Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fpprbasnn Structured version   Visualization version   GIF version

Theorem fpprbasnn 47661
Description: The base of a Fermat pseudoprime is a positive integer. (Contributed by AV, 30-May-2023.)
Assertion
Ref Expression
fpprbasnn (𝑋 ∈ ( FPPr ‘𝑁) → 𝑁 ∈ ℕ)

Proof of Theorem fpprbasnn
Dummy variables 𝑥 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ax-1 6 . 2 (𝑁 ∈ ℕ → (𝑋 ∈ ( FPPr ‘𝑁) → 𝑁 ∈ ℕ))
2 df-fppr 47657 . . . 4 FPPr = (𝑛 ∈ ℕ ↦ {𝑥 ∈ (ℤ‘4) ∣ (𝑥 ∉ ℙ ∧ 𝑥 ∥ ((𝑛↑(𝑥 − 1)) − 1))})
32fvmptndm 7013 . . 3 𝑁 ∈ ℕ → ( FPPr ‘𝑁) = ∅)
4 eleq2 2822 . . . 4 (( FPPr ‘𝑁) = ∅ → (𝑋 ∈ ( FPPr ‘𝑁) ↔ 𝑋 ∈ ∅))
5 noel 4311 . . . . 5 ¬ 𝑋 ∈ ∅
65pm2.21i 119 . . . 4 (𝑋 ∈ ∅ → 𝑁 ∈ ℕ)
74, 6biimtrdi 253 . . 3 (( FPPr ‘𝑁) = ∅ → (𝑋 ∈ ( FPPr ‘𝑁) → 𝑁 ∈ ℕ))
83, 7syl 17 . 2 𝑁 ∈ ℕ → (𝑋 ∈ ( FPPr ‘𝑁) → 𝑁 ∈ ℕ))
91, 8pm2.61i 182 1 (𝑋 ∈ ( FPPr ‘𝑁) → 𝑁 ∈ ℕ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1539  wcel 2107  wnel 3035  {crab 3413  c0 4306   class class class wbr 5116  cfv 6527  (class class class)co 7399  1c1 11122  cmin 11458  cn 12232  4c4 12289  cuz 12844  cexp 14068  cdvds 16257  cprime 16675   FPPr cfppr 47656
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5263  ax-nul 5273  ax-pr 5399
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ral 3051  df-rex 3060  df-rab 3414  df-v 3459  df-dif 3927  df-un 3929  df-ss 3941  df-nul 4307  df-if 4499  df-sn 4600  df-pr 4602  df-op 4606  df-uni 4881  df-br 5117  df-opab 5179  df-mpt 5199  df-dm 5661  df-iota 6480  df-fv 6535  df-fppr 47657
This theorem is referenced by:  fpprnn  47662  fpprwppr  47671  fpprwpprb  47672
  Copyright terms: Public domain W3C validator