Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > fppr | Structured version Visualization version GIF version |
Description: The set of Fermat pseudoprimes to the base 𝑁. (Contributed by AV, 29-May-2023.) |
Ref | Expression |
---|---|
fppr | ⊢ (𝑁 ∈ ℕ → ( FPPr ‘𝑁) = {𝑥 ∈ (ℤ≥‘4) ∣ (𝑥 ∉ ℙ ∧ 𝑥 ∥ ((𝑁↑(𝑥 − 1)) − 1))}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1 7282 | . . . . . 6 ⊢ (𝑛 = 𝑁 → (𝑛↑(𝑥 − 1)) = (𝑁↑(𝑥 − 1))) | |
2 | 1 | oveq1d 7290 | . . . . 5 ⊢ (𝑛 = 𝑁 → ((𝑛↑(𝑥 − 1)) − 1) = ((𝑁↑(𝑥 − 1)) − 1)) |
3 | 2 | breq2d 5086 | . . . 4 ⊢ (𝑛 = 𝑁 → (𝑥 ∥ ((𝑛↑(𝑥 − 1)) − 1) ↔ 𝑥 ∥ ((𝑁↑(𝑥 − 1)) − 1))) |
4 | 3 | anbi2d 629 | . . 3 ⊢ (𝑛 = 𝑁 → ((𝑥 ∉ ℙ ∧ 𝑥 ∥ ((𝑛↑(𝑥 − 1)) − 1)) ↔ (𝑥 ∉ ℙ ∧ 𝑥 ∥ ((𝑁↑(𝑥 − 1)) − 1)))) |
5 | 4 | rabbidv 3414 | . 2 ⊢ (𝑛 = 𝑁 → {𝑥 ∈ (ℤ≥‘4) ∣ (𝑥 ∉ ℙ ∧ 𝑥 ∥ ((𝑛↑(𝑥 − 1)) − 1))} = {𝑥 ∈ (ℤ≥‘4) ∣ (𝑥 ∉ ℙ ∧ 𝑥 ∥ ((𝑁↑(𝑥 − 1)) − 1))}) |
6 | df-fppr 45177 | . 2 ⊢ FPPr = (𝑛 ∈ ℕ ↦ {𝑥 ∈ (ℤ≥‘4) ∣ (𝑥 ∉ ℙ ∧ 𝑥 ∥ ((𝑛↑(𝑥 − 1)) − 1))}) | |
7 | fvex 6787 | . . 3 ⊢ (ℤ≥‘4) ∈ V | |
8 | 7 | rabex 5256 | . 2 ⊢ {𝑥 ∈ (ℤ≥‘4) ∣ (𝑥 ∉ ℙ ∧ 𝑥 ∥ ((𝑁↑(𝑥 − 1)) − 1))} ∈ V |
9 | 5, 6, 8 | fvmpt 6875 | 1 ⊢ (𝑁 ∈ ℕ → ( FPPr ‘𝑁) = {𝑥 ∈ (ℤ≥‘4) ∣ (𝑥 ∉ ℙ ∧ 𝑥 ∥ ((𝑁↑(𝑥 − 1)) − 1))}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∉ wnel 3049 {crab 3068 class class class wbr 5074 ‘cfv 6433 (class class class)co 7275 1c1 10872 − cmin 11205 ℕcn 11973 4c4 12030 ℤ≥cuz 12582 ↑cexp 13782 ∥ cdvds 15963 ℙcprime 16376 FPPr cfppr 45176 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-iota 6391 df-fun 6435 df-fv 6441 df-ov 7278 df-fppr 45177 |
This theorem is referenced by: fpprmod 45179 |
Copyright terms: Public domain | W3C validator |