Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > frgpval | Structured version Visualization version GIF version |
Description: Value of the free group construction. (Contributed by Mario Carneiro, 1-Oct-2015.) |
Ref | Expression |
---|---|
frgpval.m | ⊢ 𝐺 = (freeGrp‘𝐼) |
frgpval.b | ⊢ 𝑀 = (freeMnd‘(𝐼 × 2o)) |
frgpval.r | ⊢ ∼ = ( ~FG ‘𝐼) |
Ref | Expression |
---|---|
frgpval | ⊢ (𝐼 ∈ 𝑉 → 𝐺 = (𝑀 /s ∼ )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frgpval.m | . 2 ⊢ 𝐺 = (freeGrp‘𝐼) | |
2 | elex 3426 | . . 3 ⊢ (𝐼 ∈ 𝑉 → 𝐼 ∈ V) | |
3 | xpeq1 5565 | . . . . . . 7 ⊢ (𝑖 = 𝐼 → (𝑖 × 2o) = (𝐼 × 2o)) | |
4 | 3 | fveq2d 6721 | . . . . . 6 ⊢ (𝑖 = 𝐼 → (freeMnd‘(𝑖 × 2o)) = (freeMnd‘(𝐼 × 2o))) |
5 | frgpval.b | . . . . . 6 ⊢ 𝑀 = (freeMnd‘(𝐼 × 2o)) | |
6 | 4, 5 | eqtr4di 2796 | . . . . 5 ⊢ (𝑖 = 𝐼 → (freeMnd‘(𝑖 × 2o)) = 𝑀) |
7 | fveq2 6717 | . . . . . 6 ⊢ (𝑖 = 𝐼 → ( ~FG ‘𝑖) = ( ~FG ‘𝐼)) | |
8 | frgpval.r | . . . . . 6 ⊢ ∼ = ( ~FG ‘𝐼) | |
9 | 7, 8 | eqtr4di 2796 | . . . . 5 ⊢ (𝑖 = 𝐼 → ( ~FG ‘𝑖) = ∼ ) |
10 | 6, 9 | oveq12d 7231 | . . . 4 ⊢ (𝑖 = 𝐼 → ((freeMnd‘(𝑖 × 2o)) /s ( ~FG ‘𝑖)) = (𝑀 /s ∼ )) |
11 | df-frgp 19100 | . . . 4 ⊢ freeGrp = (𝑖 ∈ V ↦ ((freeMnd‘(𝑖 × 2o)) /s ( ~FG ‘𝑖))) | |
12 | ovex 7246 | . . . 4 ⊢ (𝑀 /s ∼ ) ∈ V | |
13 | 10, 11, 12 | fvmpt 6818 | . . 3 ⊢ (𝐼 ∈ V → (freeGrp‘𝐼) = (𝑀 /s ∼ )) |
14 | 2, 13 | syl 17 | . 2 ⊢ (𝐼 ∈ 𝑉 → (freeGrp‘𝐼) = (𝑀 /s ∼ )) |
15 | 1, 14 | syl5eq 2790 | 1 ⊢ (𝐼 ∈ 𝑉 → 𝐺 = (𝑀 /s ∼ )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1543 ∈ wcel 2110 Vcvv 3408 × cxp 5549 ‘cfv 6380 (class class class)co 7213 2oc2o 8196 /s cqus 17010 freeMndcfrmd 18274 ~FG cefg 19096 freeGrpcfrgp 19097 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pr 5322 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3410 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-sn 4542 df-pr 4544 df-op 4548 df-uni 4820 df-br 5054 df-opab 5116 df-mpt 5136 df-id 5455 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-iota 6338 df-fun 6382 df-fv 6388 df-ov 7216 df-frgp 19100 |
This theorem is referenced by: frgp0 19150 frgpeccl 19151 frgpadd 19153 frgpupf 19163 frgpup1 19165 frgpup3lem 19167 frgpnabllem2 19259 |
Copyright terms: Public domain | W3C validator |