Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fppr Structured version   Visualization version   GIF version

Theorem fppr 45992
Description: The set of Fermat pseudoprimes to the base 𝑁. (Contributed by AV, 29-May-2023.)
Assertion
Ref Expression
fppr (𝑁 ∈ ℕ → ( FPPr ‘𝑁) = {𝑥 ∈ (ℤ‘4) ∣ (𝑥 ∉ ℙ ∧ 𝑥 ∥ ((𝑁↑(𝑥 − 1)) − 1))})
Distinct variable group:   𝑥,𝑁

Proof of Theorem fppr
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 oveq1 7369 . . . . . 6 (𝑛 = 𝑁 → (𝑛↑(𝑥 − 1)) = (𝑁↑(𝑥 − 1)))
21oveq1d 7377 . . . . 5 (𝑛 = 𝑁 → ((𝑛↑(𝑥 − 1)) − 1) = ((𝑁↑(𝑥 − 1)) − 1))
32breq2d 5122 . . . 4 (𝑛 = 𝑁 → (𝑥 ∥ ((𝑛↑(𝑥 − 1)) − 1) ↔ 𝑥 ∥ ((𝑁↑(𝑥 − 1)) − 1)))
43anbi2d 630 . . 3 (𝑛 = 𝑁 → ((𝑥 ∉ ℙ ∧ 𝑥 ∥ ((𝑛↑(𝑥 − 1)) − 1)) ↔ (𝑥 ∉ ℙ ∧ 𝑥 ∥ ((𝑁↑(𝑥 − 1)) − 1))))
54rabbidv 3418 . 2 (𝑛 = 𝑁 → {𝑥 ∈ (ℤ‘4) ∣ (𝑥 ∉ ℙ ∧ 𝑥 ∥ ((𝑛↑(𝑥 − 1)) − 1))} = {𝑥 ∈ (ℤ‘4) ∣ (𝑥 ∉ ℙ ∧ 𝑥 ∥ ((𝑁↑(𝑥 − 1)) − 1))})
6 df-fppr 45991 . 2 FPPr = (𝑛 ∈ ℕ ↦ {𝑥 ∈ (ℤ‘4) ∣ (𝑥 ∉ ℙ ∧ 𝑥 ∥ ((𝑛↑(𝑥 − 1)) − 1))})
7 fvex 6860 . . 3 (ℤ‘4) ∈ V
87rabex 5294 . 2 {𝑥 ∈ (ℤ‘4) ∣ (𝑥 ∉ ℙ ∧ 𝑥 ∥ ((𝑁↑(𝑥 − 1)) − 1))} ∈ V
95, 6, 8fvmpt 6953 1 (𝑁 ∈ ℕ → ( FPPr ‘𝑁) = {𝑥 ∈ (ℤ‘4) ∣ (𝑥 ∉ ℙ ∧ 𝑥 ∥ ((𝑁↑(𝑥 − 1)) − 1))})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1542  wcel 2107  wnel 3050  {crab 3410   class class class wbr 5110  cfv 6501  (class class class)co 7362  1c1 11059  cmin 11392  cn 12160  4c4 12217  cuz 12770  cexp 13974  cdvds 16143  cprime 16554   FPPr cfppr 45990
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-sep 5261  ax-nul 5268  ax-pr 5389
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-ral 3066  df-rex 3075  df-rab 3411  df-v 3450  df-dif 3918  df-un 3920  df-in 3922  df-ss 3932  df-nul 4288  df-if 4492  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-br 5111  df-opab 5173  df-mpt 5194  df-id 5536  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-iota 6453  df-fun 6503  df-fv 6509  df-ov 7365  df-fppr 45991
This theorem is referenced by:  fpprmod  45993
  Copyright terms: Public domain W3C validator