Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-fppr Structured version   Visualization version   GIF version

Definition df-fppr 45065
Description: Define the function that maps a positive integer to the set of Fermat pseudoprimes to the base of this positive integer. Since Fermat pseudoprimes shall be composite (positive) integers, they must be nonprime integers greater than or equal to 4 (we cannot use 𝑥 ∈ ℕ 𝑥 ∉ ℙ because 𝑥 = 1 would fulfil this requirement, but should not be regarded as "composite" integer). (Contributed by AV, 29-May-2023.)
Assertion
Ref Expression
df-fppr FPPr = (𝑛 ∈ ℕ ↦ {𝑥 ∈ (ℤ‘4) ∣ (𝑥 ∉ ℙ ∧ 𝑥 ∥ ((𝑛↑(𝑥 − 1)) − 1))})
Distinct variable group:   𝑥,𝑛

Detailed syntax breakdown of Definition df-fppr
StepHypRef Expression
1 cfppr 45064 . 2 class FPPr
2 vn . . 3 setvar 𝑛
3 cn 11903 . . 3 class
4 vx . . . . . . 7 setvar 𝑥
54cv 1538 . . . . . 6 class 𝑥
6 cprime 16304 . . . . . 6 class
75, 6wnel 3048 . . . . 5 wff 𝑥 ∉ ℙ
82cv 1538 . . . . . . . 8 class 𝑛
9 c1 10803 . . . . . . . . 9 class 1
10 cmin 11135 . . . . . . . . 9 class
115, 9, 10co 7255 . . . . . . . 8 class (𝑥 − 1)
12 cexp 13710 . . . . . . . 8 class
138, 11, 12co 7255 . . . . . . 7 class (𝑛↑(𝑥 − 1))
1413, 9, 10co 7255 . . . . . 6 class ((𝑛↑(𝑥 − 1)) − 1)
15 cdvds 15891 . . . . . 6 class
165, 14, 15wbr 5070 . . . . 5 wff 𝑥 ∥ ((𝑛↑(𝑥 − 1)) − 1)
177, 16wa 395 . . . 4 wff (𝑥 ∉ ℙ ∧ 𝑥 ∥ ((𝑛↑(𝑥 − 1)) − 1))
18 c4 11960 . . . . 5 class 4
19 cuz 12511 . . . . 5 class
2018, 19cfv 6418 . . . 4 class (ℤ‘4)
2117, 4, 20crab 3067 . . 3 class {𝑥 ∈ (ℤ‘4) ∣ (𝑥 ∉ ℙ ∧ 𝑥 ∥ ((𝑛↑(𝑥 − 1)) − 1))}
222, 3, 21cmpt 5153 . 2 class (𝑛 ∈ ℕ ↦ {𝑥 ∈ (ℤ‘4) ∣ (𝑥 ∉ ℙ ∧ 𝑥 ∥ ((𝑛↑(𝑥 − 1)) − 1))})
231, 22wceq 1539 1 wff FPPr = (𝑛 ∈ ℕ ↦ {𝑥 ∈ (ℤ‘4) ∣ (𝑥 ∉ ℙ ∧ 𝑥 ∥ ((𝑛↑(𝑥 − 1)) − 1))})
Colors of variables: wff setvar class
This definition is referenced by:  fppr  45066  fpprbasnn  45069
  Copyright terms: Public domain W3C validator