Detailed syntax breakdown of Definition df-fppr
| Step | Hyp | Ref
| Expression |
| 1 | | cfppr 47711 |
. 2
class
FPPr |
| 2 | | vn |
. . 3
setvar 𝑛 |
| 3 | | cn 12266 |
. . 3
class
ℕ |
| 4 | | vx |
. . . . . . 7
setvar 𝑥 |
| 5 | 4 | cv 1539 |
. . . . . 6
class 𝑥 |
| 6 | | cprime 16708 |
. . . . . 6
class
ℙ |
| 7 | 5, 6 | wnel 3046 |
. . . . 5
wff 𝑥 ∉
ℙ |
| 8 | 2 | cv 1539 |
. . . . . . . 8
class 𝑛 |
| 9 | | c1 11156 |
. . . . . . . . 9
class
1 |
| 10 | | cmin 11492 |
. . . . . . . . 9
class
− |
| 11 | 5, 9, 10 | co 7431 |
. . . . . . . 8
class (𝑥 − 1) |
| 12 | | cexp 14102 |
. . . . . . . 8
class
↑ |
| 13 | 8, 11, 12 | co 7431 |
. . . . . . 7
class (𝑛↑(𝑥 − 1)) |
| 14 | 13, 9, 10 | co 7431 |
. . . . . 6
class ((𝑛↑(𝑥 − 1)) − 1) |
| 15 | | cdvds 16290 |
. . . . . 6
class
∥ |
| 16 | 5, 14, 15 | wbr 5143 |
. . . . 5
wff 𝑥 ∥ ((𝑛↑(𝑥 − 1)) − 1) |
| 17 | 7, 16 | wa 395 |
. . . 4
wff (𝑥 ∉ ℙ ∧ 𝑥 ∥ ((𝑛↑(𝑥 − 1)) − 1)) |
| 18 | | c4 12323 |
. . . . 5
class
4 |
| 19 | | cuz 12878 |
. . . . 5
class
ℤ≥ |
| 20 | 18, 19 | cfv 6561 |
. . . 4
class
(ℤ≥‘4) |
| 21 | 17, 4, 20 | crab 3436 |
. . 3
class {𝑥 ∈
(ℤ≥‘4) ∣ (𝑥 ∉ ℙ ∧ 𝑥 ∥ ((𝑛↑(𝑥 − 1)) − 1))} |
| 22 | 2, 3, 21 | cmpt 5225 |
. 2
class (𝑛 ∈ ℕ ↦ {𝑥 ∈
(ℤ≥‘4) ∣ (𝑥 ∉ ℙ ∧ 𝑥 ∥ ((𝑛↑(𝑥 − 1)) − 1))}) |
| 23 | 1, 22 | wceq 1540 |
1
wff FPPr =
(𝑛 ∈ ℕ ↦
{𝑥 ∈
(ℤ≥‘4) ∣ (𝑥 ∉ ℙ ∧ 𝑥 ∥ ((𝑛↑(𝑥 − 1)) − 1))}) |