Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fppr Structured version   Visualization version   GIF version

Theorem fppr 47600
Description: The set of Fermat pseudoprimes to the base 𝑁. (Contributed by AV, 29-May-2023.)
Assertion
Ref Expression
fppr (𝑁 ∈ ℕ → ( FPPr ‘𝑁) = {𝑥 ∈ (ℤ‘4) ∣ (𝑥 ∉ ℙ ∧ 𝑥 ∥ ((𝑁↑(𝑥 − 1)) − 1))})
Distinct variable group:   𝑥,𝑁

Proof of Theorem fppr
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 oveq1 7455 . . . . . 6 (𝑛 = 𝑁 → (𝑛↑(𝑥 − 1)) = (𝑁↑(𝑥 − 1)))
21oveq1d 7463 . . . . 5 (𝑛 = 𝑁 → ((𝑛↑(𝑥 − 1)) − 1) = ((𝑁↑(𝑥 − 1)) − 1))
32breq2d 5178 . . . 4 (𝑛 = 𝑁 → (𝑥 ∥ ((𝑛↑(𝑥 − 1)) − 1) ↔ 𝑥 ∥ ((𝑁↑(𝑥 − 1)) − 1)))
43anbi2d 629 . . 3 (𝑛 = 𝑁 → ((𝑥 ∉ ℙ ∧ 𝑥 ∥ ((𝑛↑(𝑥 − 1)) − 1)) ↔ (𝑥 ∉ ℙ ∧ 𝑥 ∥ ((𝑁↑(𝑥 − 1)) − 1))))
54rabbidv 3451 . 2 (𝑛 = 𝑁 → {𝑥 ∈ (ℤ‘4) ∣ (𝑥 ∉ ℙ ∧ 𝑥 ∥ ((𝑛↑(𝑥 − 1)) − 1))} = {𝑥 ∈ (ℤ‘4) ∣ (𝑥 ∉ ℙ ∧ 𝑥 ∥ ((𝑁↑(𝑥 − 1)) − 1))})
6 df-fppr 47599 . 2 FPPr = (𝑛 ∈ ℕ ↦ {𝑥 ∈ (ℤ‘4) ∣ (𝑥 ∉ ℙ ∧ 𝑥 ∥ ((𝑛↑(𝑥 − 1)) − 1))})
7 fvex 6933 . . 3 (ℤ‘4) ∈ V
87rabex 5357 . 2 {𝑥 ∈ (ℤ‘4) ∣ (𝑥 ∉ ℙ ∧ 𝑥 ∥ ((𝑁↑(𝑥 − 1)) − 1))} ∈ V
95, 6, 8fvmpt 7029 1 (𝑁 ∈ ℕ → ( FPPr ‘𝑁) = {𝑥 ∈ (ℤ‘4) ∣ (𝑥 ∉ ℙ ∧ 𝑥 ∥ ((𝑁↑(𝑥 − 1)) − 1))})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  wnel 3052  {crab 3443   class class class wbr 5166  cfv 6573  (class class class)co 7448  1c1 11185  cmin 11520  cn 12293  4c4 12350  cuz 12903  cexp 14112  cdvds 16302  cprime 16718   FPPr cfppr 47598
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-iota 6525  df-fun 6575  df-fv 6581  df-ov 7451  df-fppr 47599
This theorem is referenced by:  fpprmod  47601
  Copyright terms: Public domain W3C validator