Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fppr Structured version   Visualization version   GIF version

Theorem fppr 47727
Description: The set of Fermat pseudoprimes to the base 𝑁. (Contributed by AV, 29-May-2023.)
Assertion
Ref Expression
fppr (𝑁 ∈ ℕ → ( FPPr ‘𝑁) = {𝑥 ∈ (ℤ‘4) ∣ (𝑥 ∉ ℙ ∧ 𝑥 ∥ ((𝑁↑(𝑥 − 1)) − 1))})
Distinct variable group:   𝑥,𝑁

Proof of Theorem fppr
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 oveq1 7394 . . . . . 6 (𝑛 = 𝑁 → (𝑛↑(𝑥 − 1)) = (𝑁↑(𝑥 − 1)))
21oveq1d 7402 . . . . 5 (𝑛 = 𝑁 → ((𝑛↑(𝑥 − 1)) − 1) = ((𝑁↑(𝑥 − 1)) − 1))
32breq2d 5119 . . . 4 (𝑛 = 𝑁 → (𝑥 ∥ ((𝑛↑(𝑥 − 1)) − 1) ↔ 𝑥 ∥ ((𝑁↑(𝑥 − 1)) − 1)))
43anbi2d 630 . . 3 (𝑛 = 𝑁 → ((𝑥 ∉ ℙ ∧ 𝑥 ∥ ((𝑛↑(𝑥 − 1)) − 1)) ↔ (𝑥 ∉ ℙ ∧ 𝑥 ∥ ((𝑁↑(𝑥 − 1)) − 1))))
54rabbidv 3413 . 2 (𝑛 = 𝑁 → {𝑥 ∈ (ℤ‘4) ∣ (𝑥 ∉ ℙ ∧ 𝑥 ∥ ((𝑛↑(𝑥 − 1)) − 1))} = {𝑥 ∈ (ℤ‘4) ∣ (𝑥 ∉ ℙ ∧ 𝑥 ∥ ((𝑁↑(𝑥 − 1)) − 1))})
6 df-fppr 47726 . 2 FPPr = (𝑛 ∈ ℕ ↦ {𝑥 ∈ (ℤ‘4) ∣ (𝑥 ∉ ℙ ∧ 𝑥 ∥ ((𝑛↑(𝑥 − 1)) − 1))})
7 fvex 6871 . . 3 (ℤ‘4) ∈ V
87rabex 5294 . 2 {𝑥 ∈ (ℤ‘4) ∣ (𝑥 ∉ ℙ ∧ 𝑥 ∥ ((𝑁↑(𝑥 − 1)) − 1))} ∈ V
95, 6, 8fvmpt 6968 1 (𝑁 ∈ ℕ → ( FPPr ‘𝑁) = {𝑥 ∈ (ℤ‘4) ∣ (𝑥 ∉ ℙ ∧ 𝑥 ∥ ((𝑁↑(𝑥 − 1)) − 1))})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wnel 3029  {crab 3405   class class class wbr 5107  cfv 6511  (class class class)co 7387  1c1 11069  cmin 11405  cn 12186  4c4 12243  cuz 12793  cexp 14026  cdvds 16222  cprime 16641   FPPr cfppr 47725
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-iota 6464  df-fun 6513  df-fv 6519  df-ov 7390  df-fppr 47726
This theorem is referenced by:  fpprmod  47728
  Copyright terms: Public domain W3C validator