Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-fppr Structured version   Visualization version   GIF version

Definition df-fppr 46691
Description: Define the function that maps a positive integer to the set of Fermat pseudoprimes to the base of this positive integer. Since Fermat pseudoprimes shall be composite (positive) integers, they must be nonprime integers greater than or equal to 4 (we cannot use 𝑥 ∈ ℕ 𝑥 ∉ ℙ because 𝑥 = 1 would fulfil this requirement, but should not be regarded as "composite" integer). (Contributed by AV, 29-May-2023.)
Assertion
Ref Expression
df-fppr FPPr = (𝑛 ∈ ℕ ↦ {𝑥 ∈ (ℤ‘4) ∣ (𝑥 ∉ ℙ ∧ 𝑥 ∥ ((𝑛↑(𝑥 − 1)) − 1))})
Distinct variable group:   𝑥,𝑛

Detailed syntax breakdown of Definition df-fppr
StepHypRef Expression
1 cfppr 46690 . 2 class FPPr
2 vn . . 3 setvar 𝑛
3 cn 12216 . . 3 class
4 vx . . . . . . 7 setvar 𝑥
54cv 1538 . . . . . 6 class 𝑥
6 cprime 16612 . . . . . 6 class
75, 6wnel 3044 . . . . 5 wff 𝑥 ∉ ℙ
82cv 1538 . . . . . . . 8 class 𝑛
9 c1 11113 . . . . . . . . 9 class 1
10 cmin 11448 . . . . . . . . 9 class
115, 9, 10co 7411 . . . . . . . 8 class (𝑥 − 1)
12 cexp 14031 . . . . . . . 8 class
138, 11, 12co 7411 . . . . . . 7 class (𝑛↑(𝑥 − 1))
1413, 9, 10co 7411 . . . . . 6 class ((𝑛↑(𝑥 − 1)) − 1)
15 cdvds 16201 . . . . . 6 class
165, 14, 15wbr 5147 . . . . 5 wff 𝑥 ∥ ((𝑛↑(𝑥 − 1)) − 1)
177, 16wa 394 . . . 4 wff (𝑥 ∉ ℙ ∧ 𝑥 ∥ ((𝑛↑(𝑥 − 1)) − 1))
18 c4 12273 . . . . 5 class 4
19 cuz 12826 . . . . 5 class
2018, 19cfv 6542 . . . 4 class (ℤ‘4)
2117, 4, 20crab 3430 . . 3 class {𝑥 ∈ (ℤ‘4) ∣ (𝑥 ∉ ℙ ∧ 𝑥 ∥ ((𝑛↑(𝑥 − 1)) − 1))}
222, 3, 21cmpt 5230 . 2 class (𝑛 ∈ ℕ ↦ {𝑥 ∈ (ℤ‘4) ∣ (𝑥 ∉ ℙ ∧ 𝑥 ∥ ((𝑛↑(𝑥 − 1)) − 1))})
231, 22wceq 1539 1 wff FPPr = (𝑛 ∈ ℕ ↦ {𝑥 ∈ (ℤ‘4) ∣ (𝑥 ∉ ℙ ∧ 𝑥 ∥ ((𝑛↑(𝑥 − 1)) − 1))})
Colors of variables: wff setvar class
This definition is referenced by:  fppr  46692  fpprbasnn  46695
  Copyright terms: Public domain W3C validator