![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fpprbasnn | Structured version Visualization version GIF version |
Description: The base of a Fermat pseudoprime is a positive integer. (Contributed by AV, 30-May-2023.) |
Ref | Expression |
---|---|
fpprbasnn | ⊢ (𝑋 ∈ ( FPPr ‘𝑁) → 𝑁 ∈ ℕ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-1 6 | . 2 ⊢ (𝑁 ∈ ℕ → (𝑋 ∈ ( FPPr ‘𝑁) → 𝑁 ∈ ℕ)) | |
2 | df-fppr 47599 | . . . 4 ⊢ FPPr = (𝑛 ∈ ℕ ↦ {𝑥 ∈ (ℤ≥‘4) ∣ (𝑥 ∉ ℙ ∧ 𝑥 ∥ ((𝑛↑(𝑥 − 1)) − 1))}) | |
3 | 2 | fvmptndm 7060 | . . 3 ⊢ (¬ 𝑁 ∈ ℕ → ( FPPr ‘𝑁) = ∅) |
4 | eleq2 2833 | . . . 4 ⊢ (( FPPr ‘𝑁) = ∅ → (𝑋 ∈ ( FPPr ‘𝑁) ↔ 𝑋 ∈ ∅)) | |
5 | noel 4360 | . . . . 5 ⊢ ¬ 𝑋 ∈ ∅ | |
6 | 5 | pm2.21i 119 | . . . 4 ⊢ (𝑋 ∈ ∅ → 𝑁 ∈ ℕ) |
7 | 4, 6 | biimtrdi 253 | . . 3 ⊢ (( FPPr ‘𝑁) = ∅ → (𝑋 ∈ ( FPPr ‘𝑁) → 𝑁 ∈ ℕ)) |
8 | 3, 7 | syl 17 | . 2 ⊢ (¬ 𝑁 ∈ ℕ → (𝑋 ∈ ( FPPr ‘𝑁) → 𝑁 ∈ ℕ)) |
9 | 1, 8 | pm2.61i 182 | 1 ⊢ (𝑋 ∈ ( FPPr ‘𝑁) → 𝑁 ∈ ℕ) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∉ wnel 3052 {crab 3443 ∅c0 4352 class class class wbr 5166 ‘cfv 6573 (class class class)co 7448 1c1 11185 − cmin 11520 ℕcn 12293 4c4 12350 ℤ≥cuz 12903 ↑cexp 14112 ∥ cdvds 16302 ℙcprime 16718 FPPr cfppr 47598 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-dm 5710 df-iota 6525 df-fv 6581 df-fppr 47599 |
This theorem is referenced by: fpprnn 47604 fpprwppr 47613 fpprwpprb 47614 |
Copyright terms: Public domain | W3C validator |