| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > frgpval | Structured version Visualization version GIF version | ||
| Description: Value of the free group construction. (Contributed by Mario Carneiro, 1-Oct-2015.) |
| Ref | Expression |
|---|---|
| frgpval.m | ⊢ 𝐺 = (freeGrp‘𝐼) |
| frgpval.b | ⊢ 𝑀 = (freeMnd‘(𝐼 × 2o)) |
| frgpval.r | ⊢ ∼ = ( ~FG ‘𝐼) |
| Ref | Expression |
|---|---|
| frgpval | ⊢ (𝐼 ∈ 𝑉 → 𝐺 = (𝑀 /s ∼ )) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frgpval.m | . 2 ⊢ 𝐺 = (freeGrp‘𝐼) | |
| 2 | elex 3465 | . . 3 ⊢ (𝐼 ∈ 𝑉 → 𝐼 ∈ V) | |
| 3 | xpeq1 5645 | . . . . . . 7 ⊢ (𝑖 = 𝐼 → (𝑖 × 2o) = (𝐼 × 2o)) | |
| 4 | 3 | fveq2d 6844 | . . . . . 6 ⊢ (𝑖 = 𝐼 → (freeMnd‘(𝑖 × 2o)) = (freeMnd‘(𝐼 × 2o))) |
| 5 | frgpval.b | . . . . . 6 ⊢ 𝑀 = (freeMnd‘(𝐼 × 2o)) | |
| 6 | 4, 5 | eqtr4di 2782 | . . . . 5 ⊢ (𝑖 = 𝐼 → (freeMnd‘(𝑖 × 2o)) = 𝑀) |
| 7 | fveq2 6840 | . . . . . 6 ⊢ (𝑖 = 𝐼 → ( ~FG ‘𝑖) = ( ~FG ‘𝐼)) | |
| 8 | frgpval.r | . . . . . 6 ⊢ ∼ = ( ~FG ‘𝐼) | |
| 9 | 7, 8 | eqtr4di 2782 | . . . . 5 ⊢ (𝑖 = 𝐼 → ( ~FG ‘𝑖) = ∼ ) |
| 10 | 6, 9 | oveq12d 7387 | . . . 4 ⊢ (𝑖 = 𝐼 → ((freeMnd‘(𝑖 × 2o)) /s ( ~FG ‘𝑖)) = (𝑀 /s ∼ )) |
| 11 | df-frgp 19624 | . . . 4 ⊢ freeGrp = (𝑖 ∈ V ↦ ((freeMnd‘(𝑖 × 2o)) /s ( ~FG ‘𝑖))) | |
| 12 | ovex 7402 | . . . 4 ⊢ (𝑀 /s ∼ ) ∈ V | |
| 13 | 10, 11, 12 | fvmpt 6950 | . . 3 ⊢ (𝐼 ∈ V → (freeGrp‘𝐼) = (𝑀 /s ∼ )) |
| 14 | 2, 13 | syl 17 | . 2 ⊢ (𝐼 ∈ 𝑉 → (freeGrp‘𝐼) = (𝑀 /s ∼ )) |
| 15 | 1, 14 | eqtrid 2776 | 1 ⊢ (𝐼 ∈ 𝑉 → 𝐺 = (𝑀 /s ∼ )) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3444 × cxp 5629 ‘cfv 6499 (class class class)co 7369 2oc2o 8405 /s cqus 17444 freeMndcfrmd 18756 ~FG cefg 19620 freeGrpcfrgp 19621 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-iota 6452 df-fun 6501 df-fv 6507 df-ov 7372 df-frgp 19624 |
| This theorem is referenced by: frgp0 19674 frgpeccl 19675 frgpadd 19677 frgpupf 19687 frgpup1 19689 frgpup3lem 19691 frgpnabllem2 19788 |
| Copyright terms: Public domain | W3C validator |