MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgpval Structured version   Visualization version   GIF version

Theorem frgpval 19625
Description: Value of the free group construction. (Contributed by Mario Carneiro, 1-Oct-2015.)
Hypotheses
Ref Expression
frgpval.m 𝐺 = (freeGrpβ€˜πΌ)
frgpval.b 𝑀 = (freeMndβ€˜(𝐼 Γ— 2o))
frgpval.r ∼ = ( ~FG β€˜πΌ)
Assertion
Ref Expression
frgpval (𝐼 ∈ 𝑉 β†’ 𝐺 = (𝑀 /s ∼ ))

Proof of Theorem frgpval
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 frgpval.m . 2 𝐺 = (freeGrpβ€˜πΌ)
2 elex 3492 . . 3 (𝐼 ∈ 𝑉 β†’ 𝐼 ∈ V)
3 xpeq1 5690 . . . . . . 7 (𝑖 = 𝐼 β†’ (𝑖 Γ— 2o) = (𝐼 Γ— 2o))
43fveq2d 6895 . . . . . 6 (𝑖 = 𝐼 β†’ (freeMndβ€˜(𝑖 Γ— 2o)) = (freeMndβ€˜(𝐼 Γ— 2o)))
5 frgpval.b . . . . . 6 𝑀 = (freeMndβ€˜(𝐼 Γ— 2o))
64, 5eqtr4di 2790 . . . . 5 (𝑖 = 𝐼 β†’ (freeMndβ€˜(𝑖 Γ— 2o)) = 𝑀)
7 fveq2 6891 . . . . . 6 (𝑖 = 𝐼 β†’ ( ~FG β€˜π‘–) = ( ~FG β€˜πΌ))
8 frgpval.r . . . . . 6 ∼ = ( ~FG β€˜πΌ)
97, 8eqtr4di 2790 . . . . 5 (𝑖 = 𝐼 β†’ ( ~FG β€˜π‘–) = ∼ )
106, 9oveq12d 7426 . . . 4 (𝑖 = 𝐼 β†’ ((freeMndβ€˜(𝑖 Γ— 2o)) /s ( ~FG β€˜π‘–)) = (𝑀 /s ∼ ))
11 df-frgp 19577 . . . 4 freeGrp = (𝑖 ∈ V ↦ ((freeMndβ€˜(𝑖 Γ— 2o)) /s ( ~FG β€˜π‘–)))
12 ovex 7441 . . . 4 (𝑀 /s ∼ ) ∈ V
1310, 11, 12fvmpt 6998 . . 3 (𝐼 ∈ V β†’ (freeGrpβ€˜πΌ) = (𝑀 /s ∼ ))
142, 13syl 17 . 2 (𝐼 ∈ 𝑉 β†’ (freeGrpβ€˜πΌ) = (𝑀 /s ∼ ))
151, 14eqtrid 2784 1 (𝐼 ∈ 𝑉 β†’ 𝐺 = (𝑀 /s ∼ ))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   = wceq 1541   ∈ wcel 2106  Vcvv 3474   Γ— cxp 5674  β€˜cfv 6543  (class class class)co 7408  2oc2o 8459   /s cqus 17450  freeMndcfrmd 18727   ~FG cefg 19573  freeGrpcfrgp 19574
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-iota 6495  df-fun 6545  df-fv 6551  df-ov 7411  df-frgp 19577
This theorem is referenced by:  frgp0  19627  frgpeccl  19628  frgpadd  19630  frgpupf  19640  frgpup1  19642  frgpup3lem  19644  frgpnabllem2  19741
  Copyright terms: Public domain W3C validator