Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fpprbasnn Structured version   Visualization version   GIF version

Theorem fpprbasnn 45069
Description: The base of a Fermat pseudoprime is a positive integer. (Contributed by AV, 30-May-2023.)
Assertion
Ref Expression
fpprbasnn (𝑋 ∈ ( FPPr ‘𝑁) → 𝑁 ∈ ℕ)

Proof of Theorem fpprbasnn
Dummy variables 𝑥 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ax-1 6 . 2 (𝑁 ∈ ℕ → (𝑋 ∈ ( FPPr ‘𝑁) → 𝑁 ∈ ℕ))
2 df-fppr 45065 . . . 4 FPPr = (𝑛 ∈ ℕ ↦ {𝑥 ∈ (ℤ‘4) ∣ (𝑥 ∉ ℙ ∧ 𝑥 ∥ ((𝑛↑(𝑥 − 1)) − 1))})
32fvmptndm 6887 . . 3 𝑁 ∈ ℕ → ( FPPr ‘𝑁) = ∅)
4 eleq2 2827 . . . 4 (( FPPr ‘𝑁) = ∅ → (𝑋 ∈ ( FPPr ‘𝑁) ↔ 𝑋 ∈ ∅))
5 noel 4261 . . . . 5 ¬ 𝑋 ∈ ∅
65pm2.21i 119 . . . 4 (𝑋 ∈ ∅ → 𝑁 ∈ ℕ)
74, 6syl6bi 252 . . 3 (( FPPr ‘𝑁) = ∅ → (𝑋 ∈ ( FPPr ‘𝑁) → 𝑁 ∈ ℕ))
83, 7syl 17 . 2 𝑁 ∈ ℕ → (𝑋 ∈ ( FPPr ‘𝑁) → 𝑁 ∈ ℕ))
91, 8pm2.61i 182 1 (𝑋 ∈ ( FPPr ‘𝑁) → 𝑁 ∈ ℕ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1539  wcel 2108  wnel 3048  {crab 3067  c0 4253   class class class wbr 5070  cfv 6418  (class class class)co 7255  1c1 10803  cmin 11135  cn 11903  4c4 11960  cuz 12511  cexp 13710  cdvds 15891  cprime 16304   FPPr cfppr 45064
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-dm 5590  df-iota 6376  df-fv 6426  df-fppr 45065
This theorem is referenced by:  fpprnn  45070  fpprwppr  45079  fpprwpprb  45080
  Copyright terms: Public domain W3C validator