Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-fppr Structured version   Visualization version   GIF version

Definition df-fppr 47650
Description: Define the function that maps a positive integer to the set of Fermat pseudoprimes to the base of this positive integer. Since Fermat pseudoprimes shall be composite (positive) integers, they must be nonprime integers greater than or equal to 4 (we cannot use 𝑥 ∈ ℕ 𝑥 ∉ ℙ because 𝑥 = 1 would fulfil this requirement, but should not be regarded as "composite" integer). (Contributed by AV, 29-May-2023.)
Assertion
Ref Expression
df-fppr FPPr = (𝑛 ∈ ℕ ↦ {𝑥 ∈ (ℤ‘4) ∣ (𝑥 ∉ ℙ ∧ 𝑥 ∥ ((𝑛↑(𝑥 − 1)) − 1))})
Distinct variable group:   𝑥,𝑛

Detailed syntax breakdown of Definition df-fppr
StepHypRef Expression
1 cfppr 47649 . 2 class FPPr
2 vn . . 3 setvar 𝑛
3 cn 12264 . . 3 class
4 vx . . . . . . 7 setvar 𝑥
54cv 1536 . . . . . 6 class 𝑥
6 cprime 16705 . . . . . 6 class
75, 6wnel 3044 . . . . 5 wff 𝑥 ∉ ℙ
82cv 1536 . . . . . . . 8 class 𝑛
9 c1 11154 . . . . . . . . 9 class 1
10 cmin 11490 . . . . . . . . 9 class
115, 9, 10co 7431 . . . . . . . 8 class (𝑥 − 1)
12 cexp 14099 . . . . . . . 8 class
138, 11, 12co 7431 . . . . . . 7 class (𝑛↑(𝑥 − 1))
1413, 9, 10co 7431 . . . . . 6 class ((𝑛↑(𝑥 − 1)) − 1)
15 cdvds 16287 . . . . . 6 class
165, 14, 15wbr 5148 . . . . 5 wff 𝑥 ∥ ((𝑛↑(𝑥 − 1)) − 1)
177, 16wa 395 . . . 4 wff (𝑥 ∉ ℙ ∧ 𝑥 ∥ ((𝑛↑(𝑥 − 1)) − 1))
18 c4 12321 . . . . 5 class 4
19 cuz 12876 . . . . 5 class
2018, 19cfv 6563 . . . 4 class (ℤ‘4)
2117, 4, 20crab 3433 . . 3 class {𝑥 ∈ (ℤ‘4) ∣ (𝑥 ∉ ℙ ∧ 𝑥 ∥ ((𝑛↑(𝑥 − 1)) − 1))}
222, 3, 21cmpt 5231 . 2 class (𝑛 ∈ ℕ ↦ {𝑥 ∈ (ℤ‘4) ∣ (𝑥 ∉ ℙ ∧ 𝑥 ∥ ((𝑛↑(𝑥 − 1)) − 1))})
231, 22wceq 1537 1 wff FPPr = (𝑛 ∈ ℕ ↦ {𝑥 ∈ (ℤ‘4) ∣ (𝑥 ∉ ℙ ∧ 𝑥 ∥ ((𝑛↑(𝑥 − 1)) − 1))})
Colors of variables: wff setvar class
This definition is referenced by:  fppr  47651  fpprbasnn  47654
  Copyright terms: Public domain W3C validator