| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > frgpval | Structured version Visualization version GIF version | ||
| Description: Value of the free group construction. (Contributed by Mario Carneiro, 1-Oct-2015.) |
| Ref | Expression |
|---|---|
| frgpval.m | ⊢ 𝐺 = (freeGrp‘𝐼) |
| frgpval.b | ⊢ 𝑀 = (freeMnd‘(𝐼 × 2o)) |
| frgpval.r | ⊢ ∼ = ( ~FG ‘𝐼) |
| Ref | Expression |
|---|---|
| frgpval | ⊢ (𝐼 ∈ 𝑉 → 𝐺 = (𝑀 /s ∼ )) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frgpval.m | . 2 ⊢ 𝐺 = (freeGrp‘𝐼) | |
| 2 | elex 3457 | . . 3 ⊢ (𝐼 ∈ 𝑉 → 𝐼 ∈ V) | |
| 3 | xpeq1 5628 | . . . . . . 7 ⊢ (𝑖 = 𝐼 → (𝑖 × 2o) = (𝐼 × 2o)) | |
| 4 | 3 | fveq2d 6826 | . . . . . 6 ⊢ (𝑖 = 𝐼 → (freeMnd‘(𝑖 × 2o)) = (freeMnd‘(𝐼 × 2o))) |
| 5 | frgpval.b | . . . . . 6 ⊢ 𝑀 = (freeMnd‘(𝐼 × 2o)) | |
| 6 | 4, 5 | eqtr4di 2784 | . . . . 5 ⊢ (𝑖 = 𝐼 → (freeMnd‘(𝑖 × 2o)) = 𝑀) |
| 7 | fveq2 6822 | . . . . . 6 ⊢ (𝑖 = 𝐼 → ( ~FG ‘𝑖) = ( ~FG ‘𝐼)) | |
| 8 | frgpval.r | . . . . . 6 ⊢ ∼ = ( ~FG ‘𝐼) | |
| 9 | 7, 8 | eqtr4di 2784 | . . . . 5 ⊢ (𝑖 = 𝐼 → ( ~FG ‘𝑖) = ∼ ) |
| 10 | 6, 9 | oveq12d 7364 | . . . 4 ⊢ (𝑖 = 𝐼 → ((freeMnd‘(𝑖 × 2o)) /s ( ~FG ‘𝑖)) = (𝑀 /s ∼ )) |
| 11 | df-frgp 19622 | . . . 4 ⊢ freeGrp = (𝑖 ∈ V ↦ ((freeMnd‘(𝑖 × 2o)) /s ( ~FG ‘𝑖))) | |
| 12 | ovex 7379 | . . . 4 ⊢ (𝑀 /s ∼ ) ∈ V | |
| 13 | 10, 11, 12 | fvmpt 6929 | . . 3 ⊢ (𝐼 ∈ V → (freeGrp‘𝐼) = (𝑀 /s ∼ )) |
| 14 | 2, 13 | syl 17 | . 2 ⊢ (𝐼 ∈ 𝑉 → (freeGrp‘𝐼) = (𝑀 /s ∼ )) |
| 15 | 1, 14 | eqtrid 2778 | 1 ⊢ (𝐼 ∈ 𝑉 → 𝐺 = (𝑀 /s ∼ )) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 Vcvv 3436 × cxp 5612 ‘cfv 6481 (class class class)co 7346 2oc2o 8379 /s cqus 17409 freeMndcfrmd 18755 ~FG cefg 19618 freeGrpcfrgp 19619 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-iota 6437 df-fun 6483 df-fv 6489 df-ov 7349 df-frgp 19622 |
| This theorem is referenced by: frgp0 19672 frgpeccl 19673 frgpadd 19675 frgpupf 19685 frgpup1 19687 frgpup3lem 19689 frgpnabllem2 19786 |
| Copyright terms: Public domain | W3C validator |