Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-fppr Structured version   Visualization version   GIF version

Definition df-fppr 47756
Description: Define the function that maps a positive integer to the set of Fermat pseudoprimes to the base of this positive integer. Since Fermat pseudoprimes shall be composite (positive) integers, they must be nonprime integers greater than or equal to 4 (we cannot use 𝑥 ∈ ℕ 𝑥 ∉ ℙ because 𝑥 = 1 would fulfil this requirement, but should not be regarded as "composite" integer). (Contributed by AV, 29-May-2023.)
Assertion
Ref Expression
df-fppr FPPr = (𝑛 ∈ ℕ ↦ {𝑥 ∈ (ℤ‘4) ∣ (𝑥 ∉ ℙ ∧ 𝑥 ∥ ((𝑛↑(𝑥 − 1)) − 1))})
Distinct variable group:   𝑥,𝑛

Detailed syntax breakdown of Definition df-fppr
StepHypRef Expression
1 cfppr 47755 . 2 class FPPr
2 vn . . 3 setvar 𝑛
3 cn 12120 . . 3 class
4 vx . . . . . . 7 setvar 𝑥
54cv 1540 . . . . . 6 class 𝑥
6 cprime 16577 . . . . . 6 class
75, 6wnel 3032 . . . . 5 wff 𝑥 ∉ ℙ
82cv 1540 . . . . . . . 8 class 𝑛
9 c1 11002 . . . . . . . . 9 class 1
10 cmin 11339 . . . . . . . . 9 class
115, 9, 10co 7341 . . . . . . . 8 class (𝑥 − 1)
12 cexp 13963 . . . . . . . 8 class
138, 11, 12co 7341 . . . . . . 7 class (𝑛↑(𝑥 − 1))
1413, 9, 10co 7341 . . . . . 6 class ((𝑛↑(𝑥 − 1)) − 1)
15 cdvds 16158 . . . . . 6 class
165, 14, 15wbr 5086 . . . . 5 wff 𝑥 ∥ ((𝑛↑(𝑥 − 1)) − 1)
177, 16wa 395 . . . 4 wff (𝑥 ∉ ℙ ∧ 𝑥 ∥ ((𝑛↑(𝑥 − 1)) − 1))
18 c4 12177 . . . . 5 class 4
19 cuz 12727 . . . . 5 class
2018, 19cfv 6476 . . . 4 class (ℤ‘4)
2117, 4, 20crab 3395 . . 3 class {𝑥 ∈ (ℤ‘4) ∣ (𝑥 ∉ ℙ ∧ 𝑥 ∥ ((𝑛↑(𝑥 − 1)) − 1))}
222, 3, 21cmpt 5167 . 2 class (𝑛 ∈ ℕ ↦ {𝑥 ∈ (ℤ‘4) ∣ (𝑥 ∉ ℙ ∧ 𝑥 ∥ ((𝑛↑(𝑥 − 1)) − 1))})
231, 22wceq 1541 1 wff FPPr = (𝑛 ∈ ℕ ↦ {𝑥 ∈ (ℤ‘4) ∣ (𝑥 ∉ ℙ ∧ 𝑥 ∥ ((𝑛↑(𝑥 − 1)) − 1))})
Colors of variables: wff setvar class
This definition is referenced by:  fppr  47757  fpprbasnn  47760
  Copyright terms: Public domain W3C validator