Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > frgpval | Structured version Visualization version GIF version |
Description: Value of the free group construction. (Contributed by Mario Carneiro, 1-Oct-2015.) |
Ref | Expression |
---|---|
frgpval.m | ⊢ 𝐺 = (freeGrp‘𝐼) |
frgpval.b | ⊢ 𝑀 = (freeMnd‘(𝐼 × 2o)) |
frgpval.r | ⊢ ∼ = ( ~FG ‘𝐼) |
Ref | Expression |
---|---|
frgpval | ⊢ (𝐼 ∈ 𝑉 → 𝐺 = (𝑀 /s ∼ )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frgpval.m | . 2 ⊢ 𝐺 = (freeGrp‘𝐼) | |
2 | elex 3450 | . . 3 ⊢ (𝐼 ∈ 𝑉 → 𝐼 ∈ V) | |
3 | xpeq1 5603 | . . . . . . 7 ⊢ (𝑖 = 𝐼 → (𝑖 × 2o) = (𝐼 × 2o)) | |
4 | 3 | fveq2d 6778 | . . . . . 6 ⊢ (𝑖 = 𝐼 → (freeMnd‘(𝑖 × 2o)) = (freeMnd‘(𝐼 × 2o))) |
5 | frgpval.b | . . . . . 6 ⊢ 𝑀 = (freeMnd‘(𝐼 × 2o)) | |
6 | 4, 5 | eqtr4di 2796 | . . . . 5 ⊢ (𝑖 = 𝐼 → (freeMnd‘(𝑖 × 2o)) = 𝑀) |
7 | fveq2 6774 | . . . . . 6 ⊢ (𝑖 = 𝐼 → ( ~FG ‘𝑖) = ( ~FG ‘𝐼)) | |
8 | frgpval.r | . . . . . 6 ⊢ ∼ = ( ~FG ‘𝐼) | |
9 | 7, 8 | eqtr4di 2796 | . . . . 5 ⊢ (𝑖 = 𝐼 → ( ~FG ‘𝑖) = ∼ ) |
10 | 6, 9 | oveq12d 7293 | . . . 4 ⊢ (𝑖 = 𝐼 → ((freeMnd‘(𝑖 × 2o)) /s ( ~FG ‘𝑖)) = (𝑀 /s ∼ )) |
11 | df-frgp 19316 | . . . 4 ⊢ freeGrp = (𝑖 ∈ V ↦ ((freeMnd‘(𝑖 × 2o)) /s ( ~FG ‘𝑖))) | |
12 | ovex 7308 | . . . 4 ⊢ (𝑀 /s ∼ ) ∈ V | |
13 | 10, 11, 12 | fvmpt 6875 | . . 3 ⊢ (𝐼 ∈ V → (freeGrp‘𝐼) = (𝑀 /s ∼ )) |
14 | 2, 13 | syl 17 | . 2 ⊢ (𝐼 ∈ 𝑉 → (freeGrp‘𝐼) = (𝑀 /s ∼ )) |
15 | 1, 14 | eqtrid 2790 | 1 ⊢ (𝐼 ∈ 𝑉 → 𝐺 = (𝑀 /s ∼ )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 Vcvv 3432 × cxp 5587 ‘cfv 6433 (class class class)co 7275 2oc2o 8291 /s cqus 17216 freeMndcfrmd 18486 ~FG cefg 19312 freeGrpcfrgp 19313 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-iota 6391 df-fun 6435 df-fv 6441 df-ov 7278 df-frgp 19316 |
This theorem is referenced by: frgp0 19366 frgpeccl 19367 frgpadd 19369 frgpupf 19379 frgpup1 19381 frgpup3lem 19383 frgpnabllem2 19475 |
Copyright terms: Public domain | W3C validator |