| Metamath
Proof Explorer Theorem List (p. 237 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30847) |
(30848-32370) |
(32371-49794) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | qtopcn 23601 | Universal property of a quotient map. (Contributed by Mario Carneiro, 23-Mar-2015.) |
| ⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑍)) ∧ (𝐹:𝑋–onto→𝑌 ∧ 𝐺:𝑌⟶𝑍)) → (𝐺 ∈ ((𝐽 qTop 𝐹) Cn 𝐾) ↔ (𝐺 ∘ 𝐹) ∈ (𝐽 Cn 𝐾))) | ||
| Theorem | qtopss 23602 | A surjective continuous function from 𝐽 to 𝐾 induces a topology 𝐽 qTop 𝐹 on the base set of 𝐾. This topology is in general finer than 𝐾. Together with qtopid 23592, this implies that 𝐽 qTop 𝐹 is the finest topology making 𝐹 continuous, i.e. the final topology with respect to the family {𝐹}. (Contributed by Mario Carneiro, 24-Mar-2015.) |
| ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹 = 𝑌) → 𝐾 ⊆ (𝐽 qTop 𝐹)) | ||
| Theorem | qtopeu 23603* | Universal property of the quotient topology. If 𝐺 is a function from 𝐽 to 𝐾 which is equal on all equivalent elements under 𝐹, then there is a unique continuous map 𝑓:(𝐽 / 𝐹)⟶𝐾 such that 𝐺 = 𝑓 ∘ 𝐹, and we say that 𝐺 "passes to the quotient". (Contributed by Mario Carneiro, 24-Mar-2015.) |
| ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝐹:𝑋–onto→𝑌) & ⊢ (𝜑 → 𝐺 ∈ (𝐽 Cn 𝐾)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ (𝐹‘𝑥) = (𝐹‘𝑦))) → (𝐺‘𝑥) = (𝐺‘𝑦)) ⇒ ⊢ (𝜑 → ∃!𝑓 ∈ ((𝐽 qTop 𝐹) Cn 𝐾)𝐺 = (𝑓 ∘ 𝐹)) | ||
| Theorem | qtoprest 23604 | If 𝐴 is a saturated open or closed set (where saturated means that 𝐴 = (◡𝐹 “ 𝑈) for some 𝑈), then the restriction of the quotient map 𝐹 to 𝐴 is a quotient map. (Contributed by Mario Carneiro, 24-Mar-2015.) (Revised by Mario Carneiro, 22-Aug-2015.) |
| ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝐹:𝑋–onto→𝑌) & ⊢ (𝜑 → 𝑈 ⊆ 𝑌) & ⊢ (𝜑 → 𝐴 = (◡𝐹 “ 𝑈)) & ⊢ (𝜑 → (𝐴 ∈ 𝐽 ∨ 𝐴 ∈ (Clsd‘𝐽))) ⇒ ⊢ (𝜑 → ((𝐽 qTop 𝐹) ↾t 𝑈) = ((𝐽 ↾t 𝐴) qTop (𝐹 ↾ 𝐴))) | ||
| Theorem | qtopomap 23605* | If 𝐹 is a surjective continuous open map, then it is a quotient map. (An open map is a function that maps open sets to open sets.) (Contributed by Mario Carneiro, 24-Mar-2015.) |
| ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑌)) & ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) & ⊢ (𝜑 → ran 𝐹 = 𝑌) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐽) → (𝐹 “ 𝑥) ∈ 𝐾) ⇒ ⊢ (𝜑 → 𝐾 = (𝐽 qTop 𝐹)) | ||
| Theorem | qtopcmap 23606* | If 𝐹 is a surjective continuous closed map, then it is a quotient map. (A closed map is a function that maps closed sets to closed sets.) (Contributed by Mario Carneiro, 24-Mar-2015.) |
| ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑌)) & ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) & ⊢ (𝜑 → ran 𝐹 = 𝑌) & ⊢ ((𝜑 ∧ 𝑥 ∈ (Clsd‘𝐽)) → (𝐹 “ 𝑥) ∈ (Clsd‘𝐾)) ⇒ ⊢ (𝜑 → 𝐾 = (𝐽 qTop 𝐹)) | ||
| Theorem | imastopn 23607 | The topology of an image structure. (Contributed by Mario Carneiro, 27-Aug-2015.) |
| ⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) & ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) & ⊢ (𝜑 → 𝐹:𝑉–onto→𝐵) & ⊢ (𝜑 → 𝑅 ∈ 𝑊) & ⊢ 𝐽 = (TopOpen‘𝑅) & ⊢ 𝑂 = (TopOpen‘𝑈) ⇒ ⊢ (𝜑 → 𝑂 = (𝐽 qTop 𝐹)) | ||
| Theorem | imastps 23608 | The image of a topological space under a function is a topological space. (Contributed by Mario Carneiro, 27-Aug-2015.) |
| ⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) & ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) & ⊢ (𝜑 → 𝐹:𝑉–onto→𝐵) & ⊢ (𝜑 → 𝑅 ∈ TopSp) ⇒ ⊢ (𝜑 → 𝑈 ∈ TopSp) | ||
| Theorem | qustps 23609 | A quotient structure is a topological space. (Contributed by Mario Carneiro, 27-Aug-2015.) |
| ⊢ (𝜑 → 𝑈 = (𝑅 /s 𝐸)) & ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) & ⊢ (𝜑 → 𝐸 ∈ 𝑊) & ⊢ (𝜑 → 𝑅 ∈ TopSp) ⇒ ⊢ (𝜑 → 𝑈 ∈ TopSp) | ||
| Theorem | kqfval 23610* | Value of the function appearing in df-kq 23581. (Contributed by Mario Carneiro, 25-Aug-2015.) |
| ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ {𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦}) ⇒ ⊢ ((𝐽 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋) → (𝐹‘𝐴) = {𝑦 ∈ 𝐽 ∣ 𝐴 ∈ 𝑦}) | ||
| Theorem | kqfeq 23611* | Two points in the Kolmogorov quotient are equal iff the original points are topologically indistinguishable. (Contributed by Mario Carneiro, 25-Aug-2015.) |
| ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ {𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦}) ⇒ ⊢ ((𝐽 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝐹‘𝐴) = (𝐹‘𝐵) ↔ ∀𝑦 ∈ 𝐽 (𝐴 ∈ 𝑦 ↔ 𝐵 ∈ 𝑦))) | ||
| Theorem | kqffn 23612* | The topological indistinguishability map is a function on the base. (Contributed by Mario Carneiro, 25-Aug-2015.) |
| ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ {𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦}) ⇒ ⊢ (𝐽 ∈ 𝑉 → 𝐹 Fn 𝑋) | ||
| Theorem | kqval 23613* | Value of the quotient topology function. (Contributed by Mario Carneiro, 25-Aug-2015.) |
| ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ {𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦}) ⇒ ⊢ (𝐽 ∈ (TopOn‘𝑋) → (KQ‘𝐽) = (𝐽 qTop 𝐹)) | ||
| Theorem | kqtopon 23614* | The Kolmogorov quotient is a topology on the quotient set. (Contributed by Mario Carneiro, 25-Aug-2015.) |
| ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ {𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦}) ⇒ ⊢ (𝐽 ∈ (TopOn‘𝑋) → (KQ‘𝐽) ∈ (TopOn‘ran 𝐹)) | ||
| Theorem | kqid 23615* | The topological indistinguishability map is a continuous function into the Kolmogorov quotient. (Contributed by Mario Carneiro, 25-Aug-2015.) |
| ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ {𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦}) ⇒ ⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝐹 ∈ (𝐽 Cn (KQ‘𝐽))) | ||
| Theorem | ist0-4 23616* | The topological indistinguishability map is injective iff the space is T0. (Contributed by Mario Carneiro, 25-Aug-2015.) |
| ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ {𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦}) ⇒ ⊢ (𝐽 ∈ (TopOn‘𝑋) → (𝐽 ∈ Kol2 ↔ 𝐹:𝑋–1-1→V)) | ||
| Theorem | kqfvima 23617* | When the image set is open, the quotient map satisfies a partial converse to fnfvima 7207, which is normally only true for injective functions. (Contributed by Mario Carneiro, 25-Aug-2015.) |
| ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ {𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦}) ⇒ ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ 𝐽 ∧ 𝐴 ∈ 𝑋) → (𝐴 ∈ 𝑈 ↔ (𝐹‘𝐴) ∈ (𝐹 “ 𝑈))) | ||
| Theorem | kqsat 23618* | Any open set is saturated with respect to the topological indistinguishability map (in the terminology of qtoprest 23604). (Contributed by Mario Carneiro, 25-Aug-2015.) |
| ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ {𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦}) ⇒ ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ 𝐽) → (◡𝐹 “ (𝐹 “ 𝑈)) = 𝑈) | ||
| Theorem | kqdisj 23619* | A version of imain 6601 for the topological indistinguishability map. (Contributed by Mario Carneiro, 25-Aug-2015.) |
| ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ {𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦}) ⇒ ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ 𝐽) → ((𝐹 “ 𝑈) ∩ (𝐹 “ (𝐴 ∖ 𝑈))) = ∅) | ||
| Theorem | kqcldsat 23620* | Any closed set is saturated with respect to the topological indistinguishability map (in the terminology of qtoprest 23604). (Contributed by Mario Carneiro, 25-Aug-2015.) |
| ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ {𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦}) ⇒ ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ (Clsd‘𝐽)) → (◡𝐹 “ (𝐹 “ 𝑈)) = 𝑈) | ||
| Theorem | kqopn 23621* | The topological indistinguishability map is an open map. (Contributed by Mario Carneiro, 25-Aug-2015.) |
| ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ {𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦}) ⇒ ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ 𝐽) → (𝐹 “ 𝑈) ∈ (KQ‘𝐽)) | ||
| Theorem | kqcld 23622* | The topological indistinguishability map is a closed map. (Contributed by Mario Carneiro, 25-Aug-2015.) |
| ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ {𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦}) ⇒ ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ (Clsd‘𝐽)) → (𝐹 “ 𝑈) ∈ (Clsd‘(KQ‘𝐽))) | ||
| Theorem | kqt0lem 23623* | Lemma for kqt0 23633. (Contributed by Mario Carneiro, 23-Mar-2015.) |
| ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ {𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦}) ⇒ ⊢ (𝐽 ∈ (TopOn‘𝑋) → (KQ‘𝐽) ∈ Kol2) | ||
| Theorem | isr0 23624* | The property "𝐽 is an R0 space". A space is R0 if any two topologically distinguishable points are separated (there is an open set containing each one and disjoint from the other). Or in contraposition, if every open set which contains 𝑥 also contains 𝑦, so there is no separation, then 𝑥 and 𝑦 are members of the same open sets. We have chosen not to give this definition a name, because it turns out that a space is R0 if and only if its Kolmogorov quotient is T1, so that is what we prove here. (Contributed by Mario Carneiro, 25-Aug-2015.) |
| ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ {𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦}) ⇒ ⊢ (𝐽 ∈ (TopOn‘𝑋) → ((KQ‘𝐽) ∈ Fre ↔ ∀𝑧 ∈ 𝑋 ∀𝑤 ∈ 𝑋 (∀𝑜 ∈ 𝐽 (𝑧 ∈ 𝑜 → 𝑤 ∈ 𝑜) → ∀𝑜 ∈ 𝐽 (𝑧 ∈ 𝑜 ↔ 𝑤 ∈ 𝑜)))) | ||
| Theorem | r0cld 23625* | The analogue of the T1 axiom (singletons are closed) for an R0 space. In an R0 space the set of all points topologically indistinguishable from 𝐴 is closed. (Contributed by Mario Carneiro, 25-Aug-2015.) |
| ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ {𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦}) ⇒ ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Fre ∧ 𝐴 ∈ 𝑋) → {𝑧 ∈ 𝑋 ∣ ∀𝑜 ∈ 𝐽 (𝑧 ∈ 𝑜 ↔ 𝐴 ∈ 𝑜)} ∈ (Clsd‘𝐽)) | ||
| Theorem | regr1lem 23626* | Lemma for regr1 23637. (Contributed by Mario Carneiro, 25-Aug-2015.) |
| ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ {𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦}) & ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝐽 ∈ Reg) & ⊢ (𝜑 → 𝐴 ∈ 𝑋) & ⊢ (𝜑 → 𝐵 ∈ 𝑋) & ⊢ (𝜑 → 𝑈 ∈ 𝐽) & ⊢ (𝜑 → ¬ ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)((𝐹‘𝐴) ∈ 𝑚 ∧ (𝐹‘𝐵) ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅)) ⇒ ⊢ (𝜑 → (𝐴 ∈ 𝑈 → 𝐵 ∈ 𝑈)) | ||
| Theorem | regr1lem2 23627* | A Kolmogorov quotient of a regular space is Hausdorff. (Contributed by Mario Carneiro, 25-Aug-2015.) |
| ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ {𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦}) ⇒ ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) → (KQ‘𝐽) ∈ Haus) | ||
| Theorem | kqreglem1 23628* | A Kolmogorov quotient of a regular space is regular. (Contributed by Mario Carneiro, 25-Aug-2015.) |
| ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ {𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦}) ⇒ ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) → (KQ‘𝐽) ∈ Reg) | ||
| Theorem | kqreglem2 23629* | If the Kolmogorov quotient of a space is regular then so is the original space. (Contributed by Mario Carneiro, 25-Aug-2015.) |
| ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ {𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦}) ⇒ ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Reg) → 𝐽 ∈ Reg) | ||
| Theorem | kqnrmlem1 23630* | A Kolmogorov quotient of a normal space is normal. (Contributed by Mario Carneiro, 25-Aug-2015.) |
| ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ {𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦}) ⇒ ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Nrm) → (KQ‘𝐽) ∈ Nrm) | ||
| Theorem | kqnrmlem2 23631* | If the Kolmogorov quotient of a space is normal then so is the original space. (Contributed by Mario Carneiro, 25-Aug-2015.) |
| ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ {𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦}) ⇒ ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) → 𝐽 ∈ Nrm) | ||
| Theorem | kqtop 23632 | The Kolmogorov quotient is a topology on the quotient set. (Contributed by Mario Carneiro, 25-Aug-2015.) |
| ⊢ (𝐽 ∈ Top ↔ (KQ‘𝐽) ∈ Top) | ||
| Theorem | kqt0 23633 | The Kolmogorov quotient is T0 even if the original topology is not. (Contributed by Mario Carneiro, 25-Aug-2015.) |
| ⊢ (𝐽 ∈ Top ↔ (KQ‘𝐽) ∈ Kol2) | ||
| Theorem | kqf 23634 | The Kolmogorov quotient is a topology on the quotient set. (Contributed by Mario Carneiro, 25-Aug-2015.) |
| ⊢ KQ:Top⟶Kol2 | ||
| Theorem | r0sep 23635* | The separation property of an R0 space. (Contributed by Mario Carneiro, 25-Aug-2015.) |
| ⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Fre) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (∀𝑜 ∈ 𝐽 (𝐴 ∈ 𝑜 → 𝐵 ∈ 𝑜) → ∀𝑜 ∈ 𝐽 (𝐴 ∈ 𝑜 ↔ 𝐵 ∈ 𝑜))) | ||
| Theorem | nrmr0reg 23636 | A normal R0 space is also regular. These spaces are usually referred to as normal regular spaces. (Contributed by Mario Carneiro, 25-Aug-2015.) |
| ⊢ ((𝐽 ∈ Nrm ∧ (KQ‘𝐽) ∈ Fre) → 𝐽 ∈ Reg) | ||
| Theorem | regr1 23637 | A regular space is R1, which means that any two topologically distinct points can be separated by neighborhoods. (Contributed by Mario Carneiro, 25-Aug-2015.) |
| ⊢ (𝐽 ∈ Reg → (KQ‘𝐽) ∈ Haus) | ||
| Theorem | kqreg 23638 | The Kolmogorov quotient of a regular space is regular. By regr1 23637 it is also Hausdorff, so we can also say that a space is regular iff the Kolmogorov quotient is regular Hausdorff (T3). (Contributed by Mario Carneiro, 25-Aug-2015.) |
| ⊢ (𝐽 ∈ Reg ↔ (KQ‘𝐽) ∈ Reg) | ||
| Theorem | kqnrm 23639 | The Kolmogorov quotient of a normal space is normal. (Contributed by Mario Carneiro, 25-Aug-2015.) |
| ⊢ (𝐽 ∈ Nrm ↔ (KQ‘𝐽) ∈ Nrm) | ||
| Syntax | chmeo 23640 | Extend class notation with the class of all homeomorphisms. |
| class Homeo | ||
| Syntax | chmph 23641 | Extend class notation with the relation "is homeomorphic to.". |
| class ≃ | ||
| Definition | df-hmeo 23642* | Function returning all the homeomorphisms from topology 𝑗 to topology 𝑘. (Contributed by FL, 14-Feb-2007.) |
| ⊢ Homeo = (𝑗 ∈ Top, 𝑘 ∈ Top ↦ {𝑓 ∈ (𝑗 Cn 𝑘) ∣ ◡𝑓 ∈ (𝑘 Cn 𝑗)}) | ||
| Definition | df-hmph 23643 | Definition of the relation 𝑥 is homeomorphic to 𝑦. (Contributed by FL, 14-Feb-2007.) |
| ⊢ ≃ = (◡Homeo “ (V ∖ 1o)) | ||
| Theorem | hmeofn 23644 | The set of homeomorphisms is a function on topologies. (Contributed by Mario Carneiro, 23-Aug-2015.) |
| ⊢ Homeo Fn (Top × Top) | ||
| Theorem | hmeofval 23645* | The set of all the homeomorphisms between two topologies. (Contributed by FL, 14-Feb-2007.) (Revised by Mario Carneiro, 22-Aug-2015.) |
| ⊢ (𝐽Homeo𝐾) = {𝑓 ∈ (𝐽 Cn 𝐾) ∣ ◡𝑓 ∈ (𝐾 Cn 𝐽)} | ||
| Theorem | ishmeo 23646 | The predicate F is a homeomorphism between topology 𝐽 and topology 𝐾. Criterion of [BourbakiTop1] p. I.2. (Contributed by FL, 14-Feb-2007.) (Revised by Mario Carneiro, 22-Aug-2015.) |
| ⊢ (𝐹 ∈ (𝐽Homeo𝐾) ↔ (𝐹 ∈ (𝐽 Cn 𝐾) ∧ ◡𝐹 ∈ (𝐾 Cn 𝐽))) | ||
| Theorem | hmeocn 23647 | A homeomorphism is continuous. (Contributed by Mario Carneiro, 22-Aug-2015.) |
| ⊢ (𝐹 ∈ (𝐽Homeo𝐾) → 𝐹 ∈ (𝐽 Cn 𝐾)) | ||
| Theorem | hmeocnvcn 23648 | The converse of a homeomorphism is continuous. (Contributed by Mario Carneiro, 22-Aug-2015.) |
| ⊢ (𝐹 ∈ (𝐽Homeo𝐾) → ◡𝐹 ∈ (𝐾 Cn 𝐽)) | ||
| Theorem | hmeocnv 23649 | The converse of a homeomorphism is a homeomorphism. (Contributed by FL, 5-Mar-2007.) (Revised by Mario Carneiro, 22-Aug-2015.) |
| ⊢ (𝐹 ∈ (𝐽Homeo𝐾) → ◡𝐹 ∈ (𝐾Homeo𝐽)) | ||
| Theorem | hmeof1o2 23650 | A homeomorphism is a 1-1-onto mapping. (Contributed by Mario Carneiro, 22-Aug-2015.) |
| ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐹 ∈ (𝐽Homeo𝐾)) → 𝐹:𝑋–1-1-onto→𝑌) | ||
| Theorem | hmeof1o 23651 | A homeomorphism is a 1-1-onto mapping. (Contributed by FL, 5-Mar-2007.) (Revised by Mario Carneiro, 30-May-2014.) |
| ⊢ 𝑋 = ∪ 𝐽 & ⊢ 𝑌 = ∪ 𝐾 ⇒ ⊢ (𝐹 ∈ (𝐽Homeo𝐾) → 𝐹:𝑋–1-1-onto→𝑌) | ||
| Theorem | hmeoima 23652 | The image of an open set by a homeomorphism is an open set. (Contributed by FL, 5-Mar-2007.) (Revised by Mario Carneiro, 22-Aug-2015.) |
| ⊢ ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴 ∈ 𝐽) → (𝐹 “ 𝐴) ∈ 𝐾) | ||
| Theorem | hmeoopn 23653 | Homeomorphisms preserve openness. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 25-Aug-2015.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴 ⊆ 𝑋) → (𝐴 ∈ 𝐽 ↔ (𝐹 “ 𝐴) ∈ 𝐾)) | ||
| Theorem | hmeocld 23654 | Homeomorphisms preserve closedness. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 25-Aug-2015.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴 ⊆ 𝑋) → (𝐴 ∈ (Clsd‘𝐽) ↔ (𝐹 “ 𝐴) ∈ (Clsd‘𝐾))) | ||
| Theorem | hmeocls 23655 | Homeomorphisms preserve closures. (Contributed by Mario Carneiro, 25-Aug-2015.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴 ⊆ 𝑋) → ((cls‘𝐾)‘(𝐹 “ 𝐴)) = (𝐹 “ ((cls‘𝐽)‘𝐴))) | ||
| Theorem | hmeontr 23656 | Homeomorphisms preserve interiors. (Contributed by Mario Carneiro, 25-Aug-2015.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴 ⊆ 𝑋) → ((int‘𝐾)‘(𝐹 “ 𝐴)) = (𝐹 “ ((int‘𝐽)‘𝐴))) | ||
| Theorem | hmeoimaf1o 23657* | The function mapping open sets to their images under a homeomorphism is a bijection of topologies. (Contributed by Mario Carneiro, 10-Sep-2015.) |
| ⊢ 𝐺 = (𝑥 ∈ 𝐽 ↦ (𝐹 “ 𝑥)) ⇒ ⊢ (𝐹 ∈ (𝐽Homeo𝐾) → 𝐺:𝐽–1-1-onto→𝐾) | ||
| Theorem | hmeores 23658 | The restriction of a homeomorphism is a homeomorphism. (Contributed by Mario Carneiro, 14-Sep-2014.) (Proof shortened by Mario Carneiro, 22-Aug-2015.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝑌 ⊆ 𝑋) → (𝐹 ↾ 𝑌) ∈ ((𝐽 ↾t 𝑌)Homeo(𝐾 ↾t (𝐹 “ 𝑌)))) | ||
| Theorem | hmeoco 23659 | The composite of two homeomorphisms is a homeomorphism. (Contributed by FL, 9-Mar-2007.) (Proof shortened by Mario Carneiro, 23-Aug-2015.) |
| ⊢ ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐺 ∈ (𝐾Homeo𝐿)) → (𝐺 ∘ 𝐹) ∈ (𝐽Homeo𝐿)) | ||
| Theorem | idhmeo 23660 | The identity function is a homeomorphism. (Contributed by FL, 14-Feb-2007.) (Proof shortened by Mario Carneiro, 23-Aug-2015.) |
| ⊢ (𝐽 ∈ (TopOn‘𝑋) → ( I ↾ 𝑋) ∈ (𝐽Homeo𝐽)) | ||
| Theorem | hmeocnvb 23661 | The converse of a homeomorphism is a homeomorphism. (Contributed by FL, 5-Mar-2007.) (Revised by Mario Carneiro, 23-Aug-2015.) |
| ⊢ (Rel 𝐹 → (◡𝐹 ∈ (𝐽Homeo𝐾) ↔ 𝐹 ∈ (𝐾Homeo𝐽))) | ||
| Theorem | hmeoqtop 23662 | A homeomorphism is a quotient map. (Contributed by Mario Carneiro, 25-Aug-2015.) |
| ⊢ (𝐹 ∈ (𝐽Homeo𝐾) → 𝐾 = (𝐽 qTop 𝐹)) | ||
| Theorem | hmph 23663 | Express the predicate 𝐽 is homeomorphic to 𝐾. (Contributed by FL, 14-Feb-2007.) (Revised by Mario Carneiro, 22-Aug-2015.) |
| ⊢ (𝐽 ≃ 𝐾 ↔ (𝐽Homeo𝐾) ≠ ∅) | ||
| Theorem | hmphi 23664 | If there is a homeomorphism between spaces, then the spaces are homeomorphic. (Contributed by Mario Carneiro, 23-Aug-2015.) |
| ⊢ (𝐹 ∈ (𝐽Homeo𝐾) → 𝐽 ≃ 𝐾) | ||
| Theorem | hmphtop 23665 | Reverse closure for the homeomorphic predicate. (Contributed by Mario Carneiro, 22-Aug-2015.) |
| ⊢ (𝐽 ≃ 𝐾 → (𝐽 ∈ Top ∧ 𝐾 ∈ Top)) | ||
| Theorem | hmphtop1 23666 | The relation "being homeomorphic to" implies the operands are topologies. (Contributed by FL, 23-Mar-2007.) (Revised by Mario Carneiro, 23-Aug-2015.) |
| ⊢ (𝐽 ≃ 𝐾 → 𝐽 ∈ Top) | ||
| Theorem | hmphtop2 23667 | The relation "being homeomorphic to" implies the operands are topologies. (Contributed by FL, 23-Mar-2007.) (Revised by Mario Carneiro, 23-Aug-2015.) |
| ⊢ (𝐽 ≃ 𝐾 → 𝐾 ∈ Top) | ||
| Theorem | hmphref 23668 | "Is homeomorphic to" is reflexive. (Contributed by FL, 25-Feb-2007.) (Proof shortened by Mario Carneiro, 23-Aug-2015.) |
| ⊢ (𝐽 ∈ Top → 𝐽 ≃ 𝐽) | ||
| Theorem | hmphsym 23669 | "Is homeomorphic to" is symmetric. (Contributed by FL, 8-Mar-2007.) (Proof shortened by Mario Carneiro, 30-May-2014.) |
| ⊢ (𝐽 ≃ 𝐾 → 𝐾 ≃ 𝐽) | ||
| Theorem | hmphtr 23670 | "Is homeomorphic to" is transitive. (Contributed by FL, 9-Mar-2007.) (Revised by Mario Carneiro, 23-Aug-2015.) |
| ⊢ ((𝐽 ≃ 𝐾 ∧ 𝐾 ≃ 𝐿) → 𝐽 ≃ 𝐿) | ||
| Theorem | hmpher 23671 | "Is homeomorphic to" is an equivalence relation. (Contributed by FL, 22-Mar-2007.) (Revised by Mario Carneiro, 23-Aug-2015.) |
| ⊢ ≃ Er Top | ||
| Theorem | hmphen 23672 | Homeomorphisms preserve the cardinality of the topologies. (Contributed by FL, 1-Jun-2008.) (Revised by Mario Carneiro, 10-Sep-2015.) |
| ⊢ (𝐽 ≃ 𝐾 → 𝐽 ≈ 𝐾) | ||
| Theorem | hmphsymb 23673 | "Is homeomorphic to" is symmetric. (Contributed by FL, 22-Feb-2007.) |
| ⊢ (𝐽 ≃ 𝐾 ↔ 𝐾 ≃ 𝐽) | ||
| Theorem | haushmphlem 23674* | Lemma for haushmph 23679 and similar theorems. If the topological property 𝐴 is preserved under injective preimages, then property 𝐴 is preserved under homeomorphisms. (Contributed by Mario Carneiro, 25-Aug-2015.) |
| ⊢ (𝐽 ∈ 𝐴 → 𝐽 ∈ Top) & ⊢ ((𝐽 ∈ 𝐴 ∧ 𝑓:∪ 𝐾–1-1→∪ 𝐽 ∧ 𝑓 ∈ (𝐾 Cn 𝐽)) → 𝐾 ∈ 𝐴) ⇒ ⊢ (𝐽 ≃ 𝐾 → (𝐽 ∈ 𝐴 → 𝐾 ∈ 𝐴)) | ||
| Theorem | cmphmph 23675 | Compactness is a topological property-that is, for any two homeomorphic topologies, either both are compact or neither is. (Contributed by Jeff Hankins, 30-Jun-2009.) (Revised by Mario Carneiro, 23-Aug-2015.) |
| ⊢ (𝐽 ≃ 𝐾 → (𝐽 ∈ Comp → 𝐾 ∈ Comp)) | ||
| Theorem | connhmph 23676 | Connectedness is a topological property. (Contributed by Jeff Hankins, 3-Jul-2009.) |
| ⊢ (𝐽 ≃ 𝐾 → (𝐽 ∈ Conn → 𝐾 ∈ Conn)) | ||
| Theorem | t0hmph 23677 | T0 is a topological property. (Contributed by Mario Carneiro, 25-Aug-2015.) |
| ⊢ (𝐽 ≃ 𝐾 → (𝐽 ∈ Kol2 → 𝐾 ∈ Kol2)) | ||
| Theorem | t1hmph 23678 | T1 is a topological property. (Contributed by Mario Carneiro, 25-Aug-2015.) |
| ⊢ (𝐽 ≃ 𝐾 → (𝐽 ∈ Fre → 𝐾 ∈ Fre)) | ||
| Theorem | haushmph 23679 | Hausdorff-ness is a topological property. (Contributed by Mario Carneiro, 25-Aug-2015.) |
| ⊢ (𝐽 ≃ 𝐾 → (𝐽 ∈ Haus → 𝐾 ∈ Haus)) | ||
| Theorem | reghmph 23680 | Regularity is a topological property. (Contributed by Mario Carneiro, 25-Aug-2015.) |
| ⊢ (𝐽 ≃ 𝐾 → (𝐽 ∈ Reg → 𝐾 ∈ Reg)) | ||
| Theorem | nrmhmph 23681 | Normality is a topological property. (Contributed by Mario Carneiro, 25-Aug-2015.) |
| ⊢ (𝐽 ≃ 𝐾 → (𝐽 ∈ Nrm → 𝐾 ∈ Nrm)) | ||
| Theorem | hmph0 23682 | A topology homeomorphic to the empty set is empty. (Contributed by FL, 18-Aug-2008.) (Revised by Mario Carneiro, 10-Sep-2015.) |
| ⊢ (𝐽 ≃ {∅} ↔ 𝐽 = {∅}) | ||
| Theorem | hmphdis 23683 | Homeomorphisms preserve topological discreteness. (Contributed by Mario Carneiro, 10-Sep-2015.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (𝐽 ≃ 𝒫 𝐴 → 𝐽 = 𝒫 𝑋) | ||
| Theorem | hmphindis 23684 | Homeomorphisms preserve topological indiscreteness. (Contributed by FL, 18-Aug-2008.) (Revised by Mario Carneiro, 10-Sep-2015.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (𝐽 ≃ {∅, 𝐴} → 𝐽 = {∅, 𝑋}) | ||
| Theorem | indishmph 23685 | Equinumerous sets equipped with their indiscrete topologies are homeomorphic (which means in that particular case that a segment is homeomorphic to a circle contrary to what Wikipedia claims). (Contributed by FL, 17-Aug-2008.) (Proof shortened by Mario Carneiro, 10-Sep-2015.) |
| ⊢ (𝐴 ≈ 𝐵 → {∅, 𝐴} ≃ {∅, 𝐵}) | ||
| Theorem | hmphen2 23686 | Homeomorphisms preserve the cardinality of the underlying sets. (Contributed by FL, 17-Aug-2008.) (Revised by Mario Carneiro, 10-Sep-2015.) |
| ⊢ 𝑋 = ∪ 𝐽 & ⊢ 𝑌 = ∪ 𝐾 ⇒ ⊢ (𝐽 ≃ 𝐾 → 𝑋 ≈ 𝑌) | ||
| Theorem | cmphaushmeo 23687 | A continuous bijection from a compact space to a Hausdorff space is a homeomorphism. (Contributed by Mario Carneiro, 17-Feb-2015.) |
| ⊢ 𝑋 = ∪ 𝐽 & ⊢ 𝑌 = ∪ 𝐾 ⇒ ⊢ ((𝐽 ∈ Comp ∧ 𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → (𝐹 ∈ (𝐽Homeo𝐾) ↔ 𝐹:𝑋–1-1-onto→𝑌)) | ||
| Theorem | ordthmeolem 23688 | Lemma for ordthmeo 23689. (Contributed by Mario Carneiro, 9-Sep-2015.) |
| ⊢ 𝑋 = dom 𝑅 & ⊢ 𝑌 = dom 𝑆 ⇒ ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ∧ 𝐹 Isom 𝑅, 𝑆 (𝑋, 𝑌)) → 𝐹 ∈ ((ordTop‘𝑅) Cn (ordTop‘𝑆))) | ||
| Theorem | ordthmeo 23689 | An order isomorphism is a homeomorphism on the respective order topologies. (Contributed by Mario Carneiro, 9-Sep-2015.) |
| ⊢ 𝑋 = dom 𝑅 & ⊢ 𝑌 = dom 𝑆 ⇒ ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ∧ 𝐹 Isom 𝑅, 𝑆 (𝑋, 𝑌)) → 𝐹 ∈ ((ordTop‘𝑅)Homeo(ordTop‘𝑆))) | ||
| Theorem | txhmeo 23690* | Lift a pair of homeomorphisms on the factors to a homeomorphism of product topologies. (Contributed by Mario Carneiro, 2-Sep-2015.) |
| ⊢ 𝑋 = ∪ 𝐽 & ⊢ 𝑌 = ∪ 𝐾 & ⊢ (𝜑 → 𝐹 ∈ (𝐽Homeo𝐿)) & ⊢ (𝜑 → 𝐺 ∈ (𝐾Homeo𝑀)) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑦)〉) ∈ ((𝐽 ×t 𝐾)Homeo(𝐿 ×t 𝑀))) | ||
| Theorem | txswaphmeolem 23691* | Show inverse for the "swap components" operation on a Cartesian product. (Contributed by Mario Carneiro, 21-Mar-2015.) |
| ⊢ ((𝑦 ∈ 𝑌, 𝑥 ∈ 𝑋 ↦ 〈𝑥, 𝑦〉) ∘ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 〈𝑦, 𝑥〉)) = ( I ↾ (𝑋 × 𝑌)) | ||
| Theorem | txswaphmeo 23692* | There is a homeomorphism from 𝑋 × 𝑌 to 𝑌 × 𝑋. (Contributed by Mario Carneiro, 21-Mar-2015.) |
| ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 〈𝑦, 𝑥〉) ∈ ((𝐽 ×t 𝐾)Homeo(𝐾 ×t 𝐽))) | ||
| Theorem | pt1hmeo 23693* | The canonical homeomorphism from a topological product on a singleton to the topology of the factor. (Contributed by Mario Carneiro, 3-Feb-2015.) (Proof shortened by AV, 18-Apr-2021.) |
| ⊢ 𝐾 = (∏t‘{〈𝐴, 𝐽〉}) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ {〈𝐴, 𝑥〉}) ∈ (𝐽Homeo𝐾)) | ||
| Theorem | ptuncnv 23694* | Exhibit the converse function of the map 𝐺 which joins two product topologies on disjoint index sets. (Contributed by Mario Carneiro, 8-Feb-2015.) (Proof shortened by Mario Carneiro, 23-Aug-2015.) |
| ⊢ 𝑋 = ∪ 𝐾 & ⊢ 𝑌 = ∪ 𝐿 & ⊢ 𝐽 = (∏t‘𝐹) & ⊢ 𝐾 = (∏t‘(𝐹 ↾ 𝐴)) & ⊢ 𝐿 = (∏t‘(𝐹 ↾ 𝐵)) & ⊢ 𝐺 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ (𝑥 ∪ 𝑦)) & ⊢ (𝜑 → 𝐶 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝐶⟶Top) & ⊢ (𝜑 → 𝐶 = (𝐴 ∪ 𝐵)) & ⊢ (𝜑 → (𝐴 ∩ 𝐵) = ∅) ⇒ ⊢ (𝜑 → ◡𝐺 = (𝑧 ∈ ∪ 𝐽 ↦ 〈(𝑧 ↾ 𝐴), (𝑧 ↾ 𝐵)〉)) | ||
| Theorem | ptunhmeo 23695* | Define a homeomorphism from a binary product of indexed product topologies to an indexed product topology on the union of the index sets. This is the topological analogue of (𝐴↑𝐵) · (𝐴↑𝐶) = 𝐴↑(𝐵 + 𝐶). (Contributed by Mario Carneiro, 8-Feb-2015.) (Proof shortened by Mario Carneiro, 23-Aug-2015.) |
| ⊢ 𝑋 = ∪ 𝐾 & ⊢ 𝑌 = ∪ 𝐿 & ⊢ 𝐽 = (∏t‘𝐹) & ⊢ 𝐾 = (∏t‘(𝐹 ↾ 𝐴)) & ⊢ 𝐿 = (∏t‘(𝐹 ↾ 𝐵)) & ⊢ 𝐺 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ (𝑥 ∪ 𝑦)) & ⊢ (𝜑 → 𝐶 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝐶⟶Top) & ⊢ (𝜑 → 𝐶 = (𝐴 ∪ 𝐵)) & ⊢ (𝜑 → (𝐴 ∩ 𝐵) = ∅) ⇒ ⊢ (𝜑 → 𝐺 ∈ ((𝐾 ×t 𝐿)Homeo𝐽)) | ||
| Theorem | xpstopnlem1 23696* | The function 𝐹 used in xpsval 17533 is a homeomorphism from the binary product topology to the indexed product topology. (Contributed by Mario Carneiro, 2-Sep-2015.) |
| ⊢ 𝐹 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}) & ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑌)) ⇒ ⊢ (𝜑 → 𝐹 ∈ ((𝐽 ×t 𝐾)Homeo(∏t‘{〈∅, 𝐽〉, 〈1o, 𝐾〉}))) | ||
| Theorem | xpstps 23697 | A binary product of topologies is a topological space. (Contributed by Mario Carneiro, 27-Aug-2015.) |
| ⊢ 𝑇 = (𝑅 ×s 𝑆) ⇒ ⊢ ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → 𝑇 ∈ TopSp) | ||
| Theorem | xpstopnlem2 23698* | Lemma for xpstopn 23699. (Contributed by Mario Carneiro, 27-Aug-2015.) |
| ⊢ 𝑇 = (𝑅 ×s 𝑆) & ⊢ 𝐽 = (TopOpen‘𝑅) & ⊢ 𝐾 = (TopOpen‘𝑆) & ⊢ 𝑂 = (TopOpen‘𝑇) & ⊢ 𝑋 = (Base‘𝑅) & ⊢ 𝑌 = (Base‘𝑆) & ⊢ 𝐹 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}) ⇒ ⊢ ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → 𝑂 = (𝐽 ×t 𝐾)) | ||
| Theorem | xpstopn 23699 | The topology on a binary product of topological spaces, as we have defined it (transferring the indexed product topology on functions on {∅, 1o} to (𝑋 × 𝑌) by the canonical bijection), coincides with the usual topological product (generated by a base of rectangles). (Contributed by Mario Carneiro, 27-Aug-2015.) |
| ⊢ 𝑇 = (𝑅 ×s 𝑆) & ⊢ 𝐽 = (TopOpen‘𝑅) & ⊢ 𝐾 = (TopOpen‘𝑆) & ⊢ 𝑂 = (TopOpen‘𝑇) ⇒ ⊢ ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → 𝑂 = (𝐽 ×t 𝐾)) | ||
| Theorem | ptcmpfi 23700 | A topological product of finitely many compact spaces is compact. This weak version of Tychonoff's theorem does not require the axiom of choice. (Contributed by Mario Carneiro, 8-Feb-2015.) |
| ⊢ ((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) → (∏t‘𝐹) ∈ Comp) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |