![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > frgpval | Structured version Visualization version GIF version |
Description: Value of the free group construction. (Contributed by Mario Carneiro, 1-Oct-2015.) |
Ref | Expression |
---|---|
frgpval.m | β’ πΊ = (freeGrpβπΌ) |
frgpval.b | β’ π = (freeMndβ(πΌ Γ 2o)) |
frgpval.r | β’ βΌ = ( ~FG βπΌ) |
Ref | Expression |
---|---|
frgpval | β’ (πΌ β π β πΊ = (π /s βΌ )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frgpval.m | . 2 β’ πΊ = (freeGrpβπΌ) | |
2 | elex 3492 | . . 3 β’ (πΌ β π β πΌ β V) | |
3 | xpeq1 5690 | . . . . . . 7 β’ (π = πΌ β (π Γ 2o) = (πΌ Γ 2o)) | |
4 | 3 | fveq2d 6895 | . . . . . 6 β’ (π = πΌ β (freeMndβ(π Γ 2o)) = (freeMndβ(πΌ Γ 2o))) |
5 | frgpval.b | . . . . . 6 β’ π = (freeMndβ(πΌ Γ 2o)) | |
6 | 4, 5 | eqtr4di 2790 | . . . . 5 β’ (π = πΌ β (freeMndβ(π Γ 2o)) = π) |
7 | fveq2 6891 | . . . . . 6 β’ (π = πΌ β ( ~FG βπ) = ( ~FG βπΌ)) | |
8 | frgpval.r | . . . . . 6 β’ βΌ = ( ~FG βπΌ) | |
9 | 7, 8 | eqtr4di 2790 | . . . . 5 β’ (π = πΌ β ( ~FG βπ) = βΌ ) |
10 | 6, 9 | oveq12d 7426 | . . . 4 β’ (π = πΌ β ((freeMndβ(π Γ 2o)) /s ( ~FG βπ)) = (π /s βΌ )) |
11 | df-frgp 19577 | . . . 4 β’ freeGrp = (π β V β¦ ((freeMndβ(π Γ 2o)) /s ( ~FG βπ))) | |
12 | ovex 7441 | . . . 4 β’ (π /s βΌ ) β V | |
13 | 10, 11, 12 | fvmpt 6998 | . . 3 β’ (πΌ β V β (freeGrpβπΌ) = (π /s βΌ )) |
14 | 2, 13 | syl 17 | . 2 β’ (πΌ β π β (freeGrpβπΌ) = (π /s βΌ )) |
15 | 1, 14 | eqtrid 2784 | 1 β’ (πΌ β π β πΊ = (π /s βΌ )) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1541 β wcel 2106 Vcvv 3474 Γ cxp 5674 βcfv 6543 (class class class)co 7408 2oc2o 8459 /s cqus 17450 freeMndcfrmd 18727 ~FG cefg 19573 freeGrpcfrgp 19574 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-iota 6495 df-fun 6545 df-fv 6551 df-ov 7411 df-frgp 19577 |
This theorem is referenced by: frgp0 19627 frgpeccl 19628 frgpadd 19630 frgpupf 19640 frgpup1 19642 frgpup3lem 19644 frgpnabllem2 19741 |
Copyright terms: Public domain | W3C validator |