Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fpprbasnn Structured version   Visualization version   GIF version

Theorem fpprbasnn 47734
Description: The base of a Fermat pseudoprime is a positive integer. (Contributed by AV, 30-May-2023.)
Assertion
Ref Expression
fpprbasnn (𝑋 ∈ ( FPPr ‘𝑁) → 𝑁 ∈ ℕ)

Proof of Theorem fpprbasnn
Dummy variables 𝑥 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ax-1 6 . 2 (𝑁 ∈ ℕ → (𝑋 ∈ ( FPPr ‘𝑁) → 𝑁 ∈ ℕ))
2 df-fppr 47730 . . . 4 FPPr = (𝑛 ∈ ℕ ↦ {𝑥 ∈ (ℤ‘4) ∣ (𝑥 ∉ ℙ ∧ 𝑥 ∥ ((𝑛↑(𝑥 − 1)) − 1))})
32fvmptndm 7002 . . 3 𝑁 ∈ ℕ → ( FPPr ‘𝑁) = ∅)
4 eleq2 2818 . . . 4 (( FPPr ‘𝑁) = ∅ → (𝑋 ∈ ( FPPr ‘𝑁) ↔ 𝑋 ∈ ∅))
5 noel 4304 . . . . 5 ¬ 𝑋 ∈ ∅
65pm2.21i 119 . . . 4 (𝑋 ∈ ∅ → 𝑁 ∈ ℕ)
74, 6biimtrdi 253 . . 3 (( FPPr ‘𝑁) = ∅ → (𝑋 ∈ ( FPPr ‘𝑁) → 𝑁 ∈ ℕ))
83, 7syl 17 . 2 𝑁 ∈ ℕ → (𝑋 ∈ ( FPPr ‘𝑁) → 𝑁 ∈ ℕ))
91, 8pm2.61i 182 1 (𝑋 ∈ ( FPPr ‘𝑁) → 𝑁 ∈ ℕ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  wnel 3030  {crab 3408  c0 4299   class class class wbr 5110  cfv 6514  (class class class)co 7390  1c1 11076  cmin 11412  cn 12193  4c4 12250  cuz 12800  cexp 14033  cdvds 16229  cprime 16648   FPPr cfppr 47729
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-dm 5651  df-iota 6467  df-fv 6522  df-fppr 47730
This theorem is referenced by:  fpprnn  47735  fpprwppr  47744  fpprwpprb  47745
  Copyright terms: Public domain W3C validator