Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > fpprbasnn | Structured version Visualization version GIF version |
Description: The base of a Fermat pseudoprime is a positive integer. (Contributed by AV, 30-May-2023.) |
Ref | Expression |
---|---|
fpprbasnn | ⊢ (𝑋 ∈ ( FPPr ‘𝑁) → 𝑁 ∈ ℕ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-1 6 | . 2 ⊢ (𝑁 ∈ ℕ → (𝑋 ∈ ( FPPr ‘𝑁) → 𝑁 ∈ ℕ)) | |
2 | df-fppr 45065 | . . . 4 ⊢ FPPr = (𝑛 ∈ ℕ ↦ {𝑥 ∈ (ℤ≥‘4) ∣ (𝑥 ∉ ℙ ∧ 𝑥 ∥ ((𝑛↑(𝑥 − 1)) − 1))}) | |
3 | 2 | fvmptndm 6887 | . . 3 ⊢ (¬ 𝑁 ∈ ℕ → ( FPPr ‘𝑁) = ∅) |
4 | eleq2 2827 | . . . 4 ⊢ (( FPPr ‘𝑁) = ∅ → (𝑋 ∈ ( FPPr ‘𝑁) ↔ 𝑋 ∈ ∅)) | |
5 | noel 4261 | . . . . 5 ⊢ ¬ 𝑋 ∈ ∅ | |
6 | 5 | pm2.21i 119 | . . . 4 ⊢ (𝑋 ∈ ∅ → 𝑁 ∈ ℕ) |
7 | 4, 6 | syl6bi 252 | . . 3 ⊢ (( FPPr ‘𝑁) = ∅ → (𝑋 ∈ ( FPPr ‘𝑁) → 𝑁 ∈ ℕ)) |
8 | 3, 7 | syl 17 | . 2 ⊢ (¬ 𝑁 ∈ ℕ → (𝑋 ∈ ( FPPr ‘𝑁) → 𝑁 ∈ ℕ)) |
9 | 1, 8 | pm2.61i 182 | 1 ⊢ (𝑋 ∈ ( FPPr ‘𝑁) → 𝑁 ∈ ℕ) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∉ wnel 3048 {crab 3067 ∅c0 4253 class class class wbr 5070 ‘cfv 6418 (class class class)co 7255 1c1 10803 − cmin 11135 ℕcn 11903 4c4 11960 ℤ≥cuz 12511 ↑cexp 13710 ∥ cdvds 15891 ℙcprime 16304 FPPr cfppr 45064 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-dm 5590 df-iota 6376 df-fv 6426 df-fppr 45065 |
This theorem is referenced by: fpprnn 45070 fpprwppr 45079 fpprwpprb 45080 |
Copyright terms: Public domain | W3C validator |