| Metamath
Proof Explorer Theorem List (p. 467 of 497) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30845) |
(30846-32368) |
(32369-49617) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | hoiqssbllem3 46601* | A n-dimensional ball contains a nonempty half-open interval with vertices with rational components. (Contributed by Glauco Siliprandi, 24-Dec-2020.) |
| ⊢ (𝜑 → 𝑋 ∈ Fin) & ⊢ (𝜑 → 𝑋 ≠ ∅) & ⊢ (𝜑 → 𝑌 ∈ (ℝ ↑m 𝑋)) & ⊢ (𝜑 → 𝐸 ∈ ℝ+) ⇒ ⊢ (𝜑 → ∃𝑐 ∈ (ℚ ↑m 𝑋)∃𝑑 ∈ (ℚ ↑m 𝑋)(𝑌 ∈ X𝑖 ∈ 𝑋 ((𝑐‘𝑖)[,)(𝑑‘𝑖)) ∧ X𝑖 ∈ 𝑋 ((𝑐‘𝑖)[,)(𝑑‘𝑖)) ⊆ (𝑌(ball‘(dist‘(ℝ^‘𝑋)))𝐸))) | ||
| Theorem | hoiqssbl 46602* | A n-dimensional ball contains a nonempty half-open interval with vertices with rational components. (Contributed by Glauco Siliprandi, 24-Dec-2020.) |
| ⊢ (𝜑 → 𝑋 ∈ Fin) & ⊢ (𝜑 → 𝑌 ∈ (ℝ ↑m 𝑋)) & ⊢ (𝜑 → 𝐸 ∈ ℝ+) ⇒ ⊢ (𝜑 → ∃𝑐 ∈ (ℚ ↑m 𝑋)∃𝑑 ∈ (ℚ ↑m 𝑋)(𝑌 ∈ X𝑖 ∈ 𝑋 ((𝑐‘𝑖)[,)(𝑑‘𝑖)) ∧ X𝑖 ∈ 𝑋 ((𝑐‘𝑖)[,)(𝑑‘𝑖)) ⊆ (𝑌(ball‘(dist‘(ℝ^‘𝑋)))𝐸))) | ||
| Theorem | hspmbllem1 46603* | Any half-space of the n-dimensional Real numbers is Lebesgue measurable. This is Step (a) of Lemma 115F of [Fremlin1] p. 31. (Contributed by Glauco Siliprandi, 24-Dec-2020.) |
| ⊢ (𝜑 → 𝑋 ∈ Fin) & ⊢ (𝜑 → 𝐾 ∈ 𝑋) & ⊢ (𝜑 → 𝑌 ∈ ℝ) & ⊢ (𝜑 → 𝐴:𝑋⟶ℝ) & ⊢ (𝜑 → 𝐵:𝑋⟶ℝ) & ⊢ 𝐿 = (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑m 𝑥), 𝑏 ∈ (ℝ ↑m 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘 ∈ 𝑥 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘)))))) & ⊢ 𝑇 = (𝑦 ∈ ℝ ↦ (𝑐 ∈ (ℝ ↑m 𝑋) ↦ (ℎ ∈ 𝑋 ↦ if(ℎ ∈ (𝑋 ∖ {𝐾}), (𝑐‘ℎ), if((𝑐‘ℎ) ≤ 𝑦, (𝑐‘ℎ), 𝑦))))) & ⊢ 𝑆 = (𝑥 ∈ ℝ ↦ (𝑐 ∈ (ℝ ↑m 𝑋) ↦ (ℎ ∈ 𝑋 ↦ if(ℎ = 𝐾, if(𝑥 ≤ (𝑐‘ℎ), (𝑐‘ℎ), 𝑥), (𝑐‘ℎ))))) ⇒ ⊢ (𝜑 → (𝐴(𝐿‘𝑋)𝐵) = ((𝐴(𝐿‘𝑋)((𝑇‘𝑌)‘𝐵)) +𝑒 (((𝑆‘𝑌)‘𝐴)(𝐿‘𝑋)𝐵))) | ||
| Theorem | hspmbllem2 46604* | Any half-space of the n-dimensional Real numbers is Lebesgue measurable. This is Step (b) of Lemma 115F of [Fremlin1] p. 31. (Contributed by Glauco Siliprandi, 24-Dec-2020.) |
| ⊢ 𝐻 = (𝑥 ∈ Fin ↦ (𝑙 ∈ 𝑥, 𝑦 ∈ ℝ ↦ X𝑘 ∈ 𝑥 if(𝑘 = 𝑙, (-∞(,)𝑦), ℝ))) & ⊢ (𝜑 → 𝑋 ∈ Fin) & ⊢ (𝜑 → 𝐾 ∈ 𝑋) & ⊢ (𝜑 → 𝑌 ∈ ℝ) & ⊢ (𝜑 → 𝐸 ∈ ℝ+) & ⊢ (𝜑 → 𝐶:ℕ⟶(ℝ ↑m 𝑋)) & ⊢ (𝜑 → 𝐷:ℕ⟶(ℝ ↑m 𝑋)) & ⊢ (𝜑 → 𝐴 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) & ⊢ (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))))) ≤ (((voln*‘𝑋)‘𝐴) + 𝐸)) & ⊢ (𝜑 → ((voln*‘𝑋)‘𝐴) ∈ ℝ) & ⊢ (𝜑 → ((voln*‘𝑋)‘(𝐴 ∩ (𝐾(𝐻‘𝑋)𝑌))) ∈ ℝ) & ⊢ (𝜑 → ((voln*‘𝑋)‘(𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) ∈ ℝ) & ⊢ 𝐿 = (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑m 𝑥), 𝑏 ∈ (ℝ ↑m 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘 ∈ 𝑥 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘)))))) & ⊢ 𝑇 = (𝑦 ∈ ℝ ↦ (𝑐 ∈ (ℝ ↑m 𝑋) ↦ (ℎ ∈ 𝑋 ↦ if(ℎ ∈ (𝑋 ∖ {𝐾}), (𝑐‘ℎ), if((𝑐‘ℎ) ≤ 𝑦, (𝑐‘ℎ), 𝑦))))) & ⊢ 𝑆 = (𝑥 ∈ ℝ ↦ (𝑐 ∈ (ℝ ↑m 𝑋) ↦ (ℎ ∈ 𝑋 ↦ if(ℎ = 𝐾, if(𝑥 ≤ (𝑐‘ℎ), (𝑐‘ℎ), 𝑥), (𝑐‘ℎ))))) ⇒ ⊢ (𝜑 → (((voln*‘𝑋)‘(𝐴 ∩ (𝐾(𝐻‘𝑋)𝑌))) + ((voln*‘𝑋)‘(𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌)))) ≤ (((voln*‘𝑋)‘𝐴) + 𝐸)) | ||
| Theorem | hspmbllem3 46605* | Any half-space of the n-dimensional Real numbers is Lebesgue measurable. Lemma 115F of [Fremlin1] p. 31. This proof handles the non-trivial cases (nonzero dimension and finite outer measure). (Contributed by Glauco Siliprandi, 24-Dec-2020.) |
| ⊢ 𝐻 = (𝑥 ∈ Fin ↦ (𝑙 ∈ 𝑥, 𝑦 ∈ ℝ ↦ X𝑘 ∈ 𝑥 if(𝑘 = 𝑙, (-∞(,)𝑦), ℝ))) & ⊢ (𝜑 → 𝑋 ∈ Fin) & ⊢ (𝜑 → 𝐾 ∈ 𝑋) & ⊢ (𝜑 → 𝑌 ∈ ℝ) & ⊢ (𝜑 → ((voln*‘𝑋)‘𝐴) ∈ ℝ) & ⊢ (𝜑 → 𝐴 ⊆ (ℝ ↑m 𝑋)) & ⊢ 𝐶 = (𝑎 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑎 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝑙‘𝑗))‘𝑘)}) & ⊢ 𝐿 = (ℎ ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ ℎ)‘𝑘))) & ⊢ 𝐷 = (𝑎 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ (𝑟 ∈ ℝ+ ↦ {𝑖 ∈ (𝐶‘𝑎) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖‘𝑗)))) ≤ (((voln*‘𝑋)‘𝑎) +𝑒 𝑟)})) & ⊢ 𝐵 = (𝑗 ∈ ℕ ↦ (𝑘 ∈ 𝑋 ↦ (1st ‘((𝑖‘𝑗)‘𝑘)))) & ⊢ 𝑇 = (𝑗 ∈ ℕ ↦ (𝑘 ∈ 𝑋 ↦ (2nd ‘((𝑖‘𝑗)‘𝑘)))) ⇒ ⊢ (𝜑 → (((voln*‘𝑋)‘(𝐴 ∩ (𝐾(𝐻‘𝑋)𝑌))) +𝑒 ((voln*‘𝑋)‘(𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌)))) ≤ ((voln*‘𝑋)‘𝐴)) | ||
| Theorem | hspmbl 46606* | Any half-space of the n-dimensional Real numbers is Lebesgue measurable. Lemma 115F of [Fremlin1] p. 31. (Contributed by Glauco Siliprandi, 24-Dec-2020.) |
| ⊢ 𝐻 = (𝑥 ∈ Fin ↦ (𝑙 ∈ 𝑥, 𝑦 ∈ ℝ ↦ X𝑘 ∈ 𝑥 if(𝑘 = 𝑙, (-∞(,)𝑦), ℝ))) & ⊢ (𝜑 → 𝑋 ∈ Fin) & ⊢ (𝜑 → 𝐾 ∈ 𝑋) & ⊢ (𝜑 → 𝑌 ∈ ℝ) ⇒ ⊢ (𝜑 → (𝐾(𝐻‘𝑋)𝑌) ∈ dom (voln‘𝑋)) | ||
| Theorem | hoimbllem 46607* | Any n-dimensional half-open interval is Lebesgue measurable. This is a substep of Proposition 115G (a) of [Fremlin1] p. 32. (Contributed by Glauco Siliprandi, 24-Dec-2020.) |
| ⊢ (𝜑 → 𝑋 ∈ Fin) & ⊢ (𝜑 → 𝑋 ≠ ∅) & ⊢ 𝑆 = dom (voln‘𝑋) & ⊢ (𝜑 → 𝐴:𝑋⟶ℝ) & ⊢ (𝜑 → 𝐵:𝑋⟶ℝ) & ⊢ 𝐻 = (𝑥 ∈ Fin ↦ (𝑙 ∈ 𝑥, 𝑦 ∈ ℝ ↦ X𝑖 ∈ 𝑥 if(𝑖 = 𝑙, (-∞(,)𝑦), ℝ))) ⇒ ⊢ (𝜑 → X𝑖 ∈ 𝑋 ((𝐴‘𝑖)[,)(𝐵‘𝑖)) ∈ 𝑆) | ||
| Theorem | hoimbl 46608* | Any n-dimensional half-open interval is Lebesgue measurable. This is a substep of Proposition 115G (a) of [Fremlin1] p. 32. (Contributed by Glauco Siliprandi, 24-Dec-2020.) |
| ⊢ (𝜑 → 𝑋 ∈ Fin) & ⊢ 𝑆 = dom (voln‘𝑋) & ⊢ (𝜑 → 𝐴:𝑋⟶ℝ) & ⊢ (𝜑 → 𝐵:𝑋⟶ℝ) ⇒ ⊢ (𝜑 → X𝑖 ∈ 𝑋 ((𝐴‘𝑖)[,)(𝐵‘𝑖)) ∈ 𝑆) | ||
| Theorem | opnvonmbllem1 46609* | The half-open interval expressed using a composition of a function (Contributed by Glauco Siliprandi, 24-Dec-2020.) |
| ⊢ Ⅎ𝑖𝜑 & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝐶:𝑋⟶ℚ) & ⊢ (𝜑 → 𝐷:𝑋⟶ℚ) & ⊢ (𝜑 → X𝑖 ∈ 𝑋 ((𝐶‘𝑖)[,)(𝐷‘𝑖)) ⊆ 𝐵) & ⊢ (𝜑 → 𝐵 ⊆ 𝐺) & ⊢ (𝜑 → 𝑌 ∈ X𝑖 ∈ 𝑋 ((𝐶‘𝑖)[,)(𝐷‘𝑖))) & ⊢ 𝐾 = {ℎ ∈ ((ℚ × ℚ) ↑m 𝑋) ∣ X𝑖 ∈ 𝑋 (([,) ∘ ℎ)‘𝑖) ⊆ 𝐺} & ⊢ 𝐻 = (𝑖 ∈ 𝑋 ↦ 〈(𝐶‘𝑖), (𝐷‘𝑖)〉) ⇒ ⊢ (𝜑 → ∃ℎ ∈ 𝐾 𝑌 ∈ X𝑖 ∈ 𝑋 (([,) ∘ ℎ)‘𝑖)) | ||
| Theorem | opnvonmbllem2 46610* | An open subset of the n-dimensional Real numbers is Lebesgue measurable. This is Proposition 115G (a) of [Fremlin1] p. 32. (Contributed by Glauco Siliprandi, 24-Dec-2020.) |
| ⊢ (𝜑 → 𝑋 ∈ Fin) & ⊢ 𝑆 = dom (voln‘𝑋) & ⊢ (𝜑 → 𝐺 ∈ (TopOpen‘(ℝ^‘𝑋))) & ⊢ 𝐾 = {ℎ ∈ ((ℚ × ℚ) ↑m 𝑋) ∣ X𝑖 ∈ 𝑋 (([,) ∘ ℎ)‘𝑖) ⊆ 𝐺} ⇒ ⊢ (𝜑 → 𝐺 ∈ 𝑆) | ||
| Theorem | opnvonmbl 46611 | An open subset of the n-dimensional Real numbers is Lebesgue measurable. This is Proposition 115G (a) of [Fremlin1] p. 32. (Contributed by Glauco Siliprandi, 24-Dec-2020.) |
| ⊢ (𝜑 → 𝑋 ∈ Fin) & ⊢ 𝑆 = dom (voln‘𝑋) & ⊢ (𝜑 → 𝐺 ∈ (TopOpen‘(ℝ^‘𝑋))) ⇒ ⊢ (𝜑 → 𝐺 ∈ 𝑆) | ||
| Theorem | opnssborel 46612 | Open sets of a generalized real Euclidean space are Borel sets (notice that this theorem is even more general, because 𝑋 is not required to be a set). (Contributed by Glauco Siliprandi, 3-Jan-2021.) |
| ⊢ 𝐴 = (TopOpen‘(ℝ^‘𝑋)) & ⊢ 𝐵 = (SalGen‘𝐴) ⇒ ⊢ 𝐴 ⊆ 𝐵 | ||
| Theorem | borelmbl 46613 | All Borel subsets of the n-dimensional Real numbers are Lebesgue measurable. This is Proposition 115G (b) of [Fremlin1] p. 32. See also Definition 111G (d) of [Fremlin1] p. 13. (Contributed by Glauco Siliprandi, 3-Jan-2021.) |
| ⊢ (𝜑 → 𝑋 ∈ Fin) & ⊢ 𝑆 = dom (voln‘𝑋) & ⊢ 𝐵 = (SalGen‘(TopOpen‘(ℝ^‘𝑋))) ⇒ ⊢ (𝜑 → 𝐵 ⊆ 𝑆) | ||
| Theorem | volicorege0 46614 | The Lebesgue measure of a left-closed right-open interval with real bounds, is a nonnegative real number. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (vol‘(𝐴[,)𝐵)) ∈ (0[,)+∞)) | ||
| Theorem | isvonmbl 46615* | The predicate "𝐴 is measurable w.r.t. the n-dimensional Lebesgue measure". A set is measurable if it splits every other set 𝑥 in a "nice" way, that is, if the measure of the pieces 𝑥 ∩ 𝐴 and 𝑥 ∖ 𝐴 sum up to the measure of 𝑥. Definition 114E of [Fremlin1] p. 25. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
| ⊢ (𝜑 → 𝑋 ∈ Fin) ⇒ ⊢ (𝜑 → (𝐸 ∈ dom (voln‘𝑋) ↔ (𝐸 ⊆ (ℝ ↑m 𝑋) ∧ ∀𝑎 ∈ 𝒫 (ℝ ↑m 𝑋)(((voln*‘𝑋)‘(𝑎 ∩ 𝐸)) +𝑒 ((voln*‘𝑋)‘(𝑎 ∖ 𝐸))) = ((voln*‘𝑋)‘𝑎)))) | ||
| Theorem | mblvon 46616 | The n-dimensional Lebesgue measure of a measurable set is the same as its n-dimensional Lebesgue outer measure. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
| ⊢ (𝜑 → 𝑋 ∈ Fin) & ⊢ (𝜑 → 𝐴 ∈ dom (voln‘𝑋)) ⇒ ⊢ (𝜑 → ((voln‘𝑋)‘𝐴) = ((voln*‘𝑋)‘𝐴)) | ||
| Theorem | vonmblss 46617 | n-dimensional Lebesgue measurable sets are subsets of the n-dimensional real Euclidean space. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
| ⊢ (𝜑 → 𝑋 ∈ Fin) ⇒ ⊢ (𝜑 → dom (voln‘𝑋) ⊆ 𝒫 (ℝ ↑m 𝑋)) | ||
| Theorem | volico2 46618 | The measure of left-closed right-open interval. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (vol‘(𝐴[,)𝐵)) = if(𝐴 ≤ 𝐵, (𝐵 − 𝐴), 0)) | ||
| Theorem | vonmblss2 46619 | n-dimensional Lebesgue measurable sets are subsets of the n-dimensional real Euclidean space. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
| ⊢ (𝜑 → 𝑋 ∈ Fin) & ⊢ (𝜑 → 𝑌 ∈ dom (voln‘𝑋)) ⇒ ⊢ (𝜑 → 𝑌 ⊆ (ℝ ↑m 𝑋)) | ||
| Theorem | ovolval2lem 46620* | The value of the Lebesgue outer measure for subsets of the reals, expressed using Σ^. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
| ⊢ (𝜑 → 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ))) ⇒ ⊢ (𝜑 → ran seq1( + , ((abs ∘ − ) ∘ 𝐹)) = ran (𝑛 ∈ ℕ ↦ Σ𝑘 ∈ (1...𝑛)(vol‘(([,) ∘ 𝐹)‘𝑘)))) | ||
| Theorem | ovolval2 46621* | The value of the Lebesgue outer measure for subsets of the reals, expressed using Σ^. See ovolval 25424 for an alternative expression. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
| ⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ 𝑀 = {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((abs ∘ − ) ∘ 𝑓)))} ⇒ ⊢ (𝜑 → (vol*‘𝐴) = inf(𝑀, ℝ*, < )) | ||
| Theorem | ovnsubadd2lem 46622* | (voln*‘𝑋) is subadditive. Proposition 115D (a)(iv) of [Fremlin1] p. 31 . The special case of the union of 2 sets. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
| ⊢ (𝜑 → 𝑋 ∈ Fin) & ⊢ (𝜑 → 𝐴 ⊆ (ℝ ↑m 𝑋)) & ⊢ (𝜑 → 𝐵 ⊆ (ℝ ↑m 𝑋)) & ⊢ 𝐶 = (𝑛 ∈ ℕ ↦ if(𝑛 = 1, 𝐴, if(𝑛 = 2, 𝐵, ∅))) ⇒ ⊢ (𝜑 → ((voln*‘𝑋)‘(𝐴 ∪ 𝐵)) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 ((voln*‘𝑋)‘𝐵))) | ||
| Theorem | ovnsubadd2 46623 | (voln*‘𝑋) is subadditive. Proposition 115D (a)(iv) of [Fremlin1] p. 31 . The special case of the union of 2 sets. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
| ⊢ (𝜑 → 𝑋 ∈ Fin) & ⊢ (𝜑 → 𝐴 ⊆ (ℝ ↑m 𝑋)) & ⊢ (𝜑 → 𝐵 ⊆ (ℝ ↑m 𝑋)) ⇒ ⊢ (𝜑 → ((voln*‘𝑋)‘(𝐴 ∪ 𝐵)) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 ((voln*‘𝑋)‘𝐵))) | ||
| Theorem | ovolval3 46624* | The value of the Lebesgue outer measure for subsets of the reals, expressed using Σ^ and vol ∘ (,). See ovolval 25424 and ovolval2 46621 for alternative expressions. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
| ⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ 𝑀 = {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑓)))} ⇒ ⊢ (𝜑 → (vol*‘𝐴) = inf(𝑀, ℝ*, < )) | ||
| Theorem | ovnsplit 46625 | The n-dimensional Lebesgue outer measure function is finitely sub-additive: application to a set split in two parts. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
| ⊢ (𝜑 → 𝑋 ∈ Fin) & ⊢ (𝜑 → 𝐴 ⊆ (ℝ ↑m 𝑋)) ⇒ ⊢ (𝜑 → ((voln*‘𝑋)‘𝐴) ≤ (((voln*‘𝑋)‘(𝐴 ∩ 𝐵)) +𝑒 ((voln*‘𝑋)‘(𝐴 ∖ 𝐵)))) | ||
| Theorem | ovolval4lem1 46626* | |- ( ( ph /\ n e. A ) -> ( ( (,) o. G ) 𝑛) = (((,) ∘ 𝐹) n ) ) (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
| ⊢ (𝜑 → 𝐹:ℕ⟶(ℝ* × ℝ*)) & ⊢ 𝐺 = (𝑛 ∈ ℕ ↦ 〈(1st ‘(𝐹‘𝑛)), if((1st ‘(𝐹‘𝑛)) ≤ (2nd ‘(𝐹‘𝑛)), (2nd ‘(𝐹‘𝑛)), (1st ‘(𝐹‘𝑛)))〉) & ⊢ 𝐴 = {𝑛 ∈ ℕ ∣ (1st ‘(𝐹‘𝑛)) ≤ (2nd ‘(𝐹‘𝑛))} ⇒ ⊢ (𝜑 → (∪ ran ((,) ∘ 𝐹) = ∪ ran ((,) ∘ 𝐺) ∧ (vol ∘ ((,) ∘ 𝐹)) = (vol ∘ ((,) ∘ 𝐺)))) | ||
| Theorem | ovolval4lem2 46627* | The value of the Lebesgue outer measure for subsets of the reals. Similar to ovolval3 46624, but here 𝑓 is may represent unordered interval bounds. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
| ⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ 𝑀 = {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑓)))} & ⊢ 𝐺 = (𝑛 ∈ ℕ ↦ 〈(1st ‘(𝑓‘𝑛)), if((1st ‘(𝑓‘𝑛)) ≤ (2nd ‘(𝑓‘𝑛)), (2nd ‘(𝑓‘𝑛)), (1st ‘(𝑓‘𝑛)))〉) ⇒ ⊢ (𝜑 → (vol*‘𝐴) = inf(𝑀, ℝ*, < )) | ||
| Theorem | ovolval4 46628* | The value of the Lebesgue outer measure for subsets of the reals. Similar to ovolval3 46624, but here 𝑓 may represent unordered interval bounds. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
| ⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ 𝑀 = {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑓)))} ⇒ ⊢ (𝜑 → (vol*‘𝐴) = inf(𝑀, ℝ*, < )) | ||
| Theorem | ovolval5lem1 46629* | ⊢ (𝜑 → (Σ^‘(𝑛 ∈ ℕ ↦ (vol‘((𝐴 − (𝑊 / (2↑𝑛) ))(,)𝐵)))) ≤ ((Σ^‘(𝑛 ∈ ℕ ↦ (vol‘(𝐴[,)𝐵) ))) +𝑒 𝑊)). (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
| ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝐴 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝑊 ∈ ℝ+) & ⊢ 𝐶 = {𝑛 ∈ ℕ ∣ 𝐴 < 𝐵} ⇒ ⊢ (𝜑 → (Σ^‘(𝑛 ∈ ℕ ↦ (vol‘((𝐴 − (𝑊 / (2↑𝑛)))(,)𝐵)))) ≤ ((Σ^‘(𝑛 ∈ ℕ ↦ (vol‘(𝐴[,)𝐵)))) +𝑒 𝑊)) | ||
| Theorem | ovolval5lem2 46630* | ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 〈((1st ‘(𝐹‘𝑛)) − (𝑊 / (2↑𝑛))), (2nd ‘(𝐹‘𝑛))〉 ∈ (ℝ × ℝ)). (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
| ⊢ 𝑄 = {𝑧 ∈ ℝ* ∣ ∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑧 = (Σ^‘((vol ∘ (,)) ∘ 𝑓)))} & ⊢ (𝜑 → 𝑌 = (Σ^‘((vol ∘ [,)) ∘ 𝐹))) & ⊢ 𝑍 = (Σ^‘((vol ∘ (,)) ∘ 𝐺)) & ⊢ (𝜑 → 𝐹:ℕ⟶(ℝ × ℝ)) & ⊢ (𝜑 → 𝐴 ⊆ ∪ ran ([,) ∘ 𝐹)) & ⊢ (𝜑 → 𝑊 ∈ ℝ+) & ⊢ 𝐺 = (𝑛 ∈ ℕ ↦ 〈((1st ‘(𝐹‘𝑛)) − (𝑊 / (2↑𝑛))), (2nd ‘(𝐹‘𝑛))〉) ⇒ ⊢ (𝜑 → ∃𝑧 ∈ 𝑄 𝑧 ≤ (𝑌 +𝑒 𝑊)) | ||
| Theorem | ovolval5lem3 46631* | The value of the Lebesgue outer measure for subsets of the reals, using covers of left-closed right-open intervals are used, instead of open intervals. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
| ⊢ 𝑀 = {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ⊆ ∪ ran ([,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ [,)) ∘ 𝑓)))} & ⊢ 𝑄 = {𝑧 ∈ ℝ* ∣ ∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑧 = (Σ^‘((vol ∘ (,)) ∘ 𝑓)))} ⇒ ⊢ inf(𝑄, ℝ*, < ) = inf(𝑀, ℝ*, < ) | ||
| Theorem | ovolval5 46632* | The value of the Lebesgue outer measure for subsets of the reals, using covers of left-closed right-open intervals are used, instead of open intervals. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
| ⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ 𝑀 = {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ⊆ ∪ ran ([,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ [,)) ∘ 𝑓)))} ⇒ ⊢ (𝜑 → (vol*‘𝐴) = inf(𝑀, ℝ*, < )) | ||
| Theorem | ovnovollem1 46633* | if 𝐹 is a cover of 𝐵 in ℝ, then 𝐼 is the corresponding cover in the space of 1-dimensional reals. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐹 ∈ ((ℝ × ℝ) ↑m ℕ)) & ⊢ 𝐼 = (𝑗 ∈ ℕ ↦ {〈𝐴, (𝐹‘𝑗)〉}) & ⊢ (𝜑 → 𝐵 ⊆ ∪ ran ([,) ∘ 𝐹)) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ (𝜑 → 𝑍 = (Σ^‘((vol ∘ [,)) ∘ 𝐹))) ⇒ ⊢ (𝜑 → ∃𝑖 ∈ (((ℝ × ℝ) ↑m {𝐴}) ↑m ℕ)((𝐵 ↑m {𝐴}) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑍 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))))) | ||
| Theorem | ovnovollem2 46634* | if 𝐼 is a cover of (𝐵 ↑m {𝐴}) in ℝ^1, then 𝐹 is the corresponding cover in the reals. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ (𝜑 → 𝐼 ∈ (((ℝ × ℝ) ↑m {𝐴}) ↑m ℕ)) & ⊢ (𝜑 → (𝐵 ↑m {𝐴}) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝐼‘𝑗))‘𝑘)) & ⊢ (𝜑 → 𝑍 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝐼‘𝑗))‘𝑘))))) & ⊢ 𝐹 = (𝑗 ∈ ℕ ↦ ((𝐼‘𝑗)‘𝐴)) ⇒ ⊢ (𝜑 → ∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐵 ⊆ ∪ ran ([,) ∘ 𝑓) ∧ 𝑍 = (Σ^‘((vol ∘ [,)) ∘ 𝑓)))) | ||
| Theorem | ovnovollem3 46635* | The 1-dimensional Lebesgue outer measure agrees with the Lebesgue outer measure on subsets of Real numbers. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ⊆ ℝ) & ⊢ 𝑀 = {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m {𝐴}) ↑m ℕ)((𝐵 ↑m {𝐴}) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))))} & ⊢ 𝑁 = {𝑧 ∈ ℝ* ∣ ∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐵 ⊆ ∪ ran ([,) ∘ 𝑓) ∧ 𝑧 = (Σ^‘((vol ∘ [,)) ∘ 𝑓)))} ⇒ ⊢ (𝜑 → ((voln*‘{𝐴})‘(𝐵 ↑m {𝐴})) = (vol*‘𝐵)) | ||
| Theorem | ovnovol 46636 | The 1-dimensional Lebesgue outer measure agrees with the Lebesgue outer measure on subsets of Real numbers. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ⊆ ℝ) ⇒ ⊢ (𝜑 → ((voln*‘{𝐴})‘(𝐵 ↑m {𝐴})) = (vol*‘𝐵)) | ||
| Theorem | vonvolmbllem 46637* | If a subset 𝐵 of real numbers is Lebesgue measurable, then its corresponding 1-dimensional set is measurable w.r.t. the n-dimensional Lebesgue measure, (with 𝑛 equal to 1). (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ⊆ ℝ) & ⊢ (𝜑 → ∀𝑦 ∈ 𝒫 ℝ(vol*‘𝑦) = ((vol*‘(𝑦 ∩ 𝐵)) +𝑒 (vol*‘(𝑦 ∖ 𝐵)))) & ⊢ (𝜑 → 𝑋 ⊆ (ℝ ↑m {𝐴})) & ⊢ 𝑌 = ∪ 𝑓 ∈ 𝑋 ran 𝑓 ⇒ ⊢ (𝜑 → (((voln*‘{𝐴})‘(𝑋 ∩ (𝐵 ↑m {𝐴}))) +𝑒 ((voln*‘{𝐴})‘(𝑋 ∖ (𝐵 ↑m {𝐴})))) = ((voln*‘{𝐴})‘𝑋)) | ||
| Theorem | vonvolmbl 46638 | A subset of Real numbers is Lebesgue measurable if and only if its corresponding 1-dimensional set is measurable w.r.t. the 1-dimensional Lebesgue measure. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ⊆ ℝ) ⇒ ⊢ (𝜑 → ((𝐵 ↑m {𝐴}) ∈ dom (voln‘{𝐴}) ↔ 𝐵 ∈ dom vol)) | ||
| Theorem | vonvol 46639 | The 1-dimensional Lebesgue measure agrees with the Lebesgue measure on subsets of Real numbers. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ dom vol) ⇒ ⊢ (𝜑 → ((voln‘{𝐴})‘(𝐵 ↑m {𝐴})) = (vol‘𝐵)) | ||
| Theorem | vonvolmbl2 46640* | A subset 𝑋 of the space of 1-dimensional Real numbers is Lebesgue measurable if and only if its projection 𝑌 on the Real numbers is Lebesgue measure. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
| ⊢ Ⅎ𝑓𝑌 & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝑋 ⊆ (ℝ ↑m {𝐴})) & ⊢ 𝑌 = ∪ 𝑓 ∈ 𝑋 ran 𝑓 ⇒ ⊢ (𝜑 → (𝑋 ∈ dom (voln‘{𝐴}) ↔ 𝑌 ∈ dom vol)) | ||
| Theorem | vonvol2 46641* | The 1-dimensional Lebesgue measure agrees with the Lebesgue measure on subsets of Real numbers. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
| ⊢ Ⅎ𝑓𝑌 & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝑋 ∈ dom (voln‘{𝐴})) & ⊢ 𝑌 = ∪ 𝑓 ∈ 𝑋 ran 𝑓 ⇒ ⊢ (𝜑 → ((voln‘{𝐴})‘𝑋) = (vol‘𝑌)) | ||
| Theorem | hoimbl2 46642* | Any n-dimensional half-open interval is Lebesgue measurable. This is a substep of Proposition 115G (a) of [Fremlin1] p. 32. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
| ⊢ Ⅎ𝑘𝜑 & ⊢ (𝜑 → 𝑋 ∈ Fin) & ⊢ 𝑆 = dom (voln‘𝑋) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → 𝐴 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → 𝐵 ∈ ℝ) ⇒ ⊢ (𝜑 → X𝑘 ∈ 𝑋 (𝐴[,)𝐵) ∈ 𝑆) | ||
| Theorem | voncl 46643 | The Lebesgue measure of a set is a nonnegative extended real. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
| ⊢ (𝜑 → 𝑋 ∈ Fin) & ⊢ 𝑆 = dom (voln‘𝑋) & ⊢ (𝜑 → 𝐴 ∈ 𝑆) ⇒ ⊢ (𝜑 → ((voln‘𝑋)‘𝐴) ∈ (0[,]+∞)) | ||
| Theorem | vonhoi 46644* | The Lebesgue outer measure of a multidimensional half-open interval is its dimensional volume (the product of its length in each dimension, when the dimension is nonzero). A direct consequence of Proposition 115D (b) of [Fremlin1] p. 30. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
| ⊢ (𝜑 → 𝑋 ∈ Fin) & ⊢ (𝜑 → 𝐴:𝑋⟶ℝ) & ⊢ (𝜑 → 𝐵:𝑋⟶ℝ) & ⊢ 𝐼 = X𝑘 ∈ 𝑋 ((𝐴‘𝑘)[,)(𝐵‘𝑘)) & ⊢ 𝐿 = (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑m 𝑥), 𝑏 ∈ (ℝ ↑m 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘 ∈ 𝑥 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘)))))) ⇒ ⊢ (𝜑 → ((voln‘𝑋)‘𝐼) = (𝐴(𝐿‘𝑋)𝐵)) | ||
| Theorem | vonxrcl 46645 | The Lebesgue measure of a set is an extended real. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
| ⊢ (𝜑 → 𝑋 ∈ Fin) & ⊢ 𝑆 = dom (voln‘𝑋) & ⊢ (𝜑 → 𝐴 ∈ 𝑆) ⇒ ⊢ (𝜑 → ((voln‘𝑋)‘𝐴) ∈ ℝ*) | ||
| Theorem | ioosshoi 46646 | A n-dimensional open interval is a subset of the half-open interval with the same bounds. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
| ⊢ X𝑘 ∈ 𝑋 (𝐴(,)𝐵) ⊆ X𝑘 ∈ 𝑋 (𝐴[,)𝐵) | ||
| Theorem | vonn0hoi 46647* | The Lebesgue outer measure of a multidimensional half-open interval when the dimension of the space is nonzero. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
| ⊢ (𝜑 → 𝑋 ∈ Fin) & ⊢ (𝜑 → 𝑋 ≠ ∅) & ⊢ (𝜑 → 𝐴:𝑋⟶ℝ) & ⊢ (𝜑 → 𝐵:𝑋⟶ℝ) & ⊢ 𝐼 = X𝑘 ∈ 𝑋 ((𝐴‘𝑘)[,)(𝐵‘𝑘)) ⇒ ⊢ (𝜑 → ((voln‘𝑋)‘𝐼) = ∏𝑘 ∈ 𝑋 (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘)))) | ||
| Theorem | von0val 46648 | The Lebesgue measure (for the zero dimensional space of reals) of every measurable set is zero. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
| ⊢ (𝜑 → 𝐴 ∈ dom (voln‘∅)) ⇒ ⊢ (𝜑 → ((voln‘∅)‘𝐴) = 0) | ||
| Theorem | vonhoire 46649* | The Lebesgue measure of a n-dimensional half-open interval is a real number. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
| ⊢ Ⅎ𝑘𝜑 & ⊢ (𝜑 → 𝑋 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → 𝐴 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → 𝐵 ∈ ℝ) ⇒ ⊢ (𝜑 → ((voln‘𝑋)‘X𝑘 ∈ 𝑋 (𝐴[,)𝐵)) ∈ ℝ) | ||
| Theorem | iinhoiicclem 46650* | A n-dimensional closed interval expressed as the indexed intersection of half-open intervals. One side of the double inclusion. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
| ⊢ Ⅎ𝑘𝜑 & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → 𝐴 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐹 ∈ ∩ 𝑛 ∈ ℕ X𝑘 ∈ 𝑋 (𝐴[,)(𝐵 + (1 / 𝑛)))) ⇒ ⊢ (𝜑 → 𝐹 ∈ X𝑘 ∈ 𝑋 (𝐴[,]𝐵)) | ||
| Theorem | iinhoiicc 46651* | A n-dimensional closed interval expressed as the indexed intersection of half-open intervals. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
| ⊢ Ⅎ𝑘𝜑 & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → 𝐴 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → 𝐵 ∈ ℝ) ⇒ ⊢ (𝜑 → ∩ 𝑛 ∈ ℕ X𝑘 ∈ 𝑋 (𝐴[,)(𝐵 + (1 / 𝑛))) = X𝑘 ∈ 𝑋 (𝐴[,]𝐵)) | ||
| Theorem | iunhoiioolem 46652* | A n-dimensional open interval expressed as the indexed union of half-open intervals. One side of the double inclusion. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
| ⊢ Ⅎ𝑘𝜑 & ⊢ (𝜑 → 𝑋 ∈ Fin) & ⊢ (𝜑 → 𝑋 ≠ ∅) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → 𝐴 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → 𝐵 ∈ ℝ*) & ⊢ (𝜑 → 𝐹 ∈ X𝑘 ∈ 𝑋 (𝐴(,)𝐵)) & ⊢ 𝐶 = inf(ran (𝑘 ∈ 𝑋 ↦ ((𝐹‘𝑘) − 𝐴)), ℝ, < ) ⇒ ⊢ (𝜑 → 𝐹 ∈ ∪ 𝑛 ∈ ℕ X𝑘 ∈ 𝑋 ((𝐴 + (1 / 𝑛))[,)𝐵)) | ||
| Theorem | iunhoiioo 46653* | A n-dimensional open interval expressed as the indexed union of half-open intervals. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
| ⊢ Ⅎ𝑘𝜑 & ⊢ (𝜑 → 𝑋 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → 𝐴 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → 𝐵 ∈ ℝ*) ⇒ ⊢ (𝜑 → ∪ 𝑛 ∈ ℕ X𝑘 ∈ 𝑋 ((𝐴 + (1 / 𝑛))[,)𝐵) = X𝑘 ∈ 𝑋 (𝐴(,)𝐵)) | ||
| Theorem | ioovonmbl 46654* | Any n-dimensional open interval is Lebesgue measurable. This is the first statement in Proposition 115G (c) of [Fremlin1] p. 32. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
| ⊢ (𝜑 → 𝑋 ∈ Fin) & ⊢ 𝑆 = dom (voln‘𝑋) & ⊢ (𝜑 → 𝐴:𝑋⟶ℝ*) & ⊢ (𝜑 → 𝐵:𝑋⟶ℝ*) ⇒ ⊢ (𝜑 → X𝑖 ∈ 𝑋 ((𝐴‘𝑖)(,)(𝐵‘𝑖)) ∈ 𝑆) | ||
| Theorem | iccvonmbllem 46655* | Any n-dimensional closed interval is Lebesgue measurable. This is the second statement in Proposition 115G (c) of [Fremlin1] p. 32. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
| ⊢ (𝜑 → 𝑋 ∈ Fin) & ⊢ 𝑆 = dom (voln‘𝑋) & ⊢ (𝜑 → 𝐴:𝑋⟶ℝ) & ⊢ (𝜑 → 𝐵:𝑋⟶ℝ) & ⊢ 𝐶 = (𝑛 ∈ ℕ ↦ (𝑖 ∈ 𝑋 ↦ ((𝐴‘𝑖) − (1 / 𝑛)))) & ⊢ 𝐷 = (𝑛 ∈ ℕ ↦ (𝑖 ∈ 𝑋 ↦ ((𝐵‘𝑖) + (1 / 𝑛)))) ⇒ ⊢ (𝜑 → X𝑖 ∈ 𝑋 ((𝐴‘𝑖)[,](𝐵‘𝑖)) ∈ 𝑆) | ||
| Theorem | iccvonmbl 46656* | Any n-dimensional closed interval is Lebesgue measurable. This is the second statement in Proposition 115G (c) of [Fremlin1] p. 32. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
| ⊢ (𝜑 → 𝑋 ∈ Fin) & ⊢ 𝑆 = dom (voln‘𝑋) & ⊢ (𝜑 → 𝐴:𝑋⟶ℝ) & ⊢ (𝜑 → 𝐵:𝑋⟶ℝ) ⇒ ⊢ (𝜑 → X𝑖 ∈ 𝑋 ((𝐴‘𝑖)[,](𝐵‘𝑖)) ∈ 𝑆) | ||
| Theorem | vonioolem1 46657* | The sequence of the measures of the half-open intervals converges to the measure of their union. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
| ⊢ (𝜑 → 𝑋 ∈ Fin) & ⊢ (𝜑 → 𝐴:𝑋⟶ℝ) & ⊢ (𝜑 → 𝐵:𝑋⟶ℝ) & ⊢ (𝜑 → 𝑋 ≠ ∅) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (𝐴‘𝑘) < (𝐵‘𝑘)) & ⊢ 𝐶 = (𝑛 ∈ ℕ ↦ (𝑘 ∈ 𝑋 ↦ ((𝐴‘𝑘) + (1 / 𝑛)))) & ⊢ 𝐷 = (𝑛 ∈ ℕ ↦ X𝑘 ∈ 𝑋 (((𝐶‘𝑛)‘𝑘)[,)(𝐵‘𝑘))) & ⊢ 𝑆 = (𝑛 ∈ ℕ ↦ ((voln‘𝑋)‘(𝐷‘𝑛))) & ⊢ 𝑇 = (𝑛 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 ((𝐵‘𝑘) − ((𝐶‘𝑛)‘𝑘))) & ⊢ 𝐸 = inf(ran (𝑘 ∈ 𝑋 ↦ ((𝐵‘𝑘) − (𝐴‘𝑘))), ℝ, < ) & ⊢ 𝑁 = ((⌊‘(1 / 𝐸)) + 1) & ⊢ 𝑍 = (ℤ≥‘𝑁) ⇒ ⊢ (𝜑 → 𝑆 ⇝ ∏𝑘 ∈ 𝑋 ((𝐵‘𝑘) − (𝐴‘𝑘))) | ||
| Theorem | vonioolem2 46658* | The n-dimensional Lebesgue measure of open intervals. This is the first statement in Proposition 115G (d) of [Fremlin1] p. 32. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
| ⊢ (𝜑 → 𝑋 ∈ Fin) & ⊢ (𝜑 → 𝐴:𝑋⟶ℝ) & ⊢ (𝜑 → 𝐵:𝑋⟶ℝ) & ⊢ (𝜑 → 𝑋 ≠ ∅) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (𝐴‘𝑘) < (𝐵‘𝑘)) & ⊢ 𝐼 = X𝑘 ∈ 𝑋 ((𝐴‘𝑘)(,)(𝐵‘𝑘)) & ⊢ 𝐶 = (𝑛 ∈ ℕ ↦ (𝑘 ∈ 𝑋 ↦ ((𝐴‘𝑘) + (1 / 𝑛)))) & ⊢ 𝐷 = (𝑛 ∈ ℕ ↦ X𝑘 ∈ 𝑋 (((𝐶‘𝑛)‘𝑘)[,)(𝐵‘𝑘))) ⇒ ⊢ (𝜑 → ((voln‘𝑋)‘𝐼) = ∏𝑘 ∈ 𝑋 ((𝐵‘𝑘) − (𝐴‘𝑘))) | ||
| Theorem | vonioo 46659* | The n-dimensional Lebesgue measure of an open interval. This is the first statement in Proposition 115G (d) of [Fremlin1] p. 32. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
| ⊢ (𝜑 → 𝑋 ∈ Fin) & ⊢ (𝜑 → 𝐴:𝑋⟶ℝ) & ⊢ (𝜑 → 𝐵:𝑋⟶ℝ) & ⊢ 𝐼 = X𝑘 ∈ 𝑋 ((𝐴‘𝑘)(,)(𝐵‘𝑘)) & ⊢ 𝐿 = (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑m 𝑥), 𝑏 ∈ (ℝ ↑m 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘 ∈ 𝑥 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘)))))) ⇒ ⊢ (𝜑 → ((voln‘𝑋)‘𝐼) = (𝐴(𝐿‘𝑋)𝐵)) | ||
| Theorem | vonicclem1 46660* | The sequence of the measures of the half-open intervals converges to the measure of their intersection. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
| ⊢ (𝜑 → 𝑋 ∈ Fin) & ⊢ (𝜑 → 𝐴:𝑋⟶ℝ) & ⊢ (𝜑 → 𝐵:𝑋⟶ℝ) & ⊢ (𝜑 → 𝑋 ≠ ∅) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (𝐴‘𝑘) ≤ (𝐵‘𝑘)) & ⊢ 𝐶 = (𝑛 ∈ ℕ ↦ (𝑘 ∈ 𝑋 ↦ ((𝐵‘𝑘) + (1 / 𝑛)))) & ⊢ 𝐷 = (𝑛 ∈ ℕ ↦ X𝑘 ∈ 𝑋 ((𝐴‘𝑘)[,)((𝐶‘𝑛)‘𝑘))) & ⊢ 𝑆 = (𝑛 ∈ ℕ ↦ ((voln‘𝑋)‘(𝐷‘𝑛))) ⇒ ⊢ (𝜑 → 𝑆 ⇝ ∏𝑘 ∈ 𝑋 ((𝐵‘𝑘) − (𝐴‘𝑘))) | ||
| Theorem | vonicclem2 46661* | The n-dimensional Lebesgue measure of closed intervals. This is the second statement in Proposition 115G (d) of [Fremlin1] p. 32. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
| ⊢ (𝜑 → 𝑋 ∈ Fin) & ⊢ (𝜑 → 𝐴:𝑋⟶ℝ) & ⊢ (𝜑 → 𝐵:𝑋⟶ℝ) & ⊢ (𝜑 → 𝑋 ≠ ∅) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (𝐴‘𝑘) ≤ (𝐵‘𝑘)) & ⊢ 𝐼 = X𝑘 ∈ 𝑋 ((𝐴‘𝑘)[,](𝐵‘𝑘)) & ⊢ 𝐶 = (𝑛 ∈ ℕ ↦ (𝑘 ∈ 𝑋 ↦ ((𝐵‘𝑘) + (1 / 𝑛)))) & ⊢ 𝐷 = (𝑛 ∈ ℕ ↦ X𝑘 ∈ 𝑋 ((𝐴‘𝑘)[,)((𝐶‘𝑛)‘𝑘))) ⇒ ⊢ (𝜑 → ((voln‘𝑋)‘𝐼) = ∏𝑘 ∈ 𝑋 ((𝐵‘𝑘) − (𝐴‘𝑘))) | ||
| Theorem | vonicc 46662* | The n-dimensional Lebesgue measure of a closed interval. This is the second statement in Proposition 115G (d) of [Fremlin1] p. 32. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
| ⊢ (𝜑 → 𝑋 ∈ Fin) & ⊢ (𝜑 → 𝐴:𝑋⟶ℝ) & ⊢ (𝜑 → 𝐵:𝑋⟶ℝ) & ⊢ 𝐼 = X𝑘 ∈ 𝑋 ((𝐴‘𝑘)[,](𝐵‘𝑘)) & ⊢ 𝐿 = (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑m 𝑥), 𝑏 ∈ (ℝ ↑m 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘 ∈ 𝑥 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘)))))) ⇒ ⊢ (𝜑 → ((voln‘𝑋)‘𝐼) = (𝐴(𝐿‘𝑋)𝐵)) | ||
| Theorem | snvonmbl 46663 | A n-dimensional singleton is Lebesgue measurable. This is the first statement in Proposition 115G (e) of [Fremlin1] p. 32. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
| ⊢ (𝜑 → 𝑋 ∈ Fin) & ⊢ (𝜑 → 𝐴 ∈ (ℝ ↑m 𝑋)) ⇒ ⊢ (𝜑 → {𝐴} ∈ dom (voln‘𝑋)) | ||
| Theorem | vonn0ioo 46664* | The n-dimensional Lebesgue measure of an open interval when the dimension of the space is nonzero. This is the first statement in Proposition 115G (d) of [Fremlin1] p. 32. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
| ⊢ (𝜑 → 𝑋 ∈ Fin) & ⊢ (𝜑 → 𝑋 ≠ ∅) & ⊢ (𝜑 → 𝐴:𝑋⟶ℝ) & ⊢ (𝜑 → 𝐵:𝑋⟶ℝ) & ⊢ 𝐼 = X𝑘 ∈ 𝑋 ((𝐴‘𝑘)(,)(𝐵‘𝑘)) ⇒ ⊢ (𝜑 → ((voln‘𝑋)‘𝐼) = ∏𝑘 ∈ 𝑋 (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘)))) | ||
| Theorem | vonn0icc 46665* | The n-dimensional Lebesgue measure of a closed interval, when the dimension of the space is nonzero. This is the second statement in Proposition 115G (d) of [Fremlin1] p. 32. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
| ⊢ (𝜑 → 𝑋 ∈ Fin) & ⊢ (𝜑 → 𝑋 ≠ ∅) & ⊢ (𝜑 → 𝐴:𝑋⟶ℝ) & ⊢ (𝜑 → 𝐵:𝑋⟶ℝ) & ⊢ 𝐼 = X𝑘 ∈ 𝑋 ((𝐴‘𝑘)[,](𝐵‘𝑘)) ⇒ ⊢ (𝜑 → ((voln‘𝑋)‘𝐼) = ∏𝑘 ∈ 𝑋 (vol‘((𝐴‘𝑘)[,](𝐵‘𝑘)))) | ||
| Theorem | ctvonmbl 46666 | Any n-dimensional countable set is Lebesgue measurable. This is the second statement in Proposition 115G (e) of [Fremlin1] p. 32. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
| ⊢ (𝜑 → 𝑋 ∈ Fin) & ⊢ (𝜑 → 𝐴 ⊆ (ℝ ↑m 𝑋)) & ⊢ (𝜑 → 𝐴 ≼ ω) ⇒ ⊢ (𝜑 → 𝐴 ∈ dom (voln‘𝑋)) | ||
| Theorem | vonn0ioo2 46667* | The n-dimensional Lebesgue measure of an open interval when the dimension of the space is nonzero. This is the first statement in Proposition 115G (d) of [Fremlin1] p. 32. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
| ⊢ Ⅎ𝑘𝜑 & ⊢ (𝜑 → 𝑋 ∈ Fin) & ⊢ (𝜑 → 𝑋 ≠ ∅) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → 𝐴 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → 𝐵 ∈ ℝ) & ⊢ 𝐼 = X𝑘 ∈ 𝑋 (𝐴(,)𝐵) ⇒ ⊢ (𝜑 → ((voln‘𝑋)‘𝐼) = ∏𝑘 ∈ 𝑋 (vol‘(𝐴(,)𝐵))) | ||
| Theorem | vonsn 46668 | The n-dimensional Lebesgue measure of a singleton is zero. This is the first statement in Proposition 115G (e) of [Fremlin1] p. 32. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
| ⊢ (𝜑 → 𝑋 ∈ Fin) & ⊢ (𝜑 → 𝐴 ∈ (ℝ ↑m 𝑋)) ⇒ ⊢ (𝜑 → ((voln‘𝑋)‘{𝐴}) = 0) | ||
| Theorem | vonn0icc2 46669* | The n-dimensional Lebesgue measure of a closed interval, when the dimension of the space is nonzero. This is the second statement in Proposition 115G (d) of [Fremlin1] p. 32. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
| ⊢ Ⅎ𝑘𝜑 & ⊢ (𝜑 → 𝑋 ∈ Fin) & ⊢ (𝜑 → 𝑋 ≠ ∅) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → 𝐴 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → 𝐵 ∈ ℝ) & ⊢ 𝐼 = X𝑘 ∈ 𝑋 (𝐴[,]𝐵) ⇒ ⊢ (𝜑 → ((voln‘𝑋)‘𝐼) = ∏𝑘 ∈ 𝑋 (vol‘(𝐴[,]𝐵))) | ||
| Theorem | vonct 46670 | The n-dimensional Lebesgue measure of any countable set is zero. This is the second statement in Proposition 115G (e) of [Fremlin1] p. 32. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
| ⊢ (𝜑 → 𝑋 ∈ Fin) & ⊢ (𝜑 → 𝐴 ⊆ (ℝ ↑m 𝑋)) & ⊢ (𝜑 → 𝐴 ≼ ω) ⇒ ⊢ (𝜑 → ((voln‘𝑋)‘𝐴) = 0) | ||
| Theorem | vitali2 46671 | There are non-measurable sets (the Axiom of Choice is used, in the invoked weth 10507). (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ dom vol ⊊ 𝒫 ℝ | ||
Proofs for most of the theorems in section 121 of [Fremlin1]. Real-valued functions are considered, and measurability is defined with respect to an arbitrary sigma-algebra. When the sigma-algebra on the domain is the Lebesgue measure on the reals, then all real-valued measurable functions in the sense of df-mbf 25570 are also sigma-measurable, but the definition in this section considers as measurable functions, some that are not measurable in the sense of df-mbf 25570 (see mbfpsssmf 46760 and smfmbfcex 46737). | ||
| Syntax | csmblfn 46672 | Extend class notation with the class of real-valued measurable functions w.r.t. sigma-algebras. |
| class SMblFn | ||
| Definition | df-smblfn 46673* | Define a real-valued measurable function w.r.t. a given sigma-algebra. See Definition 121C of [Fremlin1] p. 36 and Definition 135E (b) of [Fremlin1] p. 80 . (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ SMblFn = (𝑠 ∈ SAlg ↦ {𝑓 ∈ (ℝ ↑pm ∪ 𝑠) ∣ ∀𝑎 ∈ ℝ (◡𝑓 “ (-∞(,)𝑎)) ∈ (𝑠 ↾t dom 𝑓)}) | ||
| Theorem | pimltmnf2f 46674 | Given a real-valued function, the preimage of an open interval, unbounded below, with upper bound -∞, is the empty set. (Contributed by Glauco Siliprandi, 15-Dec-2024.) |
| ⊢ Ⅎ𝑥𝐹 & ⊢ Ⅎ𝑥𝐴 & ⊢ (𝜑 → 𝐹:𝐴⟶ℝ) ⇒ ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < -∞} = ∅) | ||
| Theorem | pimltmnf2 46675* | Given a real-valued function, the preimage of an open interval, unbounded below, with upper bound -∞, is the empty set. (Contributed by Glauco Siliprandi, 26-Jun-2021.) (Revised by Glauco Siliprandi, 15-Dec-2024.) |
| ⊢ Ⅎ𝑥𝐹 & ⊢ (𝜑 → 𝐹:𝐴⟶ℝ) ⇒ ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < -∞} = ∅) | ||
| Theorem | preimagelt 46676* | The preimage of a right-open, unbounded below interval, is the complement of a left-closed unbounded above interval. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ*) & ⊢ (𝜑 → 𝐶 ∈ ℝ*) ⇒ ⊢ (𝜑 → (𝐴 ∖ {𝑥 ∈ 𝐴 ∣ 𝐶 ≤ 𝐵}) = {𝑥 ∈ 𝐴 ∣ 𝐵 < 𝐶}) | ||
| Theorem | preimalegt 46677* | The preimage of a left-open, unbounded above interval, is the complement of a right-closed unbounded below interval. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ*) & ⊢ (𝜑 → 𝐶 ∈ ℝ*) ⇒ ⊢ (𝜑 → (𝐴 ∖ {𝑥 ∈ 𝐴 ∣ 𝐵 ≤ 𝐶}) = {𝑥 ∈ 𝐴 ∣ 𝐶 < 𝐵}) | ||
| Theorem | pimconstlt0 46678* | Given a constant function, its preimage with respect to an unbounded below, open interval, with upper bound less than or equal to the constant, is the empty set. Second part of Proposition 121E (a) of [Fremlin1] p. 37 . (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) & ⊢ (𝜑 → 𝐶 ∈ ℝ*) & ⊢ (𝜑 → 𝐶 ≤ 𝐵) ⇒ ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < 𝐶} = ∅) | ||
| Theorem | pimconstlt1 46679* | Given a constant function, its preimage with respect to an unbounded below, open interval, with upper bound larger than the constant, is the whole domain. First part of Proposition 121E (a) of [Fremlin1] p. 37 . (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) & ⊢ (𝜑 → 𝐵 < 𝐶) ⇒ ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < 𝐶} = 𝐴) | ||
| Theorem | pimltpnff 46680 | Given a real-valued function, the preimage of an open interval, unbounded below, with upper bound +∞, is the whole domain. (Contributed by Glauco Siliprandi, 20-Dec-2024.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑥𝐴 & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) ⇒ ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝐵 < +∞} = 𝐴) | ||
| Theorem | pimltpnf 46681* | Given a real-valued function, the preimage of an open interval, unbounded below, with upper bound +∞, is the whole domain. (Contributed by Glauco Siliprandi, 26-Jun-2021.) (Revised by Glauco Siliprandi, 20-Dec-2024.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) ⇒ ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝐵 < +∞} = 𝐴) | ||
| Theorem | pimgtpnf2f 46682 | Given a real-valued function, the preimage of an open interval, unbounded above, with lower bound +∞, is the empty set. (Contributed by Glauco Siliprandi, 15-Dec-2021.) |
| ⊢ Ⅎ𝑥𝐹 & ⊢ Ⅎ𝑥𝐴 & ⊢ (𝜑 → 𝐹:𝐴⟶ℝ) ⇒ ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ +∞ < (𝐹‘𝑥)} = ∅) | ||
| Theorem | pimgtpnf2 46683* | Given a real-valued function, the preimage of an open interval, unbounded above, with lower bound +∞, is the empty set. (Contributed by Glauco Siliprandi, 26-Jun-2021.) (Revised by Glauco Siliprandi, 15-Dec-2024.) |
| ⊢ Ⅎ𝑥𝐹 & ⊢ (𝜑 → 𝐹:𝐴⟶ℝ) ⇒ ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ +∞ < (𝐹‘𝑥)} = ∅) | ||
| Theorem | salpreimagelt 46684* | If all the preimages of left-closed, unbounded below intervals, belong to a sigma-algebra, then all the preimages of right-open, unbounded below intervals, belong to the sigma-algebra. (iv) implies (i) in Proposition 121B of [Fremlin1] p. 36. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑎𝜑 & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ 𝐴 = ∪ 𝑆 & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ*) & ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → {𝑥 ∈ 𝐴 ∣ 𝑎 ≤ 𝐵} ∈ 𝑆) & ⊢ (𝜑 → 𝐶 ∈ ℝ) ⇒ ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝐵 < 𝐶} ∈ 𝑆) | ||
| Theorem | pimrecltpos 46685 | The preimage of an unbounded below, open interval, with positive upper bound, for the reciprocal function. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ≠ 0) & ⊢ (𝜑 → 𝐶 ∈ ℝ+) ⇒ ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ (1 / 𝐵) < 𝐶} = ({𝑥 ∈ 𝐴 ∣ (1 / 𝐶) < 𝐵} ∪ {𝑥 ∈ 𝐴 ∣ 𝐵 < 0})) | ||
| Theorem | salpreimalegt 46686* | If all the preimages of right-closed, unbounded below intervals, belong to a sigma-algebra, then all the preimages of left-open, unbounded above intervals, belong to the sigma-algebra. (ii) implies (iii) in Proposition 121B of [Fremlin1] p. 35. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑎𝜑 & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ 𝐴 = ∪ 𝑆 & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ*) & ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → {𝑥 ∈ 𝐴 ∣ 𝐵 ≤ 𝑎} ∈ 𝑆) & ⊢ (𝜑 → 𝐶 ∈ ℝ) ⇒ ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝐶 < 𝐵} ∈ 𝑆) | ||
| Theorem | pimiooltgt 46687* | The preimage of an open interval is the intersection of the preimage of an unbounded below open interval and an unbounded above open interval. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → 𝐿 ∈ ℝ*) & ⊢ (𝜑 → 𝑅 ∈ ℝ*) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ*) ⇒ ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ (𝐿(,)𝑅)} = ({𝑥 ∈ 𝐴 ∣ 𝐵 < 𝑅} ∩ {𝑥 ∈ 𝐴 ∣ 𝐿 < 𝐵})) | ||
| Theorem | preimaicomnf 46688* | Preimage of an open interval, unbounded below. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ (𝜑 → 𝐹:𝐴⟶ℝ*) & ⊢ (𝜑 → 𝐵 ∈ ℝ*) ⇒ ⊢ (𝜑 → (◡𝐹 “ (-∞[,)𝐵)) = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < 𝐵}) | ||
| Theorem | pimltpnf2f 46689 | Given a real-valued function, the preimage of an open interval, unbounded below, with upper bound +∞, is the whole domain. (Contributed by Glauco Siliprandi, 15-Dec-2024.) |
| ⊢ Ⅎ𝑥𝐹 & ⊢ Ⅎ𝑥𝐴 & ⊢ (𝜑 → 𝐹:𝐴⟶ℝ) ⇒ ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < +∞} = 𝐴) | ||
| Theorem | pimltpnf2 46690* | Given a real-valued function, the preimage of an open interval, unbounded below, with upper bound +∞, is the whole domain. (Contributed by Glauco Siliprandi, 26-Jun-2021.) (Revised by Glauco Siliprandi, 15-Dec-2024.) |
| ⊢ Ⅎ𝑥𝐹 & ⊢ (𝜑 → 𝐹:𝐴⟶ℝ) ⇒ ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < +∞} = 𝐴) | ||
| Theorem | pimgtmnf2 46691* | Given a real-valued function, the preimage of an open interval, unbounded above, with lower bound -∞, is the whole domain. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ Ⅎ𝑥𝐹 & ⊢ (𝜑 → 𝐹:𝐴⟶ℝ) ⇒ ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ -∞ < (𝐹‘𝑥)} = 𝐴) | ||
| Theorem | pimdecfgtioc 46692* | Given a nonincreasing function, the preimage of an unbounded above, open interval, when the supremum of the preimage belongs to the preimage. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ (𝜑 → 𝐹:𝐴⟶ℝ*) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝐹‘𝑦) ≤ (𝐹‘𝑥))) & ⊢ (𝜑 → 𝑅 ∈ ℝ*) & ⊢ 𝑌 = {𝑥 ∈ 𝐴 ∣ 𝑅 < (𝐹‘𝑥)} & ⊢ 𝑆 = sup(𝑌, ℝ*, < ) & ⊢ (𝜑 → 𝑆 ∈ 𝑌) & ⊢ 𝐼 = (-∞(,]𝑆) ⇒ ⊢ (𝜑 → 𝑌 = (𝐼 ∩ 𝐴)) | ||
| Theorem | pimincfltioc 46693* | Given a nondecreasing function, the preimage of an unbounded below, open interval, when the supremum of the preimage belongs to the preimage. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑦𝜑 & ⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ (𝜑 → 𝐹:𝐴⟶ℝ*) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝐹‘𝑥) ≤ (𝐹‘𝑦))) & ⊢ (𝜑 → 𝑅 ∈ ℝ*) & ⊢ 𝑌 = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < 𝑅} & ⊢ 𝑆 = sup(𝑌, ℝ*, < ) & ⊢ (𝜑 → 𝑆 ∈ 𝑌) & ⊢ 𝐼 = (-∞(,]𝑆) ⇒ ⊢ (𝜑 → 𝑌 = (𝐼 ∩ 𝐴)) | ||
| Theorem | pimdecfgtioo 46694* | Given a nondecreasing function, the preimage of an unbounded below, open interval, when the supremum of the preimage does not belong to the preimage. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑦𝜑 & ⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ (𝜑 → 𝐹:𝐴⟶ℝ*) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝐹‘𝑦) ≤ (𝐹‘𝑥))) & ⊢ (𝜑 → 𝑅 ∈ ℝ*) & ⊢ 𝑌 = {𝑥 ∈ 𝐴 ∣ 𝑅 < (𝐹‘𝑥)} & ⊢ 𝑆 = sup(𝑌, ℝ*, < ) & ⊢ (𝜑 → ¬ 𝑆 ∈ 𝑌) & ⊢ 𝐼 = (-∞(,)𝑆) ⇒ ⊢ (𝜑 → 𝑌 = (𝐼 ∩ 𝐴)) | ||
| Theorem | pimincfltioo 46695* | Given a nondecreasing function, the preimage of an unbounded below, open interval, when the supremum of the preimage does not belong to the preimage. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑦𝜑 & ⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ (𝜑 → 𝐹:𝐴⟶ℝ*) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝐹‘𝑥) ≤ (𝐹‘𝑦))) & ⊢ (𝜑 → 𝑅 ∈ ℝ*) & ⊢ 𝑌 = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < 𝑅} & ⊢ 𝑆 = sup(𝑌, ℝ*, < ) & ⊢ (𝜑 → ¬ 𝑆 ∈ 𝑌) & ⊢ 𝐼 = (-∞(,)𝑆) ⇒ ⊢ (𝜑 → 𝑌 = (𝐼 ∩ 𝐴)) | ||
| Theorem | preimaioomnf 46696* | Preimage of an open interval, unbounded below. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ (𝜑 → 𝐹:𝐴⟶ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ*) ⇒ ⊢ (𝜑 → (◡𝐹 “ (-∞(,)𝐵)) = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < 𝐵}) | ||
| Theorem | preimageiingt 46697* | A preimage of a left-closed, unbounded above interval, expressed as an indexed intersection of preimages of open, unbounded above intervals. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ*) & ⊢ (𝜑 → 𝐶 ∈ ℝ) ⇒ ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝐶 ≤ 𝐵} = ∩ 𝑛 ∈ ℕ {𝑥 ∈ 𝐴 ∣ (𝐶 − (1 / 𝑛)) < 𝐵}) | ||
| Theorem | preimaleiinlt 46698* | A preimage of a left-open, right-closed, unbounded below interval, expressed as an indexed intersection of preimages of open, unbound below intervals. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ*) & ⊢ (𝜑 → 𝐶 ∈ ℝ) ⇒ ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝐵 ≤ 𝐶} = ∩ 𝑛 ∈ ℕ {𝑥 ∈ 𝐴 ∣ 𝐵 < (𝐶 + (1 / 𝑛))}) | ||
| Theorem | pimgtmnff 46699 | Given a real-valued function, the preimage of an open interval, unbounded above, with lower bound -∞, is the whole domain. (Contributed by Glauco Siliprandi, 20-Dec-2024.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑥𝐴 & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) ⇒ ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ -∞ < 𝐵} = 𝐴) | ||
| Theorem | pimgtmnf 46700* | Given a real-valued function, the preimage of an open interval, unbounded above, with lower bound -∞, is the whole domain. (Contributed by Glauco Siliprandi, 26-Jun-2021.) (Revised by Glauco Siliprandi, 20-Dec-2024.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) ⇒ ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ -∞ < 𝐵} = 𝐴) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |