Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > frgpval | Structured version Visualization version GIF version |
Description: Value of the free group construction. (Contributed by Mario Carneiro, 1-Oct-2015.) |
Ref | Expression |
---|---|
frgpval.m | ⊢ 𝐺 = (freeGrp‘𝐼) |
frgpval.b | ⊢ 𝑀 = (freeMnd‘(𝐼 × 2o)) |
frgpval.r | ⊢ ∼ = ( ~FG ‘𝐼) |
Ref | Expression |
---|---|
frgpval | ⊢ (𝐼 ∈ 𝑉 → 𝐺 = (𝑀 /s ∼ )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frgpval.m | . 2 ⊢ 𝐺 = (freeGrp‘𝐼) | |
2 | elex 3440 | . . 3 ⊢ (𝐼 ∈ 𝑉 → 𝐼 ∈ V) | |
3 | xpeq1 5594 | . . . . . . 7 ⊢ (𝑖 = 𝐼 → (𝑖 × 2o) = (𝐼 × 2o)) | |
4 | 3 | fveq2d 6760 | . . . . . 6 ⊢ (𝑖 = 𝐼 → (freeMnd‘(𝑖 × 2o)) = (freeMnd‘(𝐼 × 2o))) |
5 | frgpval.b | . . . . . 6 ⊢ 𝑀 = (freeMnd‘(𝐼 × 2o)) | |
6 | 4, 5 | eqtr4di 2797 | . . . . 5 ⊢ (𝑖 = 𝐼 → (freeMnd‘(𝑖 × 2o)) = 𝑀) |
7 | fveq2 6756 | . . . . . 6 ⊢ (𝑖 = 𝐼 → ( ~FG ‘𝑖) = ( ~FG ‘𝐼)) | |
8 | frgpval.r | . . . . . 6 ⊢ ∼ = ( ~FG ‘𝐼) | |
9 | 7, 8 | eqtr4di 2797 | . . . . 5 ⊢ (𝑖 = 𝐼 → ( ~FG ‘𝑖) = ∼ ) |
10 | 6, 9 | oveq12d 7273 | . . . 4 ⊢ (𝑖 = 𝐼 → ((freeMnd‘(𝑖 × 2o)) /s ( ~FG ‘𝑖)) = (𝑀 /s ∼ )) |
11 | df-frgp 19231 | . . . 4 ⊢ freeGrp = (𝑖 ∈ V ↦ ((freeMnd‘(𝑖 × 2o)) /s ( ~FG ‘𝑖))) | |
12 | ovex 7288 | . . . 4 ⊢ (𝑀 /s ∼ ) ∈ V | |
13 | 10, 11, 12 | fvmpt 6857 | . . 3 ⊢ (𝐼 ∈ V → (freeGrp‘𝐼) = (𝑀 /s ∼ )) |
14 | 2, 13 | syl 17 | . 2 ⊢ (𝐼 ∈ 𝑉 → (freeGrp‘𝐼) = (𝑀 /s ∼ )) |
15 | 1, 14 | eqtrid 2790 | 1 ⊢ (𝐼 ∈ 𝑉 → 𝐺 = (𝑀 /s ∼ )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 Vcvv 3422 × cxp 5578 ‘cfv 6418 (class class class)co 7255 2oc2o 8261 /s cqus 17133 freeMndcfrmd 18401 ~FG cefg 19227 freeGrpcfrgp 19228 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-iota 6376 df-fun 6420 df-fv 6426 df-ov 7258 df-frgp 19231 |
This theorem is referenced by: frgp0 19281 frgpeccl 19282 frgpadd 19284 frgpupf 19294 frgpup1 19296 frgpup3lem 19298 frgpnabllem2 19390 |
Copyright terms: Public domain | W3C validator |