MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgpval Structured version   Visualization version   GIF version

Theorem frgpval 19800
Description: Value of the free group construction. (Contributed by Mario Carneiro, 1-Oct-2015.)
Hypotheses
Ref Expression
frgpval.m 𝐺 = (freeGrp‘𝐼)
frgpval.b 𝑀 = (freeMnd‘(𝐼 × 2o))
frgpval.r = ( ~FG𝐼)
Assertion
Ref Expression
frgpval (𝐼𝑉𝐺 = (𝑀 /s ))

Proof of Theorem frgpval
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 frgpval.m . 2 𝐺 = (freeGrp‘𝐼)
2 elex 3509 . . 3 (𝐼𝑉𝐼 ∈ V)
3 xpeq1 5714 . . . . . . 7 (𝑖 = 𝐼 → (𝑖 × 2o) = (𝐼 × 2o))
43fveq2d 6924 . . . . . 6 (𝑖 = 𝐼 → (freeMnd‘(𝑖 × 2o)) = (freeMnd‘(𝐼 × 2o)))
5 frgpval.b . . . . . 6 𝑀 = (freeMnd‘(𝐼 × 2o))
64, 5eqtr4di 2798 . . . . 5 (𝑖 = 𝐼 → (freeMnd‘(𝑖 × 2o)) = 𝑀)
7 fveq2 6920 . . . . . 6 (𝑖 = 𝐼 → ( ~FG𝑖) = ( ~FG𝐼))
8 frgpval.r . . . . . 6 = ( ~FG𝐼)
97, 8eqtr4di 2798 . . . . 5 (𝑖 = 𝐼 → ( ~FG𝑖) = )
106, 9oveq12d 7466 . . . 4 (𝑖 = 𝐼 → ((freeMnd‘(𝑖 × 2o)) /s ( ~FG𝑖)) = (𝑀 /s ))
11 df-frgp 19752 . . . 4 freeGrp = (𝑖 ∈ V ↦ ((freeMnd‘(𝑖 × 2o)) /s ( ~FG𝑖)))
12 ovex 7481 . . . 4 (𝑀 /s ) ∈ V
1310, 11, 12fvmpt 7029 . . 3 (𝐼 ∈ V → (freeGrp‘𝐼) = (𝑀 /s ))
142, 13syl 17 . 2 (𝐼𝑉 → (freeGrp‘𝐼) = (𝑀 /s ))
151, 14eqtrid 2792 1 (𝐼𝑉𝐺 = (𝑀 /s ))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108  Vcvv 3488   × cxp 5698  cfv 6573  (class class class)co 7448  2oc2o 8516   /s cqus 17565  freeMndcfrmd 18882   ~FG cefg 19748  freeGrpcfrgp 19749
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-iota 6525  df-fun 6575  df-fv 6581  df-ov 7451  df-frgp 19752
This theorem is referenced by:  frgp0  19802  frgpeccl  19803  frgpadd  19805  frgpupf  19815  frgpup1  19817  frgpup3lem  19819  frgpnabllem2  19916
  Copyright terms: Public domain W3C validator