| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fpprbasnn | Structured version Visualization version GIF version | ||
| Description: The base of a Fermat pseudoprime is a positive integer. (Contributed by AV, 30-May-2023.) |
| Ref | Expression |
|---|---|
| fpprbasnn | ⊢ (𝑋 ∈ ( FPPr ‘𝑁) → 𝑁 ∈ ℕ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-1 6 | . 2 ⊢ (𝑁 ∈ ℕ → (𝑋 ∈ ( FPPr ‘𝑁) → 𝑁 ∈ ℕ)) | |
| 2 | df-fppr 47887 | . . . 4 ⊢ FPPr = (𝑛 ∈ ℕ ↦ {𝑥 ∈ (ℤ≥‘4) ∣ (𝑥 ∉ ℙ ∧ 𝑥 ∥ ((𝑛↑(𝑥 − 1)) − 1))}) | |
| 3 | 2 | fvmptndm 6969 | . . 3 ⊢ (¬ 𝑁 ∈ ℕ → ( FPPr ‘𝑁) = ∅) |
| 4 | eleq2 2822 | . . . 4 ⊢ (( FPPr ‘𝑁) = ∅ → (𝑋 ∈ ( FPPr ‘𝑁) ↔ 𝑋 ∈ ∅)) | |
| 5 | noel 4287 | . . . . 5 ⊢ ¬ 𝑋 ∈ ∅ | |
| 6 | 5 | pm2.21i 119 | . . . 4 ⊢ (𝑋 ∈ ∅ → 𝑁 ∈ ℕ) |
| 7 | 4, 6 | biimtrdi 253 | . . 3 ⊢ (( FPPr ‘𝑁) = ∅ → (𝑋 ∈ ( FPPr ‘𝑁) → 𝑁 ∈ ℕ)) |
| 8 | 3, 7 | syl 17 | . 2 ⊢ (¬ 𝑁 ∈ ℕ → (𝑋 ∈ ( FPPr ‘𝑁) → 𝑁 ∈ ℕ)) |
| 9 | 1, 8 | pm2.61i 182 | 1 ⊢ (𝑋 ∈ ( FPPr ‘𝑁) → 𝑁 ∈ ℕ) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ∉ wnel 3033 {crab 3396 ∅c0 4282 class class class wbr 5095 ‘cfv 6489 (class class class)co 7355 1c1 11018 − cmin 11355 ℕcn 12136 4c4 12193 ℤ≥cuz 12742 ↑cexp 13975 ∥ cdvds 16170 ℙcprime 16589 FPPr cfppr 47886 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-mpt 5177 df-dm 5631 df-iota 6445 df-fv 6497 df-fppr 47887 |
| This theorem is referenced by: fpprnn 47892 fpprwppr 47901 fpprwpprb 47902 |
| Copyright terms: Public domain | W3C validator |