![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fpprbasnn | Structured version Visualization version GIF version |
Description: The base of a Fermat pseudoprime is a positive integer. (Contributed by AV, 30-May-2023.) |
Ref | Expression |
---|---|
fpprbasnn | ⊢ (𝑋 ∈ ( FPPr ‘𝑁) → 𝑁 ∈ ℕ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-1 6 | . 2 ⊢ (𝑁 ∈ ℕ → (𝑋 ∈ ( FPPr ‘𝑁) → 𝑁 ∈ ℕ)) | |
2 | df-fppr 47650 | . . . 4 ⊢ FPPr = (𝑛 ∈ ℕ ↦ {𝑥 ∈ (ℤ≥‘4) ∣ (𝑥 ∉ ℙ ∧ 𝑥 ∥ ((𝑛↑(𝑥 − 1)) − 1))}) | |
3 | 2 | fvmptndm 7047 | . . 3 ⊢ (¬ 𝑁 ∈ ℕ → ( FPPr ‘𝑁) = ∅) |
4 | eleq2 2828 | . . . 4 ⊢ (( FPPr ‘𝑁) = ∅ → (𝑋 ∈ ( FPPr ‘𝑁) ↔ 𝑋 ∈ ∅)) | |
5 | noel 4344 | . . . . 5 ⊢ ¬ 𝑋 ∈ ∅ | |
6 | 5 | pm2.21i 119 | . . . 4 ⊢ (𝑋 ∈ ∅ → 𝑁 ∈ ℕ) |
7 | 4, 6 | biimtrdi 253 | . . 3 ⊢ (( FPPr ‘𝑁) = ∅ → (𝑋 ∈ ( FPPr ‘𝑁) → 𝑁 ∈ ℕ)) |
8 | 3, 7 | syl 17 | . 2 ⊢ (¬ 𝑁 ∈ ℕ → (𝑋 ∈ ( FPPr ‘𝑁) → 𝑁 ∈ ℕ)) |
9 | 1, 8 | pm2.61i 182 | 1 ⊢ (𝑋 ∈ ( FPPr ‘𝑁) → 𝑁 ∈ ℕ) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ∉ wnel 3044 {crab 3433 ∅c0 4339 class class class wbr 5148 ‘cfv 6563 (class class class)co 7431 1c1 11154 − cmin 11490 ℕcn 12264 4c4 12321 ℤ≥cuz 12876 ↑cexp 14099 ∥ cdvds 16287 ℙcprime 16705 FPPr cfppr 47649 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-dm 5699 df-iota 6516 df-fv 6571 df-fppr 47650 |
This theorem is referenced by: fpprnn 47655 fpprwppr 47664 fpprwpprb 47665 |
Copyright terms: Public domain | W3C validator |