Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fpprbasnn Structured version   Visualization version   GIF version

Theorem fpprbasnn 46383
Description: The base of a Fermat pseudoprime is a positive integer. (Contributed by AV, 30-May-2023.)
Assertion
Ref Expression
fpprbasnn (𝑋 ∈ ( FPPr ‘𝑁) → 𝑁 ∈ ℕ)

Proof of Theorem fpprbasnn
Dummy variables 𝑥 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ax-1 6 . 2 (𝑁 ∈ ℕ → (𝑋 ∈ ( FPPr ‘𝑁) → 𝑁 ∈ ℕ))
2 df-fppr 46379 . . . 4 FPPr = (𝑛 ∈ ℕ ↦ {𝑥 ∈ (ℤ‘4) ∣ (𝑥 ∉ ℙ ∧ 𝑥 ∥ ((𝑛↑(𝑥 − 1)) − 1))})
32fvmptndm 7025 . . 3 𝑁 ∈ ℕ → ( FPPr ‘𝑁) = ∅)
4 eleq2 2822 . . . 4 (( FPPr ‘𝑁) = ∅ → (𝑋 ∈ ( FPPr ‘𝑁) ↔ 𝑋 ∈ ∅))
5 noel 4329 . . . . 5 ¬ 𝑋 ∈ ∅
65pm2.21i 119 . . . 4 (𝑋 ∈ ∅ → 𝑁 ∈ ℕ)
74, 6syl6bi 252 . . 3 (( FPPr ‘𝑁) = ∅ → (𝑋 ∈ ( FPPr ‘𝑁) → 𝑁 ∈ ℕ))
83, 7syl 17 . 2 𝑁 ∈ ℕ → (𝑋 ∈ ( FPPr ‘𝑁) → 𝑁 ∈ ℕ))
91, 8pm2.61i 182 1 (𝑋 ∈ ( FPPr ‘𝑁) → 𝑁 ∈ ℕ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1541  wcel 2106  wnel 3046  {crab 3432  c0 4321   class class class wbr 5147  cfv 6540  (class class class)co 7405  1c1 11107  cmin 11440  cn 12208  4c4 12265  cuz 12818  cexp 14023  cdvds 16193  cprime 16604   FPPr cfppr 46378
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-mpt 5231  df-dm 5685  df-iota 6492  df-fv 6548  df-fppr 46379
This theorem is referenced by:  fpprnn  46384  fpprwppr  46393  fpprwpprb  46394
  Copyright terms: Public domain W3C validator