Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-fppr Structured version   Visualization version   GIF version

Definition df-fppr 47599
Description: Define the function that maps a positive integer to the set of Fermat pseudoprimes to the base of this positive integer. Since Fermat pseudoprimes shall be composite (positive) integers, they must be nonprime integers greater than or equal to 4 (we cannot use 𝑥 ∈ ℕ 𝑥 ∉ ℙ because 𝑥 = 1 would fulfil this requirement, but should not be regarded as "composite" integer). (Contributed by AV, 29-May-2023.)
Assertion
Ref Expression
df-fppr FPPr = (𝑛 ∈ ℕ ↦ {𝑥 ∈ (ℤ‘4) ∣ (𝑥 ∉ ℙ ∧ 𝑥 ∥ ((𝑛↑(𝑥 − 1)) − 1))})
Distinct variable group:   𝑥,𝑛

Detailed syntax breakdown of Definition df-fppr
StepHypRef Expression
1 cfppr 47598 . 2 class FPPr
2 vn . . 3 setvar 𝑛
3 cn 12293 . . 3 class
4 vx . . . . . . 7 setvar 𝑥
54cv 1536 . . . . . 6 class 𝑥
6 cprime 16718 . . . . . 6 class
75, 6wnel 3052 . . . . 5 wff 𝑥 ∉ ℙ
82cv 1536 . . . . . . . 8 class 𝑛
9 c1 11185 . . . . . . . . 9 class 1
10 cmin 11520 . . . . . . . . 9 class
115, 9, 10co 7448 . . . . . . . 8 class (𝑥 − 1)
12 cexp 14112 . . . . . . . 8 class
138, 11, 12co 7448 . . . . . . 7 class (𝑛↑(𝑥 − 1))
1413, 9, 10co 7448 . . . . . 6 class ((𝑛↑(𝑥 − 1)) − 1)
15 cdvds 16302 . . . . . 6 class
165, 14, 15wbr 5166 . . . . 5 wff 𝑥 ∥ ((𝑛↑(𝑥 − 1)) − 1)
177, 16wa 395 . . . 4 wff (𝑥 ∉ ℙ ∧ 𝑥 ∥ ((𝑛↑(𝑥 − 1)) − 1))
18 c4 12350 . . . . 5 class 4
19 cuz 12903 . . . . 5 class
2018, 19cfv 6573 . . . 4 class (ℤ‘4)
2117, 4, 20crab 3443 . . 3 class {𝑥 ∈ (ℤ‘4) ∣ (𝑥 ∉ ℙ ∧ 𝑥 ∥ ((𝑛↑(𝑥 − 1)) − 1))}
222, 3, 21cmpt 5249 . 2 class (𝑛 ∈ ℕ ↦ {𝑥 ∈ (ℤ‘4) ∣ (𝑥 ∉ ℙ ∧ 𝑥 ∥ ((𝑛↑(𝑥 − 1)) − 1))})
231, 22wceq 1537 1 wff FPPr = (𝑛 ∈ ℕ ↦ {𝑥 ∈ (ℤ‘4) ∣ (𝑥 ∉ ℙ ∧ 𝑥 ∥ ((𝑛↑(𝑥 − 1)) − 1))})
Colors of variables: wff setvar class
This definition is referenced by:  fppr  47600  fpprbasnn  47603
  Copyright terms: Public domain W3C validator