Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-fppr Structured version   Visualization version   GIF version

Definition df-fppr 47713
Description: Define the function that maps a positive integer to the set of Fermat pseudoprimes to the base of this positive integer. Since Fermat pseudoprimes shall be composite (positive) integers, they must be nonprime integers greater than or equal to 4 (we cannot use 𝑥 ∈ ℕ 𝑥 ∉ ℙ because 𝑥 = 1 would fulfil this requirement, but should not be regarded as "composite" integer). (Contributed by AV, 29-May-2023.)
Assertion
Ref Expression
df-fppr FPPr = (𝑛 ∈ ℕ ↦ {𝑥 ∈ (ℤ‘4) ∣ (𝑥 ∉ ℙ ∧ 𝑥 ∥ ((𝑛↑(𝑥 − 1)) − 1))})
Distinct variable group:   𝑥,𝑛

Detailed syntax breakdown of Definition df-fppr
StepHypRef Expression
1 cfppr 47712 . 2 class FPPr
2 vn . . 3 setvar 𝑛
3 cn 12146 . . 3 class
4 vx . . . . . . 7 setvar 𝑥
54cv 1539 . . . . . 6 class 𝑥
6 cprime 16600 . . . . . 6 class
75, 6wnel 3029 . . . . 5 wff 𝑥 ∉ ℙ
82cv 1539 . . . . . . . 8 class 𝑛
9 c1 11029 . . . . . . . . 9 class 1
10 cmin 11365 . . . . . . . . 9 class
115, 9, 10co 7353 . . . . . . . 8 class (𝑥 − 1)
12 cexp 13986 . . . . . . . 8 class
138, 11, 12co 7353 . . . . . . 7 class (𝑛↑(𝑥 − 1))
1413, 9, 10co 7353 . . . . . 6 class ((𝑛↑(𝑥 − 1)) − 1)
15 cdvds 16181 . . . . . 6 class
165, 14, 15wbr 5095 . . . . 5 wff 𝑥 ∥ ((𝑛↑(𝑥 − 1)) − 1)
177, 16wa 395 . . . 4 wff (𝑥 ∉ ℙ ∧ 𝑥 ∥ ((𝑛↑(𝑥 − 1)) − 1))
18 c4 12203 . . . . 5 class 4
19 cuz 12753 . . . . 5 class
2018, 19cfv 6486 . . . 4 class (ℤ‘4)
2117, 4, 20crab 3396 . . 3 class {𝑥 ∈ (ℤ‘4) ∣ (𝑥 ∉ ℙ ∧ 𝑥 ∥ ((𝑛↑(𝑥 − 1)) − 1))}
222, 3, 21cmpt 5176 . 2 class (𝑛 ∈ ℕ ↦ {𝑥 ∈ (ℤ‘4) ∣ (𝑥 ∉ ℙ ∧ 𝑥 ∥ ((𝑛↑(𝑥 − 1)) − 1))})
231, 22wceq 1540 1 wff FPPr = (𝑛 ∈ ℕ ↦ {𝑥 ∈ (ℤ‘4) ∣ (𝑥 ∉ ℙ ∧ 𝑥 ∥ ((𝑛↑(𝑥 − 1)) − 1))})
Colors of variables: wff setvar class
This definition is referenced by:  fppr  47714  fpprbasnn  47717
  Copyright terms: Public domain W3C validator