Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-fppr Structured version   Visualization version   GIF version

Definition df-fppr 45177
Description: Define the function that maps a positive integer to the set of Fermat pseudoprimes to the base of this positive integer. Since Fermat pseudoprimes shall be composite (positive) integers, they must be nonprime integers greater than or equal to 4 (we cannot use 𝑥 ∈ ℕ 𝑥 ∉ ℙ because 𝑥 = 1 would fulfil this requirement, but should not be regarded as "composite" integer). (Contributed by AV, 29-May-2023.)
Assertion
Ref Expression
df-fppr FPPr = (𝑛 ∈ ℕ ↦ {𝑥 ∈ (ℤ‘4) ∣ (𝑥 ∉ ℙ ∧ 𝑥 ∥ ((𝑛↑(𝑥 − 1)) − 1))})
Distinct variable group:   𝑥,𝑛

Detailed syntax breakdown of Definition df-fppr
StepHypRef Expression
1 cfppr 45176 . 2 class FPPr
2 vn . . 3 setvar 𝑛
3 cn 11973 . . 3 class
4 vx . . . . . . 7 setvar 𝑥
54cv 1538 . . . . . 6 class 𝑥
6 cprime 16376 . . . . . 6 class
75, 6wnel 3049 . . . . 5 wff 𝑥 ∉ ℙ
82cv 1538 . . . . . . . 8 class 𝑛
9 c1 10872 . . . . . . . . 9 class 1
10 cmin 11205 . . . . . . . . 9 class
115, 9, 10co 7275 . . . . . . . 8 class (𝑥 − 1)
12 cexp 13782 . . . . . . . 8 class
138, 11, 12co 7275 . . . . . . 7 class (𝑛↑(𝑥 − 1))
1413, 9, 10co 7275 . . . . . 6 class ((𝑛↑(𝑥 − 1)) − 1)
15 cdvds 15963 . . . . . 6 class
165, 14, 15wbr 5074 . . . . 5 wff 𝑥 ∥ ((𝑛↑(𝑥 − 1)) − 1)
177, 16wa 396 . . . 4 wff (𝑥 ∉ ℙ ∧ 𝑥 ∥ ((𝑛↑(𝑥 − 1)) − 1))
18 c4 12030 . . . . 5 class 4
19 cuz 12582 . . . . 5 class
2018, 19cfv 6433 . . . 4 class (ℤ‘4)
2117, 4, 20crab 3068 . . 3 class {𝑥 ∈ (ℤ‘4) ∣ (𝑥 ∉ ℙ ∧ 𝑥 ∥ ((𝑛↑(𝑥 − 1)) − 1))}
222, 3, 21cmpt 5157 . 2 class (𝑛 ∈ ℕ ↦ {𝑥 ∈ (ℤ‘4) ∣ (𝑥 ∉ ℙ ∧ 𝑥 ∥ ((𝑛↑(𝑥 − 1)) − 1))})
231, 22wceq 1539 1 wff FPPr = (𝑛 ∈ ℕ ↦ {𝑥 ∈ (ℤ‘4) ∣ (𝑥 ∉ ℙ ∧ 𝑥 ∥ ((𝑛↑(𝑥 − 1)) − 1))})
Colors of variables: wff setvar class
This definition is referenced by:  fppr  45178  fpprbasnn  45181
  Copyright terms: Public domain W3C validator