![]() |
Metamath
Proof Explorer Theorem List (p. 467 of 489) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30950) |
![]() (30951-32473) |
![]() (32474-48899) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | vonioolem1 46601* | The sequence of the measures of the half-open intervals converges to the measure of their union. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
⊢ (𝜑 → 𝑋 ∈ Fin) & ⊢ (𝜑 → 𝐴:𝑋⟶ℝ) & ⊢ (𝜑 → 𝐵:𝑋⟶ℝ) & ⊢ (𝜑 → 𝑋 ≠ ∅) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (𝐴‘𝑘) < (𝐵‘𝑘)) & ⊢ 𝐶 = (𝑛 ∈ ℕ ↦ (𝑘 ∈ 𝑋 ↦ ((𝐴‘𝑘) + (1 / 𝑛)))) & ⊢ 𝐷 = (𝑛 ∈ ℕ ↦ X𝑘 ∈ 𝑋 (((𝐶‘𝑛)‘𝑘)[,)(𝐵‘𝑘))) & ⊢ 𝑆 = (𝑛 ∈ ℕ ↦ ((voln‘𝑋)‘(𝐷‘𝑛))) & ⊢ 𝑇 = (𝑛 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 ((𝐵‘𝑘) − ((𝐶‘𝑛)‘𝑘))) & ⊢ 𝐸 = inf(ran (𝑘 ∈ 𝑋 ↦ ((𝐵‘𝑘) − (𝐴‘𝑘))), ℝ, < ) & ⊢ 𝑁 = ((⌊‘(1 / 𝐸)) + 1) & ⊢ 𝑍 = (ℤ≥‘𝑁) ⇒ ⊢ (𝜑 → 𝑆 ⇝ ∏𝑘 ∈ 𝑋 ((𝐵‘𝑘) − (𝐴‘𝑘))) | ||
Theorem | vonioolem2 46602* | The n-dimensional Lebesgue measure of open intervals. This is the first statement in Proposition 115G (d) of [Fremlin1] p. 32. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
⊢ (𝜑 → 𝑋 ∈ Fin) & ⊢ (𝜑 → 𝐴:𝑋⟶ℝ) & ⊢ (𝜑 → 𝐵:𝑋⟶ℝ) & ⊢ (𝜑 → 𝑋 ≠ ∅) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (𝐴‘𝑘) < (𝐵‘𝑘)) & ⊢ 𝐼 = X𝑘 ∈ 𝑋 ((𝐴‘𝑘)(,)(𝐵‘𝑘)) & ⊢ 𝐶 = (𝑛 ∈ ℕ ↦ (𝑘 ∈ 𝑋 ↦ ((𝐴‘𝑘) + (1 / 𝑛)))) & ⊢ 𝐷 = (𝑛 ∈ ℕ ↦ X𝑘 ∈ 𝑋 (((𝐶‘𝑛)‘𝑘)[,)(𝐵‘𝑘))) ⇒ ⊢ (𝜑 → ((voln‘𝑋)‘𝐼) = ∏𝑘 ∈ 𝑋 ((𝐵‘𝑘) − (𝐴‘𝑘))) | ||
Theorem | vonioo 46603* | The n-dimensional Lebesgue measure of an open interval. This is the first statement in Proposition 115G (d) of [Fremlin1] p. 32. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
⊢ (𝜑 → 𝑋 ∈ Fin) & ⊢ (𝜑 → 𝐴:𝑋⟶ℝ) & ⊢ (𝜑 → 𝐵:𝑋⟶ℝ) & ⊢ 𝐼 = X𝑘 ∈ 𝑋 ((𝐴‘𝑘)(,)(𝐵‘𝑘)) & ⊢ 𝐿 = (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑m 𝑥), 𝑏 ∈ (ℝ ↑m 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘 ∈ 𝑥 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘)))))) ⇒ ⊢ (𝜑 → ((voln‘𝑋)‘𝐼) = (𝐴(𝐿‘𝑋)𝐵)) | ||
Theorem | vonicclem1 46604* | The sequence of the measures of the half-open intervals converges to the measure of their intersection. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
⊢ (𝜑 → 𝑋 ∈ Fin) & ⊢ (𝜑 → 𝐴:𝑋⟶ℝ) & ⊢ (𝜑 → 𝐵:𝑋⟶ℝ) & ⊢ (𝜑 → 𝑋 ≠ ∅) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (𝐴‘𝑘) ≤ (𝐵‘𝑘)) & ⊢ 𝐶 = (𝑛 ∈ ℕ ↦ (𝑘 ∈ 𝑋 ↦ ((𝐵‘𝑘) + (1 / 𝑛)))) & ⊢ 𝐷 = (𝑛 ∈ ℕ ↦ X𝑘 ∈ 𝑋 ((𝐴‘𝑘)[,)((𝐶‘𝑛)‘𝑘))) & ⊢ 𝑆 = (𝑛 ∈ ℕ ↦ ((voln‘𝑋)‘(𝐷‘𝑛))) ⇒ ⊢ (𝜑 → 𝑆 ⇝ ∏𝑘 ∈ 𝑋 ((𝐵‘𝑘) − (𝐴‘𝑘))) | ||
Theorem | vonicclem2 46605* | The n-dimensional Lebesgue measure of closed intervals. This is the second statement in Proposition 115G (d) of [Fremlin1] p. 32. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
⊢ (𝜑 → 𝑋 ∈ Fin) & ⊢ (𝜑 → 𝐴:𝑋⟶ℝ) & ⊢ (𝜑 → 𝐵:𝑋⟶ℝ) & ⊢ (𝜑 → 𝑋 ≠ ∅) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (𝐴‘𝑘) ≤ (𝐵‘𝑘)) & ⊢ 𝐼 = X𝑘 ∈ 𝑋 ((𝐴‘𝑘)[,](𝐵‘𝑘)) & ⊢ 𝐶 = (𝑛 ∈ ℕ ↦ (𝑘 ∈ 𝑋 ↦ ((𝐵‘𝑘) + (1 / 𝑛)))) & ⊢ 𝐷 = (𝑛 ∈ ℕ ↦ X𝑘 ∈ 𝑋 ((𝐴‘𝑘)[,)((𝐶‘𝑛)‘𝑘))) ⇒ ⊢ (𝜑 → ((voln‘𝑋)‘𝐼) = ∏𝑘 ∈ 𝑋 ((𝐵‘𝑘) − (𝐴‘𝑘))) | ||
Theorem | vonicc 46606* | The n-dimensional Lebesgue measure of a closed interval. This is the second statement in Proposition 115G (d) of [Fremlin1] p. 32. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
⊢ (𝜑 → 𝑋 ∈ Fin) & ⊢ (𝜑 → 𝐴:𝑋⟶ℝ) & ⊢ (𝜑 → 𝐵:𝑋⟶ℝ) & ⊢ 𝐼 = X𝑘 ∈ 𝑋 ((𝐴‘𝑘)[,](𝐵‘𝑘)) & ⊢ 𝐿 = (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑m 𝑥), 𝑏 ∈ (ℝ ↑m 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘 ∈ 𝑥 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘)))))) ⇒ ⊢ (𝜑 → ((voln‘𝑋)‘𝐼) = (𝐴(𝐿‘𝑋)𝐵)) | ||
Theorem | snvonmbl 46607 | A n-dimensional singleton is Lebesgue measurable. This is the first statement in Proposition 115G (e) of [Fremlin1] p. 32. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
⊢ (𝜑 → 𝑋 ∈ Fin) & ⊢ (𝜑 → 𝐴 ∈ (ℝ ↑m 𝑋)) ⇒ ⊢ (𝜑 → {𝐴} ∈ dom (voln‘𝑋)) | ||
Theorem | vonn0ioo 46608* | The n-dimensional Lebesgue measure of an open interval when the dimension of the space is nonzero. This is the first statement in Proposition 115G (d) of [Fremlin1] p. 32. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
⊢ (𝜑 → 𝑋 ∈ Fin) & ⊢ (𝜑 → 𝑋 ≠ ∅) & ⊢ (𝜑 → 𝐴:𝑋⟶ℝ) & ⊢ (𝜑 → 𝐵:𝑋⟶ℝ) & ⊢ 𝐼 = X𝑘 ∈ 𝑋 ((𝐴‘𝑘)(,)(𝐵‘𝑘)) ⇒ ⊢ (𝜑 → ((voln‘𝑋)‘𝐼) = ∏𝑘 ∈ 𝑋 (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘)))) | ||
Theorem | vonn0icc 46609* | The n-dimensional Lebesgue measure of a closed interval, when the dimension of the space is nonzero. This is the second statement in Proposition 115G (d) of [Fremlin1] p. 32. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
⊢ (𝜑 → 𝑋 ∈ Fin) & ⊢ (𝜑 → 𝑋 ≠ ∅) & ⊢ (𝜑 → 𝐴:𝑋⟶ℝ) & ⊢ (𝜑 → 𝐵:𝑋⟶ℝ) & ⊢ 𝐼 = X𝑘 ∈ 𝑋 ((𝐴‘𝑘)[,](𝐵‘𝑘)) ⇒ ⊢ (𝜑 → ((voln‘𝑋)‘𝐼) = ∏𝑘 ∈ 𝑋 (vol‘((𝐴‘𝑘)[,](𝐵‘𝑘)))) | ||
Theorem | ctvonmbl 46610 | Any n-dimensional countable set is Lebesgue measurable. This is the second statement in Proposition 115G (e) of [Fremlin1] p. 32. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
⊢ (𝜑 → 𝑋 ∈ Fin) & ⊢ (𝜑 → 𝐴 ⊆ (ℝ ↑m 𝑋)) & ⊢ (𝜑 → 𝐴 ≼ ω) ⇒ ⊢ (𝜑 → 𝐴 ∈ dom (voln‘𝑋)) | ||
Theorem | vonn0ioo2 46611* | The n-dimensional Lebesgue measure of an open interval when the dimension of the space is nonzero. This is the first statement in Proposition 115G (d) of [Fremlin1] p. 32. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
⊢ Ⅎ𝑘𝜑 & ⊢ (𝜑 → 𝑋 ∈ Fin) & ⊢ (𝜑 → 𝑋 ≠ ∅) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → 𝐴 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → 𝐵 ∈ ℝ) & ⊢ 𝐼 = X𝑘 ∈ 𝑋 (𝐴(,)𝐵) ⇒ ⊢ (𝜑 → ((voln‘𝑋)‘𝐼) = ∏𝑘 ∈ 𝑋 (vol‘(𝐴(,)𝐵))) | ||
Theorem | vonsn 46612 | The n-dimensional Lebesgue measure of a singleton is zero. This is the first statement in Proposition 115G (e) of [Fremlin1] p. 32. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
⊢ (𝜑 → 𝑋 ∈ Fin) & ⊢ (𝜑 → 𝐴 ∈ (ℝ ↑m 𝑋)) ⇒ ⊢ (𝜑 → ((voln‘𝑋)‘{𝐴}) = 0) | ||
Theorem | vonn0icc2 46613* | The n-dimensional Lebesgue measure of a closed interval, when the dimension of the space is nonzero. This is the second statement in Proposition 115G (d) of [Fremlin1] p. 32. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
⊢ Ⅎ𝑘𝜑 & ⊢ (𝜑 → 𝑋 ∈ Fin) & ⊢ (𝜑 → 𝑋 ≠ ∅) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → 𝐴 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → 𝐵 ∈ ℝ) & ⊢ 𝐼 = X𝑘 ∈ 𝑋 (𝐴[,]𝐵) ⇒ ⊢ (𝜑 → ((voln‘𝑋)‘𝐼) = ∏𝑘 ∈ 𝑋 (vol‘(𝐴[,]𝐵))) | ||
Theorem | vonct 46614 | The n-dimensional Lebesgue measure of any countable set is zero. This is the second statement in Proposition 115G (e) of [Fremlin1] p. 32. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
⊢ (𝜑 → 𝑋 ∈ Fin) & ⊢ (𝜑 → 𝐴 ⊆ (ℝ ↑m 𝑋)) & ⊢ (𝜑 → 𝐴 ≼ ω) ⇒ ⊢ (𝜑 → ((voln‘𝑋)‘𝐴) = 0) | ||
Theorem | vitali2 46615 | There are non-measurable sets (the Axiom of Choice is used, in the invoked weth 10564). (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ dom vol ⊊ 𝒫 ℝ | ||
Proofs for most of the theorems in section 121 of [Fremlin1]. Real-valued functions are considered, and measurability is defined with respect to an arbitrary sigma-algebra. When the sigma-algebra on the domain is the Lebesgue measure on the reals, then all real-valued measurable functions in the sense of df-mbf 25673 are also sigma-measurable, but the definition in this section considers as measurable functions, some that are not measurable in the sense of df-mbf 25673 (see mbfpsssmf 46704 and smfmbfcex 46681). | ||
Syntax | csmblfn 46616 | Extend class notation with the class of real-valued measurable functions w.r.t. sigma-algebras. |
class SMblFn | ||
Definition | df-smblfn 46617* | Define a real-valued measurable function w.r.t. a given sigma-algebra. See Definition 121C of [Fremlin1] p. 36 and Definition 135E (b) of [Fremlin1] p. 80 . (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ SMblFn = (𝑠 ∈ SAlg ↦ {𝑓 ∈ (ℝ ↑pm ∪ 𝑠) ∣ ∀𝑎 ∈ ℝ (◡𝑓 “ (-∞(,)𝑎)) ∈ (𝑠 ↾t dom 𝑓)}) | ||
Theorem | pimltmnf2f 46618 | Given a real-valued function, the preimage of an open interval, unbounded below, with upper bound -∞, is the empty set. (Contributed by Glauco Siliprandi, 15-Dec-2024.) |
⊢ Ⅎ𝑥𝐹 & ⊢ Ⅎ𝑥𝐴 & ⊢ (𝜑 → 𝐹:𝐴⟶ℝ) ⇒ ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < -∞} = ∅) | ||
Theorem | pimltmnf2 46619* | Given a real-valued function, the preimage of an open interval, unbounded below, with upper bound -∞, is the empty set. (Contributed by Glauco Siliprandi, 26-Jun-2021.) (Revised by Glauco Siliprandi, 15-Dec-2024.) |
⊢ Ⅎ𝑥𝐹 & ⊢ (𝜑 → 𝐹:𝐴⟶ℝ) ⇒ ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < -∞} = ∅) | ||
Theorem | preimagelt 46620* | The preimage of a right-open, unbounded below interval, is the complement of a left-closed unbounded above interval. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ Ⅎ𝑥𝜑 & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ*) & ⊢ (𝜑 → 𝐶 ∈ ℝ*) ⇒ ⊢ (𝜑 → (𝐴 ∖ {𝑥 ∈ 𝐴 ∣ 𝐶 ≤ 𝐵}) = {𝑥 ∈ 𝐴 ∣ 𝐵 < 𝐶}) | ||
Theorem | preimalegt 46621* | The preimage of a left-open, unbounded above interval, is the complement of a right-closed unbounded below interval. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ Ⅎ𝑥𝜑 & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ*) & ⊢ (𝜑 → 𝐶 ∈ ℝ*) ⇒ ⊢ (𝜑 → (𝐴 ∖ {𝑥 ∈ 𝐴 ∣ 𝐵 ≤ 𝐶}) = {𝑥 ∈ 𝐴 ∣ 𝐶 < 𝐵}) | ||
Theorem | pimconstlt0 46622* | Given a constant function, its preimage with respect to an unbounded below, open interval, with upper bound less than or equal to the constant, is the empty set. Second part of Proposition 121E (a) of [Fremlin1] p. 37 . (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) & ⊢ (𝜑 → 𝐶 ∈ ℝ*) & ⊢ (𝜑 → 𝐶 ≤ 𝐵) ⇒ ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < 𝐶} = ∅) | ||
Theorem | pimconstlt1 46623* | Given a constant function, its preimage with respect to an unbounded below, open interval, with upper bound larger than the constant, is the whole domain. First part of Proposition 121E (a) of [Fremlin1] p. 37 . (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) & ⊢ (𝜑 → 𝐵 < 𝐶) ⇒ ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < 𝐶} = 𝐴) | ||
Theorem | pimltpnff 46624 | Given a real-valued function, the preimage of an open interval, unbounded below, with upper bound +∞, is the whole domain. (Contributed by Glauco Siliprandi, 20-Dec-2024.) |
⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑥𝐴 & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) ⇒ ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝐵 < +∞} = 𝐴) | ||
Theorem | pimltpnf 46625* | Given a real-valued function, the preimage of an open interval, unbounded below, with upper bound +∞, is the whole domain. (Contributed by Glauco Siliprandi, 26-Jun-2021.) (Revised by Glauco Siliprandi, 20-Dec-2024.) |
⊢ Ⅎ𝑥𝜑 & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) ⇒ ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝐵 < +∞} = 𝐴) | ||
Theorem | pimgtpnf2f 46626 | Given a real-valued function, the preimage of an open interval, unbounded above, with lower bound +∞, is the empty set. (Contributed by Glauco Siliprandi, 15-Dec-2021.) |
⊢ Ⅎ𝑥𝐹 & ⊢ Ⅎ𝑥𝐴 & ⊢ (𝜑 → 𝐹:𝐴⟶ℝ) ⇒ ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ +∞ < (𝐹‘𝑥)} = ∅) | ||
Theorem | pimgtpnf2 46627* | Given a real-valued function, the preimage of an open interval, unbounded above, with lower bound +∞, is the empty set. (Contributed by Glauco Siliprandi, 26-Jun-2021.) (Revised by Glauco Siliprandi, 15-Dec-2024.) |
⊢ Ⅎ𝑥𝐹 & ⊢ (𝜑 → 𝐹:𝐴⟶ℝ) ⇒ ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ +∞ < (𝐹‘𝑥)} = ∅) | ||
Theorem | salpreimagelt 46628* | If all the preimages of left-closed, unbounded below intervals, belong to a sigma-algebra, then all the preimages of right-open, unbounded below intervals, belong to the sigma-algebra. (iv) implies (i) in Proposition 121B of [Fremlin1] p. 36. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑎𝜑 & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ 𝐴 = ∪ 𝑆 & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ*) & ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → {𝑥 ∈ 𝐴 ∣ 𝑎 ≤ 𝐵} ∈ 𝑆) & ⊢ (𝜑 → 𝐶 ∈ ℝ) ⇒ ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝐵 < 𝐶} ∈ 𝑆) | ||
Theorem | pimrecltpos 46629 | The preimage of an unbounded below, open interval, with positive upper bound, for the reciprocal function. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ Ⅎ𝑥𝜑 & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ≠ 0) & ⊢ (𝜑 → 𝐶 ∈ ℝ+) ⇒ ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ (1 / 𝐵) < 𝐶} = ({𝑥 ∈ 𝐴 ∣ (1 / 𝐶) < 𝐵} ∪ {𝑥 ∈ 𝐴 ∣ 𝐵 < 0})) | ||
Theorem | salpreimalegt 46630* | If all the preimages of right-closed, unbounded below intervals, belong to a sigma-algebra, then all the preimages of left-open, unbounded above intervals, belong to the sigma-algebra. (ii) implies (iii) in Proposition 121B of [Fremlin1] p. 35. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑎𝜑 & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ 𝐴 = ∪ 𝑆 & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ*) & ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → {𝑥 ∈ 𝐴 ∣ 𝐵 ≤ 𝑎} ∈ 𝑆) & ⊢ (𝜑 → 𝐶 ∈ ℝ) ⇒ ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝐶 < 𝐵} ∈ 𝑆) | ||
Theorem | pimiooltgt 46631* | The preimage of an open interval is the intersection of the preimage of an unbounded below open interval and an unbounded above open interval. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → 𝐿 ∈ ℝ*) & ⊢ (𝜑 → 𝑅 ∈ ℝ*) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ*) ⇒ ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ (𝐿(,)𝑅)} = ({𝑥 ∈ 𝐴 ∣ 𝐵 < 𝑅} ∩ {𝑥 ∈ 𝐴 ∣ 𝐿 < 𝐵})) | ||
Theorem | preimaicomnf 46632* | Preimage of an open interval, unbounded below. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ (𝜑 → 𝐹:𝐴⟶ℝ*) & ⊢ (𝜑 → 𝐵 ∈ ℝ*) ⇒ ⊢ (𝜑 → (◡𝐹 “ (-∞[,)𝐵)) = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < 𝐵}) | ||
Theorem | pimltpnf2f 46633 | Given a real-valued function, the preimage of an open interval, unbounded below, with upper bound +∞, is the whole domain. (Contributed by Glauco Siliprandi, 15-Dec-2024.) |
⊢ Ⅎ𝑥𝐹 & ⊢ Ⅎ𝑥𝐴 & ⊢ (𝜑 → 𝐹:𝐴⟶ℝ) ⇒ ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < +∞} = 𝐴) | ||
Theorem | pimltpnf2 46634* | Given a real-valued function, the preimage of an open interval, unbounded below, with upper bound +∞, is the whole domain. (Contributed by Glauco Siliprandi, 26-Jun-2021.) (Revised by Glauco Siliprandi, 15-Dec-2024.) |
⊢ Ⅎ𝑥𝐹 & ⊢ (𝜑 → 𝐹:𝐴⟶ℝ) ⇒ ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < +∞} = 𝐴) | ||
Theorem | pimgtmnf2 46635* | Given a real-valued function, the preimage of an open interval, unbounded above, with lower bound -∞, is the whole domain. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ Ⅎ𝑥𝐹 & ⊢ (𝜑 → 𝐹:𝐴⟶ℝ) ⇒ ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ -∞ < (𝐹‘𝑥)} = 𝐴) | ||
Theorem | pimdecfgtioc 46636* | Given a nonincreasing function, the preimage of an unbounded above, open interval, when the supremum of the preimage belongs to the preimage. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ (𝜑 → 𝐹:𝐴⟶ℝ*) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝐹‘𝑦) ≤ (𝐹‘𝑥))) & ⊢ (𝜑 → 𝑅 ∈ ℝ*) & ⊢ 𝑌 = {𝑥 ∈ 𝐴 ∣ 𝑅 < (𝐹‘𝑥)} & ⊢ 𝑆 = sup(𝑌, ℝ*, < ) & ⊢ (𝜑 → 𝑆 ∈ 𝑌) & ⊢ 𝐼 = (-∞(,]𝑆) ⇒ ⊢ (𝜑 → 𝑌 = (𝐼 ∩ 𝐴)) | ||
Theorem | pimincfltioc 46637* | Given a nondecreasing function, the preimage of an unbounded below, open interval, when the supremum of the preimage belongs to the preimage. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑦𝜑 & ⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ (𝜑 → 𝐹:𝐴⟶ℝ*) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝐹‘𝑥) ≤ (𝐹‘𝑦))) & ⊢ (𝜑 → 𝑅 ∈ ℝ*) & ⊢ 𝑌 = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < 𝑅} & ⊢ 𝑆 = sup(𝑌, ℝ*, < ) & ⊢ (𝜑 → 𝑆 ∈ 𝑌) & ⊢ 𝐼 = (-∞(,]𝑆) ⇒ ⊢ (𝜑 → 𝑌 = (𝐼 ∩ 𝐴)) | ||
Theorem | pimdecfgtioo 46638* | Given a nondecreasing function, the preimage of an unbounded below, open interval, when the supremum of the preimage does not belong to the preimage. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑦𝜑 & ⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ (𝜑 → 𝐹:𝐴⟶ℝ*) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝐹‘𝑦) ≤ (𝐹‘𝑥))) & ⊢ (𝜑 → 𝑅 ∈ ℝ*) & ⊢ 𝑌 = {𝑥 ∈ 𝐴 ∣ 𝑅 < (𝐹‘𝑥)} & ⊢ 𝑆 = sup(𝑌, ℝ*, < ) & ⊢ (𝜑 → ¬ 𝑆 ∈ 𝑌) & ⊢ 𝐼 = (-∞(,)𝑆) ⇒ ⊢ (𝜑 → 𝑌 = (𝐼 ∩ 𝐴)) | ||
Theorem | pimincfltioo 46639* | Given a nondecreasing function, the preimage of an unbounded below, open interval, when the supremum of the preimage does not belong to the preimage. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑦𝜑 & ⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ (𝜑 → 𝐹:𝐴⟶ℝ*) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝐹‘𝑥) ≤ (𝐹‘𝑦))) & ⊢ (𝜑 → 𝑅 ∈ ℝ*) & ⊢ 𝑌 = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < 𝑅} & ⊢ 𝑆 = sup(𝑌, ℝ*, < ) & ⊢ (𝜑 → ¬ 𝑆 ∈ 𝑌) & ⊢ 𝐼 = (-∞(,)𝑆) ⇒ ⊢ (𝜑 → 𝑌 = (𝐼 ∩ 𝐴)) | ||
Theorem | preimaioomnf 46640* | Preimage of an open interval, unbounded below. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ (𝜑 → 𝐹:𝐴⟶ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ*) ⇒ ⊢ (𝜑 → (◡𝐹 “ (-∞(,)𝐵)) = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < 𝐵}) | ||
Theorem | preimageiingt 46641* | A preimage of a left-closed, unbounded above interval, expressed as an indexed intersection of preimages of open, unbounded above intervals. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ Ⅎ𝑥𝜑 & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ*) & ⊢ (𝜑 → 𝐶 ∈ ℝ) ⇒ ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝐶 ≤ 𝐵} = ∩ 𝑛 ∈ ℕ {𝑥 ∈ 𝐴 ∣ (𝐶 − (1 / 𝑛)) < 𝐵}) | ||
Theorem | preimaleiinlt 46642* | A preimage of a left-open, right-closed, unbounded below interval, expressed as an indexed intersection of preimages of open, unbound below intervals. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ Ⅎ𝑥𝜑 & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ*) & ⊢ (𝜑 → 𝐶 ∈ ℝ) ⇒ ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝐵 ≤ 𝐶} = ∩ 𝑛 ∈ ℕ {𝑥 ∈ 𝐴 ∣ 𝐵 < (𝐶 + (1 / 𝑛))}) | ||
Theorem | pimgtmnff 46643 | Given a real-valued function, the preimage of an open interval, unbounded above, with lower bound -∞, is the whole domain. (Contributed by Glauco Siliprandi, 20-Dec-2024.) |
⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑥𝐴 & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) ⇒ ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ -∞ < 𝐵} = 𝐴) | ||
Theorem | pimgtmnf 46644* | Given a real-valued function, the preimage of an open interval, unbounded above, with lower bound -∞, is the whole domain. (Contributed by Glauco Siliprandi, 26-Jun-2021.) (Revised by Glauco Siliprandi, 20-Dec-2024.) |
⊢ Ⅎ𝑥𝜑 & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) ⇒ ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ -∞ < 𝐵} = 𝐴) | ||
Theorem | pimrecltneg 46645 | The preimage of an unbounded below, open interval, with negative upper bound, for the reciprocal function. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ Ⅎ𝑥𝜑 & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ≠ 0) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐶 < 0) ⇒ ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ (1 / 𝐵) < 𝐶} = {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ ((1 / 𝐶)(,)0)}) | ||
Theorem | salpreimagtge 46646* | If all the preimages of left-open, unbounded above intervals, belong to a sigma-algebra, then all the preimages of left-closed, unbounded above intervals, belong to the sigma-algebra. (iii) implies (iv) in Proposition 121B of [Fremlin1] p. 35. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑎𝜑 & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ*) & ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → {𝑥 ∈ 𝐴 ∣ 𝑎 < 𝐵} ∈ 𝑆) & ⊢ (𝜑 → 𝐶 ∈ ℝ) ⇒ ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝐶 ≤ 𝐵} ∈ 𝑆) | ||
Theorem | salpreimaltle 46647* | If all the preimages of right-open, unbounded below intervals, belong to a sigma-algebra, then all the preimages of right-closed, unbounded below intervals, belong to the sigma-algebra. (i) implies (ii) in Proposition 121B of [Fremlin1] p. 35. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑎𝜑 & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ*) & ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → {𝑥 ∈ 𝐴 ∣ 𝐵 < 𝑎} ∈ 𝑆) & ⊢ (𝜑 → 𝐶 ∈ ℝ) ⇒ ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝐵 ≤ 𝐶} ∈ 𝑆) | ||
Theorem | issmflem 46648* | The predicate "𝐹 is a real-valued measurable function w.r.t. to the sigma-algebra 𝑆". A function is measurable iff the preimages of all open intervals unbounded below are in the subspace sigma-algebra induced by its domain. The domain of 𝐹 is required to be a subset of the underlying set of 𝑆. Definition 121C of [Fremlin1] p. 36, and Proposition 121B (i) of [Fremlin1] p. 35 . (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ 𝐷 = dom 𝐹 ⇒ ⊢ (𝜑 → (𝐹 ∈ (SMblFn‘𝑆) ↔ (𝐷 ⊆ ∪ 𝑆 ∧ 𝐹:𝐷⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < 𝑎} ∈ (𝑆 ↾t 𝐷)))) | ||
Theorem | issmf 46649* | The predicate "𝐹 is a real-valued measurable function w.r.t. to the sigma-algebra 𝑆". A function is measurable iff the preimages of all open intervals unbounded below are in the subspace sigma-algebra induced by its domain. The domain of 𝐹 is required to be a subset of the underlying set of 𝑆. Definition 121C of [Fremlin1] p. 36, and Proposition 121B (i) of [Fremlin1] p. 35 . (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ 𝐷 = dom 𝐹 ⇒ ⊢ (𝜑 → (𝐹 ∈ (SMblFn‘𝑆) ↔ (𝐷 ⊆ ∪ 𝑆 ∧ 𝐹:𝐷⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < 𝑎} ∈ (𝑆 ↾t 𝐷)))) | ||
Theorem | salpreimalelt 46650* | If all the preimages of right-closed, unbounded below intervals, belong to a sigma-algebra, then all the preimages of right-open, unbounded below intervals, belong to the sigma-algebra. (ii) implies (i) in Proposition 121B of [Fremlin1] p. 36. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑎𝜑 & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ 𝐴 = ∪ 𝑆 & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ*) & ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → {𝑥 ∈ 𝐴 ∣ 𝐵 ≤ 𝑎} ∈ 𝑆) & ⊢ (𝜑 → 𝐶 ∈ ℝ) ⇒ ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝐵 < 𝐶} ∈ 𝑆) | ||
Theorem | salpreimagtlt 46651* | If all the preimages of lef-open, unbounded above intervals, belong to a sigma-algebra, then all the preimages of right-open, unbounded below intervals, belong to the sigma-algebra. (iii) implies (i) in Proposition 121B of [Fremlin1] p. 36. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑎𝜑 & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ 𝐴 = ∪ 𝑆 & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ*) & ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → {𝑥 ∈ 𝐴 ∣ 𝑎 < 𝐵} ∈ 𝑆) & ⊢ (𝜑 → 𝐶 ∈ ℝ) ⇒ ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝐵 < 𝐶} ∈ 𝑆) | ||
Theorem | smfpreimalt 46652* | Given a function measurable w.r.t. to a sigma-algebra, the preimage of an open interval unbounded below is in the subspace sigma-algebra induced by its domain. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑆)) & ⊢ 𝐷 = dom 𝐹 & ⊢ (𝜑 → 𝐴 ∈ ℝ) ⇒ ⊢ (𝜑 → {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < 𝐴} ∈ (𝑆 ↾t 𝐷)) | ||
Theorem | smff 46653 | A function measurable w.r.t. to a sigma-algebra, is actually a function. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑆)) & ⊢ 𝐷 = dom 𝐹 ⇒ ⊢ (𝜑 → 𝐹:𝐷⟶ℝ) | ||
Theorem | smfdmss 46654 | The domain of a function measurable w.r.t. to a sigma-algebra, is a subset of the set underlying the sigma-algebra. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑆)) & ⊢ 𝐷 = dom 𝐹 ⇒ ⊢ (𝜑 → 𝐷 ⊆ ∪ 𝑆) | ||
Theorem | issmff 46655* | The predicate "𝐹 is a real-valued measurable function w.r.t. to the sigma-algebra 𝑆". A function is measurable iff the preimages of all open intervals unbounded below are in the subspace sigma-algebra induced by its domain. The domain of 𝐹 is required to be a subset of the underlying set of 𝑆. Definition 121C of [Fremlin1] p. 36, and Proposition 121B (i) of [Fremlin1] p. 35 . (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ Ⅎ𝑥𝐹 & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ 𝐷 = dom 𝐹 ⇒ ⊢ (𝜑 → (𝐹 ∈ (SMblFn‘𝑆) ↔ (𝐷 ⊆ ∪ 𝑆 ∧ 𝐹:𝐷⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < 𝑎} ∈ (𝑆 ↾t 𝐷)))) | ||
Theorem | issmfd 46656* | A sufficient condition for "𝐹 being a real-valued measurable function w.r.t. to the sigma-algebra 𝑆". (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ Ⅎ𝑎𝜑 & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ (𝜑 → 𝐷 ⊆ ∪ 𝑆) & ⊢ (𝜑 → 𝐹:𝐷⟶ℝ) & ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < 𝑎} ∈ (𝑆 ↾t 𝐷)) ⇒ ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑆)) | ||
Theorem | smfpreimaltf 46657* | Given a function measurable w.r.t. to a sigma-algebra, the preimage of an open interval unbounded below is in the subspace sigma-algebra induced by its domain. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ Ⅎ𝑥𝐹 & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑆)) & ⊢ 𝐷 = dom 𝐹 & ⊢ (𝜑 → 𝐴 ∈ ℝ) ⇒ ⊢ (𝜑 → {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < 𝐴} ∈ (𝑆 ↾t 𝐷)) | ||
Theorem | issmfdf 46658* | A sufficient condition for "𝐹 being a measurable function w.r.t. to the sigma-algebra 𝑆". (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ Ⅎ𝑥𝐹 & ⊢ Ⅎ𝑎𝜑 & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ (𝜑 → 𝐷 ⊆ ∪ 𝑆) & ⊢ (𝜑 → 𝐹:𝐷⟶ℝ) & ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < 𝑎} ∈ (𝑆 ↾t 𝐷)) ⇒ ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑆)) | ||
Theorem | sssmf 46659 | The restriction of a sigma-measurable function, is sigma-measurable. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑆)) ⇒ ⊢ (𝜑 → (𝐹 ↾ 𝐵) ∈ (SMblFn‘𝑆)) | ||
Theorem | mbfresmf 46660 | A real-valued measurable function is a sigma-measurable function (w.r.t. the Lebesgue measure on the Reals). (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ (𝜑 → 𝐹 ∈ MblFn) & ⊢ (𝜑 → ran 𝐹 ⊆ ℝ) & ⊢ 𝑆 = dom vol ⇒ ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑆)) | ||
Theorem | cnfsmf 46661 | A continuous function is measurable. Proposition 121D (b) of [Fremlin1] p. 36 is a special case of this theorem, where the topology on the domain is induced by the standard topology on n-dimensional Real numbers. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ (𝜑 → 𝐽 ∈ Top) & ⊢ 𝐾 = (topGen‘ran (,)) & ⊢ (𝜑 → 𝐹 ∈ ((𝐽 ↾t dom 𝐹) Cn 𝐾)) & ⊢ 𝑆 = (SalGen‘𝐽) ⇒ ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑆)) | ||
Theorem | incsmflem 46662* | A nondecreasing function is Borel measurable. Proposition 121D (c) of [Fremlin1] p. 36 . (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑦𝜑 & ⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ (𝜑 → 𝐹:𝐴⟶ℝ*) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝐹‘𝑥) ≤ (𝐹‘𝑦))) & ⊢ 𝐽 = (topGen‘ran (,)) & ⊢ 𝐵 = (SalGen‘𝐽) & ⊢ (𝜑 → 𝑅 ∈ ℝ*) & ⊢ 𝑌 = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < 𝑅} & ⊢ 𝐶 = sup(𝑌, ℝ*, < ) & ⊢ 𝐷 = (-∞(,)𝐶) & ⊢ 𝐸 = (-∞(,]𝐶) ⇒ ⊢ (𝜑 → ∃𝑏 ∈ 𝐵 𝑌 = (𝑏 ∩ 𝐴)) | ||
Theorem | incsmf 46663* | A real-valued, nondecreasing function is Borel measurable. Proposition 121D (c) of [Fremlin1] p. 36 . (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ (𝜑 → 𝐹:𝐴⟶ℝ) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝐹‘𝑥) ≤ (𝐹‘𝑦))) & ⊢ 𝐽 = (topGen‘ran (,)) & ⊢ 𝐵 = (SalGen‘𝐽) ⇒ ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝐵)) | ||
Theorem | smfsssmf 46664 | If a function is measurable w.r.t. to a sigma-algebra, then it is measurable w.r.t. to a larger sigma-algebra. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ (𝜑 → 𝑅 ∈ SAlg) & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ (𝜑 → 𝑅 ⊆ 𝑆) & ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑅)) ⇒ ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑆)) | ||
Theorem | issmflelem 46665* | The predicate "𝐹 is a real-valued measurable function w.r.t. to the sigma-algebra 𝑆". A function is measurable iff the preimages of all right-closed intervals unbounded below are in the subspace sigma-algebra induced by its domain. The domain of 𝐹 is required to be a subset of the underlying set of 𝑆. Definition 121C of [Fremlin1] p. 36, and Proposition 121B (ii) of [Fremlin1] p. 35 . (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑎𝜑 & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ 𝐷 = dom 𝐹 & ⊢ (𝜑 → 𝐷 ⊆ ∪ 𝑆) & ⊢ (𝜑 → 𝐹:𝐷⟶ℝ) & ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) ≤ 𝑎} ∈ (𝑆 ↾t 𝐷)) ⇒ ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑆)) | ||
Theorem | issmfle 46666* | The predicate "𝐹 is a real-valued measurable function w.r.t. to the sigma-algebra 𝑆". A function is measurable iff the preimages of all right-closed intervals unbounded below are in the subspace sigma-algebra induced by its domain. The domain of 𝐹 is required to be b subset of the underlying set of 𝑆. Definition 121C of [Fremlin1] p. 36, and Proposition 121B (ii) of [Fremlin1] p. 35 . (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ 𝐷 = dom 𝐹 ⇒ ⊢ (𝜑 → (𝐹 ∈ (SMblFn‘𝑆) ↔ (𝐷 ⊆ ∪ 𝑆 ∧ 𝐹:𝐷⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) ≤ 𝑎} ∈ (𝑆 ↾t 𝐷)))) | ||
Theorem | smfpimltmpt 46667* | Given a function measurable w.r.t. to a sigma-algebra, the preimage of an open interval unbounded below is in the subspace sigma-algebra induced by its domain. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ (SMblFn‘𝑆)) & ⊢ (𝜑 → 𝑅 ∈ ℝ) ⇒ ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝐵 < 𝑅} ∈ (𝑆 ↾t 𝐴)) | ||
Theorem | smfpimltxr 46668* | Given a function measurable w.r.t. to a sigma-algebra, the preimage of an open interval unbounded below is in the subspace sigma-algebra induced by its domain. (Contributed by Glauco Siliprandi, 26-Jun-2021.) (Revised by Glauco Siliprandi, 15-Dec-2024.) |
⊢ Ⅎ𝑥𝐹 & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑆)) & ⊢ 𝐷 = dom 𝐹 & ⊢ (𝜑 → 𝐴 ∈ ℝ*) ⇒ ⊢ (𝜑 → {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < 𝐴} ∈ (𝑆 ↾t 𝐷)) | ||
Theorem | issmfdmpt 46669* | A sufficient condition for "𝐹 being a measurable function w.r.t. to the sigma-algebra 𝑆". (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑎𝜑 & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ (𝜑 → 𝐴 ⊆ ∪ 𝑆) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → {𝑥 ∈ 𝐴 ∣ 𝐵 < 𝑎} ∈ (𝑆 ↾t 𝐴)) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ (SMblFn‘𝑆)) | ||
Theorem | smfconst 46670* | Given a sigma-algebra over a base set X, every partial real-valued constant function is measurable. Proposition 121E (a) of [Fremlin1] p. 37 . (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ (𝜑 → 𝐴 ⊆ ∪ 𝑆) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) ⇒ ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑆)) | ||
Theorem | sssmfmpt 46671* | The restriction of a sigma-measurable function is sigma-measurable. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ (SMblFn‘𝑆)) & ⊢ (𝜑 → 𝐶 ⊆ 𝐴) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐶 ↦ 𝐵) ∈ (SMblFn‘𝑆)) | ||
Theorem | cnfrrnsmf 46672 | A function, continuous from the standard topology on the space of n-dimensional reals to the standard topology on the reals, is Borel measurable. Proposition 121D (b) of [Fremlin1] p. 36 . (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ (𝜑 → 𝑋 ∈ Fin) & ⊢ 𝐽 = (TopOpen‘(ℝ^‘𝑋)) & ⊢ 𝐾 = (topGen‘ran (,)) & ⊢ (𝜑 → 𝐹 ∈ ((𝐽 ↾t dom 𝐹) Cn 𝐾)) & ⊢ 𝐵 = (SalGen‘𝐽) ⇒ ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝐵)) | ||
Theorem | smfid 46673* | The identity function is Borel sigma-measurable. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ 𝐽 = (topGen‘ran (,)) & ⊢ 𝐵 = (SalGen‘𝐽) & ⊢ (𝜑 → 𝐴 ⊆ ℝ) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝑥) ∈ (SMblFn‘𝐵)) | ||
Theorem | bormflebmf 46674 | A Borel measurable function is Lebesgue measurable. Proposition 121D (a) of [Fremlin1] p. 36 . (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ (𝜑 → 𝑋 ∈ Fin) & ⊢ 𝐵 = (SalGen‘(TopOpen‘(ℝ^‘𝑋))) & ⊢ 𝐿 = dom (voln‘𝑋) & ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝐵)) ⇒ ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝐿)) | ||
Theorem | smfpreimale 46675* | Given a function measurable w.r.t. to a sigma-algebra, the preimage of a closed interval unbounded below is in the subspace sigma-algebra induced by its domain. See Proposition 121B (ii) of [Fremlin1] p. 35 (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑆)) & ⊢ 𝐷 = dom 𝐹 & ⊢ (𝜑 → 𝐴 ∈ ℝ) ⇒ ⊢ (𝜑 → {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) ≤ 𝐴} ∈ (𝑆 ↾t 𝐷)) | ||
Theorem | issmfgtlem 46676* | The predicate "𝐹 is a real-valued measurable function w.r.t. to the sigma-algebra 𝑆". A function is measurable iff the preimages of all left-open intervals unbounded above are in the subspace sigma-algebra induced by its domain. The domain of 𝐹 is required to be a subset of the underlying set of 𝑆. Definition 121C of [Fremlin1] p. 36, and Proposition 121B (iii) of [Fremlin1] p. 35 . (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑎𝜑 & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ 𝐷 = dom 𝐹 & ⊢ (𝜑 → 𝐷 ⊆ ∪ 𝑆) & ⊢ (𝜑 → 𝐹:𝐷⟶ℝ) & ⊢ (𝜑 → ∀𝑎 ∈ ℝ {𝑥 ∈ 𝐷 ∣ 𝑎 < (𝐹‘𝑥)} ∈ (𝑆 ↾t 𝐷)) ⇒ ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑆)) | ||
Theorem | issmfgt 46677* | The predicate "𝐹 is a real-valued measurable function w.r.t. to the sigma-algebra 𝑆". A function is measurable iff the preimages of all left-open intervals unbounded above are in the subspace sigma-algebra induced by its domain. The domain of 𝐹 is required to be b subset of the underlying set of 𝑆. Definition 121C of [Fremlin1] p. 36, and Proposition 121B (iii) of [Fremlin1] p. 35 . (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ 𝐷 = dom 𝐹 ⇒ ⊢ (𝜑 → (𝐹 ∈ (SMblFn‘𝑆) ↔ (𝐷 ⊆ ∪ 𝑆 ∧ 𝐹:𝐷⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑥 ∈ 𝐷 ∣ 𝑎 < (𝐹‘𝑥)} ∈ (𝑆 ↾t 𝐷)))) | ||
Theorem | issmfled 46678* | A sufficient condition for "𝐹 being a real-valued measurable function w.r.t. to the sigma-algebra 𝑆". (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ Ⅎ𝑎𝜑 & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ (𝜑 → 𝐷 ⊆ ∪ 𝑆) & ⊢ (𝜑 → 𝐹:𝐷⟶ℝ) & ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) ≤ 𝑎} ∈ (𝑆 ↾t 𝐷)) ⇒ ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑆)) | ||
Theorem | smfpimltxrmptf 46679* | Given a function measurable w.r.t. to a sigma-algebra, the preimage of an open interval unbounded below is in the subspace sigma-algebra induced by its domain. (Contributed by Glauco Siliprandi, 20-Dec-2024.) |
⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑥𝐴 & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ (SMblFn‘𝑆)) & ⊢ (𝜑 → 𝑅 ∈ ℝ*) ⇒ ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝐵 < 𝑅} ∈ (𝑆 ↾t 𝐴)) | ||
Theorem | smfpimltxrmpt 46680* | Given a function measurable w.r.t. to a sigma-algebra, the preimage of an open interval unbounded below is in the subspace sigma-algebra induced by its domain. (Contributed by Glauco Siliprandi, 26-Jun-2021.) (Revised by Glauco Siliprandi, 20-Dec-2024.) |
⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ (SMblFn‘𝑆)) & ⊢ (𝜑 → 𝑅 ∈ ℝ*) ⇒ ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝐵 < 𝑅} ∈ (𝑆 ↾t 𝐴)) | ||
Theorem | smfmbfcex 46681* | A constant function, with non-lebesgue-measurable domain is a sigma-measurable functions (w.r.t. the Lebesgue measure on the Reals) but it is not a measurable functions ( w.r.t. to df-mbf 25673). (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ 𝑆 = dom vol & ⊢ (𝜑 → 𝑋 ⊆ ℝ) & ⊢ (𝜑 → ¬ 𝑋 ∈ 𝑆) & ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ 0) ⇒ ⊢ (𝜑 → (𝐹 ∈ (SMblFn‘𝑆) ∧ ¬ 𝐹 ∈ MblFn)) | ||
Theorem | issmfgtd 46682* | A sufficient condition for "𝐹 being a measurable function w.r.t. to the sigma-algebra 𝑆". (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ Ⅎ𝑎𝜑 & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ (𝜑 → 𝐷 ⊆ ∪ 𝑆) & ⊢ (𝜑 → 𝐹:𝐷⟶ℝ) & ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → {𝑥 ∈ 𝐷 ∣ 𝑎 < (𝐹‘𝑥)} ∈ (𝑆 ↾t 𝐷)) ⇒ ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑆)) | ||
Theorem | smfpreimagt 46683* | Given a function measurable w.r.t. to a sigma-algebra, the preimage of an open interval unbounded above is in the subspace sigma-algebra induced by its domain. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑆)) & ⊢ 𝐷 = dom 𝐹 & ⊢ (𝜑 → 𝐴 ∈ ℝ) ⇒ ⊢ (𝜑 → {𝑥 ∈ 𝐷 ∣ 𝐴 < (𝐹‘𝑥)} ∈ (𝑆 ↾t 𝐷)) | ||
Theorem | smfaddlem1 46684* | Given the sum of two functions, the preimage of an unbounded below, open interval, expressed as the countable union of intersections of preimages of both functions. Proposition 121E (b) of [Fremlin1] p. 37 . (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ Ⅎ𝑥𝜑 & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → 𝐷 ∈ ℝ) & ⊢ (𝜑 → 𝑅 ∈ ℝ) & ⊢ 𝐾 = (𝑝 ∈ ℚ ↦ {𝑞 ∈ ℚ ∣ (𝑝 + 𝑞) < 𝑅}) ⇒ ⊢ (𝜑 → {𝑥 ∈ (𝐴 ∩ 𝐶) ∣ (𝐵 + 𝐷) < 𝑅} = ∪ 𝑝 ∈ ℚ ∪ 𝑞 ∈ (𝐾‘𝑝){𝑥 ∈ (𝐴 ∩ 𝐶) ∣ (𝐵 < 𝑝 ∧ 𝐷 < 𝑞)}) | ||
Theorem | smfaddlem2 46685* | The sum of two sigma-measurable functions is measurable. Proposition 121E (b) of [Fremlin1] p. 37 . (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → 𝐷 ∈ ℝ) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ (SMblFn‘𝑆)) & ⊢ (𝜑 → (𝑥 ∈ 𝐶 ↦ 𝐷) ∈ (SMblFn‘𝑆)) & ⊢ (𝜑 → 𝑅 ∈ ℝ) & ⊢ 𝐾 = (𝑝 ∈ ℚ ↦ {𝑞 ∈ ℚ ∣ (𝑝 + 𝑞) < 𝑅}) ⇒ ⊢ (𝜑 → {𝑥 ∈ (𝐴 ∩ 𝐶) ∣ (𝐵 + 𝐷) < 𝑅} ∈ (𝑆 ↾t (𝐴 ∩ 𝐶))) | ||
Theorem | smfadd 46686* | The sum of two sigma-measurable functions is measurable. Proposition 121E (b) of [Fremlin1] p. 37 . (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → 𝐷 ∈ ℝ) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ (SMblFn‘𝑆)) & ⊢ (𝜑 → (𝑥 ∈ 𝐶 ↦ 𝐷) ∈ (SMblFn‘𝑆)) ⇒ ⊢ (𝜑 → (𝑥 ∈ (𝐴 ∩ 𝐶) ↦ (𝐵 + 𝐷)) ∈ (SMblFn‘𝑆)) | ||
Theorem | decsmflem 46687* | A nonincreasing function is Borel measurable. Proposition 121D (c) of [Fremlin1] p. 36 . (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑦𝜑 & ⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ (𝜑 → 𝐹:𝐴⟶ℝ*) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝐹‘𝑦) ≤ (𝐹‘𝑥))) & ⊢ 𝐽 = (topGen‘ran (,)) & ⊢ 𝐵 = (SalGen‘𝐽) & ⊢ (𝜑 → 𝑅 ∈ ℝ*) & ⊢ 𝑌 = {𝑥 ∈ 𝐴 ∣ 𝑅 < (𝐹‘𝑥)} & ⊢ 𝐶 = sup(𝑌, ℝ*, < ) & ⊢ 𝐷 = (-∞(,)𝐶) & ⊢ 𝐸 = (-∞(,]𝐶) ⇒ ⊢ (𝜑 → ∃𝑏 ∈ 𝐵 𝑌 = (𝑏 ∩ 𝐴)) | ||
Theorem | decsmf 46688* | A real-valued, nonincreasing function is Borel measurable. Proposition 121D (c) of [Fremlin1] p. 36 . (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑦𝜑 & ⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ (𝜑 → 𝐹:𝐴⟶ℝ) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝐹‘𝑦) ≤ (𝐹‘𝑥))) & ⊢ 𝐽 = (topGen‘ran (,)) & ⊢ 𝐵 = (SalGen‘𝐽) ⇒ ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝐵)) | ||
Theorem | smfpreimagtf 46689* | Given a function measurable w.r.t. to a sigma-algebra, the preimage of an open interval unbounded above is in the subspace sigma-algebra induced by its domain. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ Ⅎ𝑥𝐹 & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑆)) & ⊢ 𝐷 = dom 𝐹 & ⊢ (𝜑 → 𝐴 ∈ ℝ) ⇒ ⊢ (𝜑 → {𝑥 ∈ 𝐷 ∣ 𝐴 < (𝐹‘𝑥)} ∈ (𝑆 ↾t 𝐷)) | ||
Theorem | issmfgelem 46690* | The predicate "𝐹 is a real-valued measurable function w.r.t. to the sigma-algebra 𝑆". A function is measurable iff the preimages of all left-closed intervals unbounded above are in the subspace sigma-algebra induced by its domain. The domain of 𝐹 is required to be a subset of the underlying set of 𝑆. Definition 121C of [Fremlin1] p. 36, and Proposition 121B (iv) of [Fremlin1] p. 36 . (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑎𝜑 & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ 𝐷 = dom 𝐹 & ⊢ (𝜑 → 𝐷 ⊆ ∪ 𝑆) & ⊢ (𝜑 → 𝐹:𝐷⟶ℝ) & ⊢ (𝜑 → ∀𝑎 ∈ ℝ {𝑥 ∈ 𝐷 ∣ 𝑎 ≤ (𝐹‘𝑥)} ∈ (𝑆 ↾t 𝐷)) ⇒ ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑆)) | ||
Theorem | issmfge 46691* | The predicate "𝐹 is a real-valued measurable function w.r.t. to the sigma-algebra 𝑆". A function is measurable iff the preimages of all left-closed intervals unbounded above are in the subspace sigma-algebra induced by its domain. The domain of 𝐹 is required to be b subset of the underlying set of 𝑆. Definition 121C of [Fremlin1] p. 36, and Proposition 121B (iv) of [Fremlin1] p. 36 . (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ 𝐷 = dom 𝐹 ⇒ ⊢ (𝜑 → (𝐹 ∈ (SMblFn‘𝑆) ↔ (𝐷 ⊆ ∪ 𝑆 ∧ 𝐹:𝐷⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑥 ∈ 𝐷 ∣ 𝑎 ≤ (𝐹‘𝑥)} ∈ (𝑆 ↾t 𝐷)))) | ||
Theorem | smflimlem1 46692* | Lemma for the proof that the limit of a sequence of sigma-measurable functions is sigma-measurable, Proposition 121F (a) of [Fremlin1] p. 38 . This lemma proves that (𝐷 ∩ 𝐼) is in the subspace sigma-algebra induced by 𝐷. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ 𝐷 = {𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)) ∈ dom ⇝ } & ⊢ 𝑃 = (𝑚 ∈ 𝑍, 𝑘 ∈ ℕ ↦ {𝑠 ∈ 𝑆 ∣ {𝑥 ∈ dom (𝐹‘𝑚) ∣ ((𝐹‘𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹‘𝑚))}) & ⊢ 𝐻 = (𝑚 ∈ 𝑍, 𝑘 ∈ ℕ ↦ (𝐶‘(𝑚𝑃𝑘))) & ⊢ 𝐼 = ∩ 𝑘 ∈ ℕ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ (ℤ≥‘𝑛)(𝑚𝐻𝑘) & ⊢ ((𝜑 ∧ 𝑟 ∈ ran 𝑃) → (𝐶‘𝑟) ∈ 𝑟) ⇒ ⊢ (𝜑 → (𝐷 ∩ 𝐼) ∈ (𝑆 ↾t 𝐷)) | ||
Theorem | smflimlem2 46693* | Lemma for the proof that the limit of sigma-measurable functions is sigma-measurable, Proposition 121F (a) of [Fremlin1] p. 38 . This lemma proves one-side of the double inclusion for the proof that the preimages of right-closed, unbounded-below intervals are in the subspace sigma-algebra induced by 𝐷. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ (𝜑 → 𝐹:𝑍⟶(SMblFn‘𝑆)) & ⊢ 𝐷 = {𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)) ∈ dom ⇝ } & ⊢ 𝐺 = (𝑥 ∈ 𝐷 ↦ ( ⇝ ‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)))) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ 𝑃 = (𝑚 ∈ 𝑍, 𝑘 ∈ ℕ ↦ {𝑠 ∈ 𝑆 ∣ {𝑥 ∈ dom (𝐹‘𝑚) ∣ ((𝐹‘𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹‘𝑚))}) & ⊢ 𝐻 = (𝑚 ∈ 𝑍, 𝑘 ∈ ℕ ↦ (𝐶‘(𝑚𝑃𝑘))) & ⊢ 𝐼 = ∩ 𝑘 ∈ ℕ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ (ℤ≥‘𝑛)(𝑚𝐻𝑘) & ⊢ ((𝜑 ∧ 𝑟 ∈ ran 𝑃) → (𝐶‘𝑟) ∈ 𝑟) ⇒ ⊢ (𝜑 → {𝑥 ∈ 𝐷 ∣ (𝐺‘𝑥) ≤ 𝐴} ⊆ (𝐷 ∩ 𝐼)) | ||
Theorem | smflimlem3 46694* | The limit of sigma-measurable functions is sigma-measurable. Proposition 121F (a) of [Fremlin1] p. 38 . (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ ((𝜑 ∧ 𝑚 ∈ 𝑍) → (𝐹‘𝑚) ∈ (SMblFn‘𝑆)) & ⊢ 𝐷 = {𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)) ∈ dom ⇝ } & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ 𝑃 = (𝑚 ∈ 𝑍, 𝑘 ∈ ℕ ↦ {𝑠 ∈ 𝑆 ∣ {𝑥 ∈ dom (𝐹‘𝑚) ∣ ((𝐹‘𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹‘𝑚))}) & ⊢ 𝐻 = (𝑚 ∈ 𝑍, 𝑘 ∈ ℕ ↦ (𝐶‘(𝑚𝑃𝑘))) & ⊢ 𝐼 = ∩ 𝑘 ∈ ℕ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ (ℤ≥‘𝑛)(𝑚𝐻𝑘) & ⊢ ((𝜑 ∧ 𝑦 ∈ ran 𝑃) → (𝐶‘𝑦) ∈ 𝑦) & ⊢ (𝜑 → 𝑋 ∈ (𝐷 ∩ 𝐼)) & ⊢ (𝜑 → 𝐾 ∈ ℕ) & ⊢ (𝜑 → 𝑌 ∈ ℝ+) & ⊢ (𝜑 → (1 / 𝐾) < 𝑌) ⇒ ⊢ (𝜑 → ∃𝑚 ∈ 𝑍 ∀𝑖 ∈ (ℤ≥‘𝑚)(𝑋 ∈ dom (𝐹‘𝑖) ∧ ((𝐹‘𝑖)‘𝑋) < (𝐴 + 𝑌))) | ||
Theorem | smflimlem4 46695* | Lemma for the proof that the limit of sigma-measurable functions is sigma-measurable, Proposition 121F (a) of [Fremlin1] p. 38 . This lemma proves one-side of the double inclusion for the proof that the preimages of right-closed, unbounded-below intervals are in the subspace sigma-algebra induced by 𝐷. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ (𝜑 → 𝐹:𝑍⟶(SMblFn‘𝑆)) & ⊢ 𝐷 = {𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)) ∈ dom ⇝ } & ⊢ 𝐺 = (𝑥 ∈ 𝐷 ↦ ( ⇝ ‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)))) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ 𝑃 = (𝑚 ∈ 𝑍, 𝑘 ∈ ℕ ↦ {𝑠 ∈ 𝑆 ∣ {𝑥 ∈ dom (𝐹‘𝑚) ∣ ((𝐹‘𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹‘𝑚))}) & ⊢ 𝐻 = (𝑚 ∈ 𝑍, 𝑘 ∈ ℕ ↦ (𝐶‘(𝑚𝑃𝑘))) & ⊢ 𝐼 = ∩ 𝑘 ∈ ℕ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ (ℤ≥‘𝑛)(𝑚𝐻𝑘) & ⊢ ((𝜑 ∧ 𝑟 ∈ ran 𝑃) → (𝐶‘𝑟) ∈ 𝑟) ⇒ ⊢ (𝜑 → (𝐷 ∩ 𝐼) ⊆ {𝑥 ∈ 𝐷 ∣ (𝐺‘𝑥) ≤ 𝐴}) | ||
Theorem | smflimlem5 46696* | Lemma for the proof that the limit of sigma-measurable functions is sigma-measurable, Proposition 121F (a) of [Fremlin1] p. 38 . This lemma proves that the preimages of right-closed, unbounded-below intervals are in the subspace sigma-algebra induced by 𝐷. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ (𝜑 → 𝐹:𝑍⟶(SMblFn‘𝑆)) & ⊢ 𝐷 = {𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)) ∈ dom ⇝ } & ⊢ 𝐺 = (𝑥 ∈ 𝐷 ↦ ( ⇝ ‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)))) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ 𝑃 = (𝑚 ∈ 𝑍, 𝑘 ∈ ℕ ↦ {𝑠 ∈ 𝑆 ∣ {𝑥 ∈ dom (𝐹‘𝑚) ∣ ((𝐹‘𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹‘𝑚))}) & ⊢ 𝐻 = (𝑚 ∈ 𝑍, 𝑘 ∈ ℕ ↦ (𝐶‘(𝑚𝑃𝑘))) & ⊢ 𝐼 = ∩ 𝑘 ∈ ℕ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ (ℤ≥‘𝑛)(𝑚𝐻𝑘) & ⊢ ((𝜑 ∧ 𝑟 ∈ ran 𝑃) → (𝐶‘𝑟) ∈ 𝑟) ⇒ ⊢ (𝜑 → {𝑥 ∈ 𝐷 ∣ (𝐺‘𝑥) ≤ 𝐴} ∈ (𝑆 ↾t 𝐷)) | ||
Theorem | smflimlem6 46697* | Lemma for the proof that the limit of sigma-measurable functions is sigma-measurable, Proposition 121F (a) of [Fremlin1] p. 38 . This lemma proves that the preimages of right-closed, unbounded-below intervals are in the subspace sigma-algebra induced by 𝐷. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ (𝜑 → 𝐹:𝑍⟶(SMblFn‘𝑆)) & ⊢ 𝐷 = {𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)) ∈ dom ⇝ } & ⊢ 𝐺 = (𝑥 ∈ 𝐷 ↦ ( ⇝ ‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)))) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ 𝑃 = (𝑚 ∈ 𝑍, 𝑘 ∈ ℕ ↦ {𝑠 ∈ 𝑆 ∣ {𝑥 ∈ dom (𝐹‘𝑚) ∣ ((𝐹‘𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹‘𝑚))}) ⇒ ⊢ (𝜑 → {𝑥 ∈ 𝐷 ∣ (𝐺‘𝑥) ≤ 𝐴} ∈ (𝑆 ↾t 𝐷)) | ||
Theorem | smflim 46698* | The limit of sigma-measurable functions is sigma-measurable. Proposition 121F (a) of [Fremlin1] p. 38 . Notice that every function in the sequence can have a different (partial) domain, and the domain of convergence can be decidedly irregular (Remark 121G of [Fremlin1] p. 39 ). (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ Ⅎ𝑚𝐹 & ⊢ Ⅎ𝑥𝐹 & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ (𝜑 → 𝐹:𝑍⟶(SMblFn‘𝑆)) & ⊢ 𝐷 = {𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)) ∈ dom ⇝ } & ⊢ 𝐺 = (𝑥 ∈ 𝐷 ↦ ( ⇝ ‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)))) ⇒ ⊢ (𝜑 → 𝐺 ∈ (SMblFn‘𝑆)) | ||
Theorem | nsssmfmbflem 46699* | The sigma-measurable functions (w.r.t. the Lebesgue measure on the Reals) are not a subset of the measurable functions. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ 𝑆 = dom vol & ⊢ (𝜑 → 𝑋 ⊆ ℝ) & ⊢ (𝜑 → ¬ 𝑋 ∈ 𝑆) & ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ 0) ⇒ ⊢ (𝜑 → ∃𝑓(𝑓 ∈ (SMblFn‘𝑆) ∧ ¬ 𝑓 ∈ MblFn)) | ||
Theorem | nsssmfmbf 46700 | The sigma-measurable functions (w.r.t. the Lebesgue measure on the Reals) are not a subset of the measurable functions. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ 𝑆 = dom vol ⇒ ⊢ ¬ (SMblFn‘𝑆) ⊆ MblFn |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |