![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-frgp | Structured version Visualization version GIF version |
Description: Define the free group on a set πΌ of generators, defined as the quotient of the free monoid on πΌ Γ 2o (representing the generator elements and their formal inverses) by the free group equivalence relation df-efg 19576. (Contributed by Mario Carneiro, 1-Oct-2015.) |
Ref | Expression |
---|---|
df-frgp | β’ freeGrp = (π β V β¦ ((freeMndβ(π Γ 2o)) /s ( ~FG βπ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cfrgp 19574 | . 2 class freeGrp | |
2 | vi | . . 3 setvar π | |
3 | cvv 3474 | . . 3 class V | |
4 | 2 | cv 1540 | . . . . . 6 class π |
5 | c2o 8459 | . . . . . 6 class 2o | |
6 | 4, 5 | cxp 5674 | . . . . 5 class (π Γ 2o) |
7 | cfrmd 18727 | . . . . 5 class freeMnd | |
8 | 6, 7 | cfv 6543 | . . . 4 class (freeMndβ(π Γ 2o)) |
9 | cefg 19573 | . . . . 5 class ~FG | |
10 | 4, 9 | cfv 6543 | . . . 4 class ( ~FG βπ) |
11 | cqus 17450 | . . . 4 class /s | |
12 | 8, 10, 11 | co 7408 | . . 3 class ((freeMndβ(π Γ 2o)) /s ( ~FG βπ)) |
13 | 2, 3, 12 | cmpt 5231 | . 2 class (π β V β¦ ((freeMndβ(π Γ 2o)) /s ( ~FG βπ))) |
14 | 1, 13 | wceq 1541 | 1 wff freeGrp = (π β V β¦ ((freeMndβ(π Γ 2o)) /s ( ~FG βπ))) |
Colors of variables: wff setvar class |
This definition is referenced by: frgpval 19625 |
Copyright terms: Public domain | W3C validator |