Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-fppr Structured version   Visualization version   GIF version

Definition df-fppr 45144
Description: Define the function that maps a positive integer to the set of Fermat pseudoprimes to the base of this positive integer. Since Fermat pseudoprimes shall be composite (positive) integers, they must be nonprime integers greater than or equal to 4 (we cannot use 𝑥 ∈ ℕ 𝑥 ∉ ℙ because 𝑥 = 1 would fulfil this requirement, but should not be regarded as "composite" integer). (Contributed by AV, 29-May-2023.)
Assertion
Ref Expression
df-fppr FPPr = (𝑛 ∈ ℕ ↦ {𝑥 ∈ (ℤ‘4) ∣ (𝑥 ∉ ℙ ∧ 𝑥 ∥ ((𝑛↑(𝑥 − 1)) − 1))})
Distinct variable group:   𝑥,𝑛

Detailed syntax breakdown of Definition df-fppr
StepHypRef Expression
1 cfppr 45143 . 2 class FPPr
2 vn . . 3 setvar 𝑛
3 cn 11971 . . 3 class
4 vx . . . . . . 7 setvar 𝑥
54cv 1538 . . . . . 6 class 𝑥
6 cprime 16374 . . . . . 6 class
75, 6wnel 3049 . . . . 5 wff 𝑥 ∉ ℙ
82cv 1538 . . . . . . . 8 class 𝑛
9 c1 10870 . . . . . . . . 9 class 1
10 cmin 11203 . . . . . . . . 9 class
115, 9, 10co 7277 . . . . . . . 8 class (𝑥 − 1)
12 cexp 13780 . . . . . . . 8 class
138, 11, 12co 7277 . . . . . . 7 class (𝑛↑(𝑥 − 1))
1413, 9, 10co 7277 . . . . . 6 class ((𝑛↑(𝑥 − 1)) − 1)
15 cdvds 15961 . . . . . 6 class
165, 14, 15wbr 5076 . . . . 5 wff 𝑥 ∥ ((𝑛↑(𝑥 − 1)) − 1)
177, 16wa 396 . . . 4 wff (𝑥 ∉ ℙ ∧ 𝑥 ∥ ((𝑛↑(𝑥 − 1)) − 1))
18 c4 12028 . . . . 5 class 4
19 cuz 12580 . . . . 5 class
2018, 19cfv 6435 . . . 4 class (ℤ‘4)
2117, 4, 20crab 3068 . . 3 class {𝑥 ∈ (ℤ‘4) ∣ (𝑥 ∉ ℙ ∧ 𝑥 ∥ ((𝑛↑(𝑥 − 1)) − 1))}
222, 3, 21cmpt 5159 . 2 class (𝑛 ∈ ℕ ↦ {𝑥 ∈ (ℤ‘4) ∣ (𝑥 ∉ ℙ ∧ 𝑥 ∥ ((𝑛↑(𝑥 − 1)) − 1))})
231, 22wceq 1539 1 wff FPPr = (𝑛 ∈ ℕ ↦ {𝑥 ∈ (ℤ‘4) ∣ (𝑥 ∉ ℙ ∧ 𝑥 ∥ ((𝑛↑(𝑥 − 1)) − 1))})
Colors of variables: wff setvar class
This definition is referenced by:  fppr  45145  fpprbasnn  45148
  Copyright terms: Public domain W3C validator