Detailed syntax breakdown of Definition df-efg
Step | Hyp | Ref
| Expression |
1 | | cefg 19227 |
. 2
class
~FG |
2 | | vi |
. . 3
setvar 𝑖 |
3 | | cvv 3422 |
. . 3
class
V |
4 | 2 | cv 1538 |
. . . . . . . . 9
class 𝑖 |
5 | | c2o 8261 |
. . . . . . . . 9
class
2o |
6 | 4, 5 | cxp 5578 |
. . . . . . . 8
class (𝑖 ×
2o) |
7 | 6 | cword 14145 |
. . . . . . 7
class Word
(𝑖 ×
2o) |
8 | | vr |
. . . . . . . 8
setvar 𝑟 |
9 | 8 | cv 1538 |
. . . . . . 7
class 𝑟 |
10 | 7, 9 | wer 8453 |
. . . . . 6
wff 𝑟 Er Word (𝑖 × 2o) |
11 | | vx |
. . . . . . . . . . . 12
setvar 𝑥 |
12 | 11 | cv 1538 |
. . . . . . . . . . 11
class 𝑥 |
13 | | vn |
. . . . . . . . . . . . . 14
setvar 𝑛 |
14 | 13 | cv 1538 |
. . . . . . . . . . . . 13
class 𝑛 |
15 | | vy |
. . . . . . . . . . . . . . . 16
setvar 𝑦 |
16 | 15 | cv 1538 |
. . . . . . . . . . . . . . 15
class 𝑦 |
17 | | vz |
. . . . . . . . . . . . . . . 16
setvar 𝑧 |
18 | 17 | cv 1538 |
. . . . . . . . . . . . . . 15
class 𝑧 |
19 | 16, 18 | cop 4564 |
. . . . . . . . . . . . . 14
class
〈𝑦, 𝑧〉 |
20 | | c1o 8260 |
. . . . . . . . . . . . . . . 16
class
1o |
21 | 20, 18 | cdif 3880 |
. . . . . . . . . . . . . . 15
class
(1o ∖ 𝑧) |
22 | 16, 21 | cop 4564 |
. . . . . . . . . . . . . 14
class
〈𝑦,
(1o ∖ 𝑧)〉 |
23 | 19, 22 | cs2 14482 |
. . . . . . . . . . . . 13
class
〈“〈𝑦, 𝑧〉〈𝑦, (1o ∖ 𝑧)〉”〉 |
24 | 14, 14, 23 | cotp 4566 |
. . . . . . . . . . . 12
class
〈𝑛, 𝑛, 〈“〈𝑦, 𝑧〉〈𝑦, (1o ∖ 𝑧)〉”〉〉 |
25 | | csplice 14390 |
. . . . . . . . . . . 12
class
splice |
26 | 12, 24, 25 | co 7255 |
. . . . . . . . . . 11
class (𝑥 splice 〈𝑛, 𝑛, 〈“〈𝑦, 𝑧〉〈𝑦, (1o ∖ 𝑧)〉”〉〉) |
27 | 12, 26, 9 | wbr 5070 |
. . . . . . . . . 10
wff 𝑥𝑟(𝑥 splice 〈𝑛, 𝑛, 〈“〈𝑦, 𝑧〉〈𝑦, (1o ∖ 𝑧)〉”〉〉) |
28 | 27, 17, 5 | wral 3063 |
. . . . . . . . 9
wff
∀𝑧 ∈
2o 𝑥𝑟(𝑥 splice 〈𝑛, 𝑛, 〈“〈𝑦, 𝑧〉〈𝑦, (1o ∖ 𝑧)〉”〉〉) |
29 | 28, 15, 4 | wral 3063 |
. . . . . . . 8
wff
∀𝑦 ∈
𝑖 ∀𝑧 ∈ 2o 𝑥𝑟(𝑥 splice 〈𝑛, 𝑛, 〈“〈𝑦, 𝑧〉〈𝑦, (1o ∖ 𝑧)〉”〉〉) |
30 | | cc0 10802 |
. . . . . . . . 9
class
0 |
31 | | chash 13972 |
. . . . . . . . . 10
class
♯ |
32 | 12, 31 | cfv 6418 |
. . . . . . . . 9
class
(♯‘𝑥) |
33 | | cfz 13168 |
. . . . . . . . 9
class
... |
34 | 30, 32, 33 | co 7255 |
. . . . . . . 8
class
(0...(♯‘𝑥)) |
35 | 29, 13, 34 | wral 3063 |
. . . . . . 7
wff
∀𝑛 ∈
(0...(♯‘𝑥))∀𝑦 ∈ 𝑖 ∀𝑧 ∈ 2o 𝑥𝑟(𝑥 splice 〈𝑛, 𝑛, 〈“〈𝑦, 𝑧〉〈𝑦, (1o ∖ 𝑧)〉”〉〉) |
36 | 35, 11, 7 | wral 3063 |
. . . . . 6
wff
∀𝑥 ∈
Word (𝑖 ×
2o)∀𝑛
∈ (0...(♯‘𝑥))∀𝑦 ∈ 𝑖 ∀𝑧 ∈ 2o 𝑥𝑟(𝑥 splice 〈𝑛, 𝑛, 〈“〈𝑦, 𝑧〉〈𝑦, (1o ∖ 𝑧)〉”〉〉) |
37 | 10, 36 | wa 395 |
. . . . 5
wff (𝑟 Er Word (𝑖 × 2o) ∧ ∀𝑥 ∈ Word (𝑖 × 2o)∀𝑛 ∈
(0...(♯‘𝑥))∀𝑦 ∈ 𝑖 ∀𝑧 ∈ 2o 𝑥𝑟(𝑥 splice 〈𝑛, 𝑛, 〈“〈𝑦, 𝑧〉〈𝑦, (1o ∖ 𝑧)〉”〉〉)) |
38 | 37, 8 | cab 2715 |
. . . 4
class {𝑟 ∣ (𝑟 Er Word (𝑖 × 2o) ∧ ∀𝑥 ∈ Word (𝑖 × 2o)∀𝑛 ∈
(0...(♯‘𝑥))∀𝑦 ∈ 𝑖 ∀𝑧 ∈ 2o 𝑥𝑟(𝑥 splice 〈𝑛, 𝑛, 〈“〈𝑦, 𝑧〉〈𝑦, (1o ∖ 𝑧)〉”〉〉))} |
39 | 38 | cint 4876 |
. . 3
class ∩ {𝑟
∣ (𝑟 Er Word (𝑖 × 2o) ∧
∀𝑥 ∈ Word
(𝑖 ×
2o)∀𝑛
∈ (0...(♯‘𝑥))∀𝑦 ∈ 𝑖 ∀𝑧 ∈ 2o 𝑥𝑟(𝑥 splice 〈𝑛, 𝑛, 〈“〈𝑦, 𝑧〉〈𝑦, (1o ∖ 𝑧)〉”〉〉))} |
40 | 2, 3, 39 | cmpt 5153 |
. 2
class (𝑖 ∈ V ↦ ∩ {𝑟
∣ (𝑟 Er Word (𝑖 × 2o) ∧
∀𝑥 ∈ Word
(𝑖 ×
2o)∀𝑛
∈ (0...(♯‘𝑥))∀𝑦 ∈ 𝑖 ∀𝑧 ∈ 2o 𝑥𝑟(𝑥 splice 〈𝑛, 𝑛, 〈“〈𝑦, 𝑧〉〈𝑦, (1o ∖ 𝑧)〉”〉〉))}) |
41 | 1, 40 | wceq 1539 |
1
wff
~FG = (𝑖
∈ V ↦ ∩ {𝑟 ∣ (𝑟 Er Word (𝑖 × 2o) ∧ ∀𝑥 ∈ Word (𝑖 × 2o)∀𝑛 ∈
(0...(♯‘𝑥))∀𝑦 ∈ 𝑖 ∀𝑧 ∈ 2o 𝑥𝑟(𝑥 splice 〈𝑛, 𝑛, 〈“〈𝑦, 𝑧〉〈𝑦, (1o ∖ 𝑧)〉”〉〉))}) |