Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-fppr Structured version   Visualization version   GIF version

Definition df-fppr 47739
Description: Define the function that maps a positive integer to the set of Fermat pseudoprimes to the base of this positive integer. Since Fermat pseudoprimes shall be composite (positive) integers, they must be nonprime integers greater than or equal to 4 (we cannot use 𝑥 ∈ ℕ 𝑥 ∉ ℙ because 𝑥 = 1 would fulfil this requirement, but should not be regarded as "composite" integer). (Contributed by AV, 29-May-2023.)
Assertion
Ref Expression
df-fppr FPPr = (𝑛 ∈ ℕ ↦ {𝑥 ∈ (ℤ‘4) ∣ (𝑥 ∉ ℙ ∧ 𝑥 ∥ ((𝑛↑(𝑥 − 1)) − 1))})
Distinct variable group:   𝑥,𝑛

Detailed syntax breakdown of Definition df-fppr
StepHypRef Expression
1 cfppr 47738 . 2 class FPPr
2 vn . . 3 setvar 𝑛
3 cn 12240 . . 3 class
4 vx . . . . . . 7 setvar 𝑥
54cv 1539 . . . . . 6 class 𝑥
6 cprime 16690 . . . . . 6 class
75, 6wnel 3036 . . . . 5 wff 𝑥 ∉ ℙ
82cv 1539 . . . . . . . 8 class 𝑛
9 c1 11130 . . . . . . . . 9 class 1
10 cmin 11466 . . . . . . . . 9 class
115, 9, 10co 7405 . . . . . . . 8 class (𝑥 − 1)
12 cexp 14079 . . . . . . . 8 class
138, 11, 12co 7405 . . . . . . 7 class (𝑛↑(𝑥 − 1))
1413, 9, 10co 7405 . . . . . 6 class ((𝑛↑(𝑥 − 1)) − 1)
15 cdvds 16272 . . . . . 6 class
165, 14, 15wbr 5119 . . . . 5 wff 𝑥 ∥ ((𝑛↑(𝑥 − 1)) − 1)
177, 16wa 395 . . . 4 wff (𝑥 ∉ ℙ ∧ 𝑥 ∥ ((𝑛↑(𝑥 − 1)) − 1))
18 c4 12297 . . . . 5 class 4
19 cuz 12852 . . . . 5 class
2018, 19cfv 6531 . . . 4 class (ℤ‘4)
2117, 4, 20crab 3415 . . 3 class {𝑥 ∈ (ℤ‘4) ∣ (𝑥 ∉ ℙ ∧ 𝑥 ∥ ((𝑛↑(𝑥 − 1)) − 1))}
222, 3, 21cmpt 5201 . 2 class (𝑛 ∈ ℕ ↦ {𝑥 ∈ (ℤ‘4) ∣ (𝑥 ∉ ℙ ∧ 𝑥 ∥ ((𝑛↑(𝑥 − 1)) − 1))})
231, 22wceq 1540 1 wff FPPr = (𝑛 ∈ ℕ ↦ {𝑥 ∈ (ℤ‘4) ∣ (𝑥 ∉ ℙ ∧ 𝑥 ∥ ((𝑛↑(𝑥 − 1)) − 1))})
Colors of variables: wff setvar class
This definition is referenced by:  fppr  47740  fpprbasnn  47743
  Copyright terms: Public domain W3C validator