Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fpprbasnn Structured version   Visualization version   GIF version

Theorem fpprbasnn 43979
Description: The base of a Fermat pseudoprime is a positive integer. (Contributed by AV, 30-May-2023.)
Assertion
Ref Expression
fpprbasnn (𝑋 ∈ ( FPPr ‘𝑁) → 𝑁 ∈ ℕ)

Proof of Theorem fpprbasnn
Dummy variables 𝑥 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ax-1 6 . 2 (𝑁 ∈ ℕ → (𝑋 ∈ ( FPPr ‘𝑁) → 𝑁 ∈ ℕ))
2 df-fppr 43975 . . . 4 FPPr = (𝑛 ∈ ℕ ↦ {𝑥 ∈ (ℤ‘4) ∣ (𝑥 ∉ ℙ ∧ 𝑥 ∥ ((𝑛↑(𝑥 − 1)) − 1))})
32fvmptndm 6784 . . 3 𝑁 ∈ ℕ → ( FPPr ‘𝑁) = ∅)
4 eleq2 2901 . . . 4 (( FPPr ‘𝑁) = ∅ → (𝑋 ∈ ( FPPr ‘𝑁) ↔ 𝑋 ∈ ∅))
5 noel 4283 . . . . 5 ¬ 𝑋 ∈ ∅
65pm2.21i 119 . . . 4 (𝑋 ∈ ∅ → 𝑁 ∈ ℕ)
74, 6syl6bi 255 . . 3 (( FPPr ‘𝑁) = ∅ → (𝑋 ∈ ( FPPr ‘𝑁) → 𝑁 ∈ ℕ))
83, 7syl 17 . 2 𝑁 ∈ ℕ → (𝑋 ∈ ( FPPr ‘𝑁) → 𝑁 ∈ ℕ))
91, 8pm2.61i 184 1 (𝑋 ∈ ( FPPr ‘𝑁) → 𝑁 ∈ ℕ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398   = wceq 1537  wcel 2114  wnel 3123  {crab 3142  c0 4279   class class class wbr 5052  cfv 6341  (class class class)co 7142  1c1 10524  cmin 10856  cn 11624  4c4 11681  cuz 12230  cexp 13419  cdvds 15592  cprime 15998   FPPr cfppr 43974
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5189  ax-nul 5196  ax-pow 5252  ax-pr 5316
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3488  df-dif 3927  df-un 3929  df-in 3931  df-ss 3940  df-nul 4280  df-if 4454  df-sn 4554  df-pr 4556  df-op 4560  df-uni 4825  df-br 5053  df-opab 5115  df-mpt 5133  df-dm 5551  df-iota 6300  df-fv 6349  df-fppr 43975
This theorem is referenced by:  fpprnn  43980  fpprwppr  43989  fpprwpprb  43990
  Copyright terms: Public domain W3C validator