Detailed syntax breakdown of Definition df-fppr
Step | Hyp | Ref
| Expression |
1 | | cfppr 45064 |
. 2
class
FPPr |
2 | | vn |
. . 3
setvar 𝑛 |
3 | | cn 11903 |
. . 3
class
ℕ |
4 | | vx |
. . . . . . 7
setvar 𝑥 |
5 | 4 | cv 1538 |
. . . . . 6
class 𝑥 |
6 | | cprime 16304 |
. . . . . 6
class
ℙ |
7 | 5, 6 | wnel 3048 |
. . . . 5
wff 𝑥 ∉
ℙ |
8 | 2 | cv 1538 |
. . . . . . . 8
class 𝑛 |
9 | | c1 10803 |
. . . . . . . . 9
class
1 |
10 | | cmin 11135 |
. . . . . . . . 9
class
− |
11 | 5, 9, 10 | co 7255 |
. . . . . . . 8
class (𝑥 − 1) |
12 | | cexp 13710 |
. . . . . . . 8
class
↑ |
13 | 8, 11, 12 | co 7255 |
. . . . . . 7
class (𝑛↑(𝑥 − 1)) |
14 | 13, 9, 10 | co 7255 |
. . . . . 6
class ((𝑛↑(𝑥 − 1)) − 1) |
15 | | cdvds 15891 |
. . . . . 6
class
∥ |
16 | 5, 14, 15 | wbr 5070 |
. . . . 5
wff 𝑥 ∥ ((𝑛↑(𝑥 − 1)) − 1) |
17 | 7, 16 | wa 395 |
. . . 4
wff (𝑥 ∉ ℙ ∧ 𝑥 ∥ ((𝑛↑(𝑥 − 1)) − 1)) |
18 | | c4 11960 |
. . . . 5
class
4 |
19 | | cuz 12511 |
. . . . 5
class
ℤ≥ |
20 | 18, 19 | cfv 6418 |
. . . 4
class
(ℤ≥‘4) |
21 | 17, 4, 20 | crab 3067 |
. . 3
class {𝑥 ∈
(ℤ≥‘4) ∣ (𝑥 ∉ ℙ ∧ 𝑥 ∥ ((𝑛↑(𝑥 − 1)) − 1))} |
22 | 2, 3, 21 | cmpt 5153 |
. 2
class (𝑛 ∈ ℕ ↦ {𝑥 ∈
(ℤ≥‘4) ∣ (𝑥 ∉ ℙ ∧ 𝑥 ∥ ((𝑛↑(𝑥 − 1)) − 1))}) |
23 | 1, 22 | wceq 1539 |
1
wff FPPr =
(𝑛 ∈ ℕ ↦
{𝑥 ∈
(ℤ≥‘4) ∣ (𝑥 ∉ ℙ ∧ 𝑥 ∥ ((𝑛↑(𝑥 − 1)) − 1))}) |