| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-frgp | Structured version Visualization version GIF version | ||
| Description: Define the free group on a set 𝐼 of generators, defined as the quotient of the free monoid on 𝐼 × 2o (representing the generator elements and their formal inverses) by the free group equivalence relation df-efg 19690. (Contributed by Mario Carneiro, 1-Oct-2015.) |
| Ref | Expression |
|---|---|
| df-frgp | ⊢ freeGrp = (𝑖 ∈ V ↦ ((freeMnd‘(𝑖 × 2o)) /s ( ~FG ‘𝑖))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cfrgp 19688 | . 2 class freeGrp | |
| 2 | vi | . . 3 setvar 𝑖 | |
| 3 | cvv 3459 | . . 3 class V | |
| 4 | 2 | cv 1539 | . . . . . 6 class 𝑖 |
| 5 | c2o 8474 | . . . . . 6 class 2o | |
| 6 | 4, 5 | cxp 5652 | . . . . 5 class (𝑖 × 2o) |
| 7 | cfrmd 18825 | . . . . 5 class freeMnd | |
| 8 | 6, 7 | cfv 6531 | . . . 4 class (freeMnd‘(𝑖 × 2o)) |
| 9 | cefg 19687 | . . . . 5 class ~FG | |
| 10 | 4, 9 | cfv 6531 | . . . 4 class ( ~FG ‘𝑖) |
| 11 | cqus 17519 | . . . 4 class /s | |
| 12 | 8, 10, 11 | co 7405 | . . 3 class ((freeMnd‘(𝑖 × 2o)) /s ( ~FG ‘𝑖)) |
| 13 | 2, 3, 12 | cmpt 5201 | . 2 class (𝑖 ∈ V ↦ ((freeMnd‘(𝑖 × 2o)) /s ( ~FG ‘𝑖))) |
| 14 | 1, 13 | wceq 1540 | 1 wff freeGrp = (𝑖 ∈ V ↦ ((freeMnd‘(𝑖 × 2o)) /s ( ~FG ‘𝑖))) |
| Colors of variables: wff setvar class |
| This definition is referenced by: frgpval 19739 |
| Copyright terms: Public domain | W3C validator |