MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgpval Structured version   Visualization version   GIF version

Theorem frgpval 19279
Description: Value of the free group construction. (Contributed by Mario Carneiro, 1-Oct-2015.)
Hypotheses
Ref Expression
frgpval.m 𝐺 = (freeGrp‘𝐼)
frgpval.b 𝑀 = (freeMnd‘(𝐼 × 2o))
frgpval.r = ( ~FG𝐼)
Assertion
Ref Expression
frgpval (𝐼𝑉𝐺 = (𝑀 /s ))

Proof of Theorem frgpval
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 frgpval.m . 2 𝐺 = (freeGrp‘𝐼)
2 elex 3440 . . 3 (𝐼𝑉𝐼 ∈ V)
3 xpeq1 5594 . . . . . . 7 (𝑖 = 𝐼 → (𝑖 × 2o) = (𝐼 × 2o))
43fveq2d 6760 . . . . . 6 (𝑖 = 𝐼 → (freeMnd‘(𝑖 × 2o)) = (freeMnd‘(𝐼 × 2o)))
5 frgpval.b . . . . . 6 𝑀 = (freeMnd‘(𝐼 × 2o))
64, 5eqtr4di 2797 . . . . 5 (𝑖 = 𝐼 → (freeMnd‘(𝑖 × 2o)) = 𝑀)
7 fveq2 6756 . . . . . 6 (𝑖 = 𝐼 → ( ~FG𝑖) = ( ~FG𝐼))
8 frgpval.r . . . . . 6 = ( ~FG𝐼)
97, 8eqtr4di 2797 . . . . 5 (𝑖 = 𝐼 → ( ~FG𝑖) = )
106, 9oveq12d 7273 . . . 4 (𝑖 = 𝐼 → ((freeMnd‘(𝑖 × 2o)) /s ( ~FG𝑖)) = (𝑀 /s ))
11 df-frgp 19231 . . . 4 freeGrp = (𝑖 ∈ V ↦ ((freeMnd‘(𝑖 × 2o)) /s ( ~FG𝑖)))
12 ovex 7288 . . . 4 (𝑀 /s ) ∈ V
1310, 11, 12fvmpt 6857 . . 3 (𝐼 ∈ V → (freeGrp‘𝐼) = (𝑀 /s ))
142, 13syl 17 . 2 (𝐼𝑉 → (freeGrp‘𝐼) = (𝑀 /s ))
151, 14eqtrid 2790 1 (𝐼𝑉𝐺 = (𝑀 /s ))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108  Vcvv 3422   × cxp 5578  cfv 6418  (class class class)co 7255  2oc2o 8261   /s cqus 17133  freeMndcfrmd 18401   ~FG cefg 19227  freeGrpcfrgp 19228
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-iota 6376  df-fun 6420  df-fv 6426  df-ov 7258  df-frgp 19231
This theorem is referenced by:  frgp0  19281  frgpeccl  19282  frgpadd  19284  frgpupf  19294  frgpup1  19296  frgpup3lem  19298  frgpnabllem2  19390
  Copyright terms: Public domain W3C validator