Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-fppr Structured version   Visualization version   GIF version

Definition df-fppr 47730
Description: Define the function that maps a positive integer to the set of Fermat pseudoprimes to the base of this positive integer. Since Fermat pseudoprimes shall be composite (positive) integers, they must be nonprime integers greater than or equal to 4 (we cannot use 𝑥 ∈ ℕ 𝑥 ∉ ℙ because 𝑥 = 1 would fulfil this requirement, but should not be regarded as "composite" integer). (Contributed by AV, 29-May-2023.)
Assertion
Ref Expression
df-fppr FPPr = (𝑛 ∈ ℕ ↦ {𝑥 ∈ (ℤ‘4) ∣ (𝑥 ∉ ℙ ∧ 𝑥 ∥ ((𝑛↑(𝑥 − 1)) − 1))})
Distinct variable group:   𝑥,𝑛

Detailed syntax breakdown of Definition df-fppr
StepHypRef Expression
1 cfppr 47729 . 2 class FPPr
2 vn . . 3 setvar 𝑛
3 cn 12193 . . 3 class
4 vx . . . . . . 7 setvar 𝑥
54cv 1539 . . . . . 6 class 𝑥
6 cprime 16648 . . . . . 6 class
75, 6wnel 3030 . . . . 5 wff 𝑥 ∉ ℙ
82cv 1539 . . . . . . . 8 class 𝑛
9 c1 11076 . . . . . . . . 9 class 1
10 cmin 11412 . . . . . . . . 9 class
115, 9, 10co 7390 . . . . . . . 8 class (𝑥 − 1)
12 cexp 14033 . . . . . . . 8 class
138, 11, 12co 7390 . . . . . . 7 class (𝑛↑(𝑥 − 1))
1413, 9, 10co 7390 . . . . . 6 class ((𝑛↑(𝑥 − 1)) − 1)
15 cdvds 16229 . . . . . 6 class
165, 14, 15wbr 5110 . . . . 5 wff 𝑥 ∥ ((𝑛↑(𝑥 − 1)) − 1)
177, 16wa 395 . . . 4 wff (𝑥 ∉ ℙ ∧ 𝑥 ∥ ((𝑛↑(𝑥 − 1)) − 1))
18 c4 12250 . . . . 5 class 4
19 cuz 12800 . . . . 5 class
2018, 19cfv 6514 . . . 4 class (ℤ‘4)
2117, 4, 20crab 3408 . . 3 class {𝑥 ∈ (ℤ‘4) ∣ (𝑥 ∉ ℙ ∧ 𝑥 ∥ ((𝑛↑(𝑥 − 1)) − 1))}
222, 3, 21cmpt 5191 . 2 class (𝑛 ∈ ℕ ↦ {𝑥 ∈ (ℤ‘4) ∣ (𝑥 ∉ ℙ ∧ 𝑥 ∥ ((𝑛↑(𝑥 − 1)) − 1))})
231, 22wceq 1540 1 wff FPPr = (𝑛 ∈ ℕ ↦ {𝑥 ∈ (ℤ‘4) ∣ (𝑥 ∉ ℙ ∧ 𝑥 ∥ ((𝑛↑(𝑥 − 1)) − 1))})
Colors of variables: wff setvar class
This definition is referenced by:  fppr  47731  fpprbasnn  47734
  Copyright terms: Public domain W3C validator