MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-frgp Structured version   Visualization version   GIF version

Definition df-frgp 19577
Description: Define the free group on a set 𝐼 of generators, defined as the quotient of the free monoid on 𝐼 Γ— 2o (representing the generator elements and their formal inverses) by the free group equivalence relation df-efg 19576. (Contributed by Mario Carneiro, 1-Oct-2015.)
Assertion
Ref Expression
df-frgp freeGrp = (𝑖 ∈ V ↦ ((freeMndβ€˜(𝑖 Γ— 2o)) /s ( ~FG β€˜π‘–)))

Detailed syntax breakdown of Definition df-frgp
StepHypRef Expression
1 cfrgp 19574 . 2 class freeGrp
2 vi . . 3 setvar 𝑖
3 cvv 3474 . . 3 class V
42cv 1540 . . . . . 6 class 𝑖
5 c2o 8459 . . . . . 6 class 2o
64, 5cxp 5674 . . . . 5 class (𝑖 Γ— 2o)
7 cfrmd 18727 . . . . 5 class freeMnd
86, 7cfv 6543 . . . 4 class (freeMndβ€˜(𝑖 Γ— 2o))
9 cefg 19573 . . . . 5 class ~FG
104, 9cfv 6543 . . . 4 class ( ~FG β€˜π‘–)
11 cqus 17450 . . . 4 class /s
128, 10, 11co 7408 . . 3 class ((freeMndβ€˜(𝑖 Γ— 2o)) /s ( ~FG β€˜π‘–))
132, 3, 12cmpt 5231 . 2 class (𝑖 ∈ V ↦ ((freeMndβ€˜(𝑖 Γ— 2o)) /s ( ~FG β€˜π‘–)))
141, 13wceq 1541 1 wff freeGrp = (𝑖 ∈ V ↦ ((freeMndβ€˜(𝑖 Γ— 2o)) /s ( ~FG β€˜π‘–)))
Colors of variables: wff setvar class
This definition is referenced by:  frgpval  19625
  Copyright terms: Public domain W3C validator