value of the standard bounded metric. (Contributed by Mario Carneiro, 26-Aug-2015.) |
⊢ 𝐷 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ if((𝑥𝐶𝑦) ≤ 𝑅, (𝑥𝐶𝑦), 𝑅)) ⇒ ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐷𝐵) = if((𝐴𝐶𝐵) ≤ 𝑅, (𝐴𝐶𝐵), 𝑅)) | ||
Theorem | stdbdxmet 23680* | The standard bounded metric is an extended metric given an extended metric and a positive extended real cutoff. (Contributed by Mario Carneiro, 26-Aug-2015.) |
⊢ 𝐷 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ if((𝑥𝐶𝑦) ≤ 𝑅, (𝑥𝐶𝑦), 𝑅)) ⇒ ⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) → 𝐷 ∈ (∞Met‘𝑋)) | ||
Theorem | stdbdmet 23681* | The standard bounded metric is a proper metric given an extended metric and a positive real cutoff. (Contributed by Mario Carneiro, 26-Aug-2015.) |
⊢ 𝐷 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ if((𝑥𝐶𝑦) ≤ 𝑅, (𝑥𝐶𝑦), 𝑅)) ⇒ ⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ+) → 𝐷 ∈ (Met‘𝑋)) | ||
Theorem | stdbdbl 23682* | The standard bounded metric corresponding to 𝐶 generates the same balls as 𝐶 for radii less than 𝑅. (Contributed by Mario Carneiro, 26-Aug-2015.) |
⊢ 𝐷 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ if((𝑥𝐶𝑦) ≤ 𝑅, (𝑥𝐶𝑦), 𝑅)) ⇒ ⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑃 ∈ 𝑋 ∧ 𝑆 ∈ ℝ* ∧ 𝑆 ≤ 𝑅)) → (𝑃(ball‘𝐷)𝑆) = (𝑃(ball‘𝐶)𝑆)) | ||
Theorem | stdbdmopn 23683* | The standard bounded metric corresponding to 𝐶 generates the same topology as 𝐶. (Contributed by Mario Carneiro, 26-Aug-2015.) |
⊢ 𝐷 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ if((𝑥𝐶𝑦) ≤ 𝑅, (𝑥𝐶𝑦), 𝑅)) & ⊢ 𝐽 = (MetOpen‘𝐶) ⇒ ⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) → 𝐽 = (MetOpen‘𝐷)) | ||
Theorem | mopnex 23684* | The topology generated by an extended metric can also be generated by a true metric. Thus, "metrizable topologies" can equivalently be defined in terms of metrics or extended metrics. (Contributed by Mario Carneiro, 26-Aug-2015.) |
⊢ 𝐽 = (MetOpen‘𝐷) ⇒ ⊢ (𝐷 ∈ (∞Met‘𝑋) → ∃𝑑 ∈ (Met‘𝑋)𝐽 = (MetOpen‘𝑑)) | ||
Theorem | methaus 23685 | The topology generated by a metric space is Hausdorff. (Contributed by Mario Carneiro, 21-Mar-2015.) (Revised by Mario Carneiro, 26-Aug-2015.) |
⊢ 𝐽 = (MetOpen‘𝐷) ⇒ ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ Haus) | ||
Theorem | met1stc 23686 | The topology generated by a metric space is first-countable. (Contributed by Mario Carneiro, 21-Mar-2015.) |
⊢ 𝐽 = (MetOpen‘𝐷) ⇒ ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ 1stω) | ||
Theorem | met2ndci 23687 | A separable metric space (a metric space with a countable dense subset) is second-countable. (Contributed by Mario Carneiro, 13-Apr-2015.) |
⊢ 𝐽 = (MetOpen‘𝐷) ⇒ ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → 𝐽 ∈ 2ndω) | ||
Theorem | met2ndc 23688* | A metric space is second-countable iff it is separable (has a countable dense subset). (Contributed by Mario Carneiro, 13-Apr-2015.) |
⊢ 𝐽 = (MetOpen‘𝐷) ⇒ ⊢ (𝐷 ∈ (∞Met‘𝑋) → (𝐽 ∈ 2ndω ↔ ∃𝑥 ∈ 𝒫 𝑋(𝑥 ≼ ω ∧ ((cls‘𝐽)‘𝑥) = 𝑋))) | ||
Theorem | metrest 23689 | Two alternate formulations of a subspace topology of a metric space topology. (Contributed by Jeff Hankins, 19-Aug-2009.) (Proof shortened by Mario Carneiro, 5-Jan-2014.) |
⊢ 𝐷 = (𝐶 ↾ (𝑌 × 𝑌)) & ⊢ 𝐽 = (MetOpen‘𝐶) & ⊢ 𝐾 = (MetOpen‘𝐷) ⇒ ⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) → (𝐽 ↾t 𝑌) = 𝐾) | ||
Theorem | ressxms 23690 | The restriction of a metric space is a metric space. (Contributed by Mario Carneiro, 24-Aug-2015.) |
⊢ ((𝐾 ∈ ∞MetSp ∧ 𝐴 ∈ 𝑉) → (𝐾 ↾s 𝐴) ∈ ∞MetSp) | ||
Theorem | ressms 23691 | The restriction of a metric space is a metric space. (Contributed by Mario Carneiro, 24-Aug-2015.) |
⊢ ((𝐾 ∈ MetSp ∧ 𝐴 ∈ 𝑉) → (𝐾 ↾s 𝐴) ∈ MetSp) | ||
Theorem | prdsmslem1 23692 | Lemma for prdsms 23696. The distance function of a product structure is an extended metric. (Contributed by Mario Carneiro, 28-Aug-2015.) |
⊢ 𝑌 = (𝑆Xs𝑅) & ⊢ (𝜑 → 𝑆 ∈ 𝑊) & ⊢ (𝜑 → 𝐼 ∈ Fin) & ⊢ 𝐷 = (dist‘𝑌) & ⊢ 𝐵 = (Base‘𝑌) & ⊢ (𝜑 → 𝑅:𝐼⟶MetSp) ⇒ ⊢ (𝜑 → 𝐷 ∈ (Met‘𝐵)) | ||
Theorem | prdsxmslem1 23693 | Lemma for prdsms 23696. The distance function of a product structure is an extended metric. (Contributed by Mario Carneiro, 28-Aug-2015.) |
⊢ 𝑌 = (𝑆Xs𝑅) & ⊢ (𝜑 → 𝑆 ∈ 𝑊) & ⊢ (𝜑 → 𝐼 ∈ Fin) & ⊢ 𝐷 = (dist‘𝑌) & ⊢ 𝐵 = (Base‘𝑌) & ⊢ (𝜑 → 𝑅:𝐼⟶∞MetSp) ⇒ ⊢ (𝜑 → 𝐷 ∈ (∞Met‘𝐵)) | ||
Theorem | prdsxmslem2 23694* | Lemma for prdsxms 23695. The topology generated by the supremum metric is the same as the product topology, when the index set is finite. (Contributed by Mario Carneiro, 28-Aug-2015.) |
⊢ 𝑌 = (𝑆Xs𝑅) & ⊢ (𝜑 → 𝑆 ∈ 𝑊) & ⊢ (𝜑 → 𝐼 ∈ Fin) & ⊢ 𝐷 = (dist‘𝑌) & ⊢ 𝐵 = (Base‘𝑌) & ⊢ (𝜑 → 𝑅:𝐼⟶∞MetSp) & ⊢ 𝐽 = (TopOpen‘𝑌) & ⊢ 𝑉 = (Base‘(𝑅‘𝑘)) & ⊢ 𝐸 = ((dist‘(𝑅‘𝑘)) ↾ (𝑉 × 𝑉)) & ⊢ 𝐾 = (TopOpen‘(𝑅‘𝑘)) & ⊢ 𝐶 = {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑘 ∈ 𝐼 (𝑔‘𝑘) ∈ ((TopOpen ∘ 𝑅)‘𝑘) ∧ ∃𝑧 ∈ Fin ∀𝑘 ∈ (𝐼 ∖ 𝑧)(𝑔‘𝑘) = ∪ ((TopOpen ∘ 𝑅)‘𝑘)) ∧ 𝑥 = X𝑘 ∈ 𝐼 (𝑔‘𝑘))} ⇒ ⊢ (𝜑 → 𝐽 = (MetOpen‘𝐷)) | ||
Theorem | prdsxms 23695 | The indexed product structure is an extended metric space when the index set is finite. (Although the extended metric is still valid when the index set is infinite, it no longer agrees with the product topology, which is not metrizable in any case.) (Contributed by Mario Carneiro, 28-Aug-2015.) |
⊢ 𝑌 = (𝑆Xs𝑅) ⇒ ⊢ ((𝑆 ∈ 𝑊 ∧ 𝐼 ∈ Fin ∧ 𝑅:𝐼⟶∞MetSp) → 𝑌 ∈ ∞MetSp) | ||
Theorem | prdsms 23696 | The indexed product structure is a metric space when the index set is finite. (Contributed by Mario Carneiro, 28-Aug-2015.) |
⊢ 𝑌 = (𝑆Xs𝑅) ⇒ ⊢ ((𝑆 ∈ 𝑊 ∧ 𝐼 ∈ Fin ∧ 𝑅:𝐼⟶MetSp) → 𝑌 ∈ MetSp) | ||
Theorem | pwsxms 23697 | A power of an extended metric space is an extended metric space. (Contributed by Mario Carneiro, 28-Aug-2015.) |
⊢ 𝑌 = (𝑅 ↑s 𝐼) ⇒ ⊢ ((𝑅 ∈ ∞MetSp ∧ 𝐼 ∈ Fin) → 𝑌 ∈ ∞MetSp) | ||
Theorem | pwsms 23698 | A power of a metric space is a metric space. (Contributed by Mario Carneiro, 28-Aug-2015.) |
⊢ 𝑌 = (𝑅 ↑s 𝐼) ⇒ ⊢ ((𝑅 ∈ MetSp ∧ 𝐼 ∈ Fin) → 𝑌 ∈ MetSp) | ||
Theorem | xpsxms 23699 | A binary product of metric spaces is a metric space. (Contributed by Mario Carneiro, 28-Aug-2015.) |
⊢ 𝑇 = (𝑅 ×s 𝑆) ⇒ ⊢ ((𝑅 ∈ ∞MetSp ∧ 𝑆 ∈ ∞MetSp) → 𝑇 ∈ ∞MetSp) | ||
Theorem | xpsms 23700 | A binary product of metric spaces is a metric space. (Contributed by Mario Carneiro, 28-Aug-2015.) |
⊢ 𝑇 = (𝑅 ×s 𝑆) ⇒ ⊢ ((𝑅 ∈ MetSp ∧ 𝑆 ∈ MetSp) → 𝑇 ∈ MetSp) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |