Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > fpprbasnn | Structured version Visualization version GIF version |
Description: The base of a Fermat pseudoprime is a positive integer. (Contributed by AV, 30-May-2023.) |
Ref | Expression |
---|---|
fpprbasnn | ⊢ (𝑋 ∈ ( FPPr ‘𝑁) → 𝑁 ∈ ℕ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-1 6 | . 2 ⊢ (𝑁 ∈ ℕ → (𝑋 ∈ ( FPPr ‘𝑁) → 𝑁 ∈ ℕ)) | |
2 | df-fppr 45133 | . . . 4 ⊢ FPPr = (𝑛 ∈ ℕ ↦ {𝑥 ∈ (ℤ≥‘4) ∣ (𝑥 ∉ ℙ ∧ 𝑥 ∥ ((𝑛↑(𝑥 − 1)) − 1))}) | |
3 | 2 | fvmptndm 6898 | . . 3 ⊢ (¬ 𝑁 ∈ ℕ → ( FPPr ‘𝑁) = ∅) |
4 | eleq2 2827 | . . . 4 ⊢ (( FPPr ‘𝑁) = ∅ → (𝑋 ∈ ( FPPr ‘𝑁) ↔ 𝑋 ∈ ∅)) | |
5 | noel 4265 | . . . . 5 ⊢ ¬ 𝑋 ∈ ∅ | |
6 | 5 | pm2.21i 119 | . . . 4 ⊢ (𝑋 ∈ ∅ → 𝑁 ∈ ℕ) |
7 | 4, 6 | syl6bi 252 | . . 3 ⊢ (( FPPr ‘𝑁) = ∅ → (𝑋 ∈ ( FPPr ‘𝑁) → 𝑁 ∈ ℕ)) |
8 | 3, 7 | syl 17 | . 2 ⊢ (¬ 𝑁 ∈ ℕ → (𝑋 ∈ ( FPPr ‘𝑁) → 𝑁 ∈ ℕ)) |
9 | 1, 8 | pm2.61i 182 | 1 ⊢ (𝑋 ∈ ( FPPr ‘𝑁) → 𝑁 ∈ ℕ) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∉ wnel 3049 {crab 3068 ∅c0 4257 class class class wbr 5074 ‘cfv 6427 (class class class)co 7268 1c1 10860 − cmin 11193 ℕcn 11961 4c4 12018 ℤ≥cuz 12570 ↑cexp 13770 ∥ cdvds 15951 ℙcprime 16364 FPPr cfppr 45132 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5222 ax-nul 5229 ax-pr 5351 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3432 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4258 df-if 4461 df-sn 4563 df-pr 4565 df-op 4569 df-uni 4841 df-br 5075 df-opab 5137 df-mpt 5158 df-dm 5595 df-iota 6385 df-fv 6435 df-fppr 45133 |
This theorem is referenced by: fpprnn 45138 fpprwppr 45147 fpprwpprb 45148 |
Copyright terms: Public domain | W3C validator |