| Metamath
Proof Explorer Theorem List (p. 197 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30854) |
(30855-32377) |
(32378-49798) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | lsmlub 19601 | The least upper bound property of subgroup sum. (Contributed by NM, 6-Feb-2014.) (Revised by Mario Carneiro, 21-Jun-2014.) |
| ⊢ ⊕ = (LSSum‘𝐺) ⇒ ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) → ((𝑆 ⊆ 𝑈 ∧ 𝑇 ⊆ 𝑈) ↔ (𝑆 ⊕ 𝑇) ⊆ 𝑈)) | ||
| Theorem | lsmss1 19602 | Subgroup sum with a subset. (Contributed by NM, 27-Mar-2014.) (Revised by Mario Carneiro, 19-Apr-2016.) |
| ⊢ ⊕ = (LSSum‘𝐺) ⇒ ⊢ ((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ 𝑈) → (𝑇 ⊕ 𝑈) = 𝑈) | ||
| Theorem | lsmss1b 19603 | Subgroup sum with a subset. (Contributed by NM, 10-Jan-2015.) (Revised by Mario Carneiro, 19-Apr-2016.) |
| ⊢ ⊕ = (LSSum‘𝐺) ⇒ ⊢ ((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) → (𝑇 ⊆ 𝑈 ↔ (𝑇 ⊕ 𝑈) = 𝑈)) | ||
| Theorem | lsmss2 19604 | Subgroup sum with a subset. (Contributed by NM, 27-Mar-2014.) (Revised by Mario Carneiro, 19-Apr-2016.) |
| ⊢ ⊕ = (LSSum‘𝐺) ⇒ ⊢ ((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑈 ⊆ 𝑇) → (𝑇 ⊕ 𝑈) = 𝑇) | ||
| Theorem | lsmss2b 19605 | Subgroup sum with a subset. (Contributed by NM, 10-Jan-2015.) (Revised by Mario Carneiro, 19-Apr-2016.) |
| ⊢ ⊕ = (LSSum‘𝐺) ⇒ ⊢ ((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) → (𝑈 ⊆ 𝑇 ↔ (𝑇 ⊕ 𝑈) = 𝑇)) | ||
| Theorem | lsmass 19606 | Subgroup sum is associative. (Contributed by NM, 2-Mar-2014.) (Revised by Mario Carneiro, 19-Apr-2016.) |
| ⊢ ⊕ = (LSSum‘𝐺) ⇒ ⊢ ((𝑅 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) → ((𝑅 ⊕ 𝑇) ⊕ 𝑈) = (𝑅 ⊕ (𝑇 ⊕ 𝑈))) | ||
| Theorem | mndlsmidm 19607 | Subgroup sum is idempotent for monoids. This corresponds to the observation in [Lang] p. 6. (Contributed by AV, 27-Dec-2023.) |
| ⊢ ⊕ = (LSSum‘𝐺) & ⊢ 𝐵 = (Base‘𝐺) ⇒ ⊢ (𝐺 ∈ Mnd → (𝐵 ⊕ 𝐵) = 𝐵) | ||
| Theorem | lsm01 19608 | Subgroup sum with the zero subgroup. (Contributed by NM, 27-Mar-2014.) (Revised by Mario Carneiro, 19-Apr-2016.) |
| ⊢ 0 = (0g‘𝐺) & ⊢ ⊕ = (LSSum‘𝐺) ⇒ ⊢ (𝑋 ∈ (SubGrp‘𝐺) → (𝑋 ⊕ { 0 }) = 𝑋) | ||
| Theorem | lsm02 19609 | Subgroup sum with the zero subgroup. (Contributed by NM, 27-Mar-2014.) (Revised by Mario Carneiro, 19-Apr-2016.) |
| ⊢ 0 = (0g‘𝐺) & ⊢ ⊕ = (LSSum‘𝐺) ⇒ ⊢ (𝑋 ∈ (SubGrp‘𝐺) → ({ 0 } ⊕ 𝑋) = 𝑋) | ||
| Theorem | subglsm 19610 | The subgroup sum evaluated within a subgroup. (Contributed by Mario Carneiro, 27-Apr-2016.) |
| ⊢ 𝐻 = (𝐺 ↾s 𝑆) & ⊢ ⊕ = (LSSum‘𝐺) & ⊢ 𝐴 = (LSSum‘𝐻) ⇒ ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ 𝑆 ∧ 𝑈 ⊆ 𝑆) → (𝑇 ⊕ 𝑈) = (𝑇𝐴𝑈)) | ||
| Theorem | lssnle 19611 | Equivalent expressions for "not less than". (chnlei 31421 analog.) (Contributed by NM, 10-Jan-2015.) (Revised by Mario Carneiro, 19-Apr-2016.) |
| ⊢ ⊕ = (LSSum‘𝐺) & ⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) ⇒ ⊢ (𝜑 → (¬ 𝑈 ⊆ 𝑇 ↔ 𝑇 ⊊ (𝑇 ⊕ 𝑈))) | ||
| Theorem | lsmmod 19612 | The modular law holds for subgroup sum. Similar to part of Theorem 16.9 of [MaedaMaeda] p. 70. (Contributed by NM, 2-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2016.) |
| ⊢ ⊕ = (LSSum‘𝐺) ⇒ ⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆 ⊆ 𝑈) → (𝑆 ⊕ (𝑇 ∩ 𝑈)) = ((𝑆 ⊕ 𝑇) ∩ 𝑈)) | ||
| Theorem | lsmmod2 19613 | Modular law dual for subgroup sum. Similar to part of Theorem 16.9 of [MaedaMaeda] p. 70. (Contributed by NM, 8-Jan-2015.) (Revised by Mario Carneiro, 21-Apr-2016.) |
| ⊢ ⊕ = (LSSum‘𝐺) ⇒ ⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑈 ⊆ 𝑆) → (𝑆 ∩ (𝑇 ⊕ 𝑈)) = ((𝑆 ∩ 𝑇) ⊕ 𝑈)) | ||
| Theorem | lsmpropd 19614* | If two structures have the same components (properties), they have the same subspace structure. (Contributed by Mario Carneiro, 29-Jun-2015.) (Revised by AV, 25-Apr-2024.) |
| ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) & ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦)) & ⊢ (𝜑 → 𝐾 ∈ 𝑉) & ⊢ (𝜑 → 𝐿 ∈ 𝑊) ⇒ ⊢ (𝜑 → (LSSum‘𝐾) = (LSSum‘𝐿)) | ||
| Theorem | cntzrecd 19615 | Commute the "subgroups commute" predicate. (Contributed by Mario Carneiro, 21-Apr-2016.) |
| ⊢ 𝑍 = (Cntz‘𝐺) & ⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → 𝑇 ⊆ (𝑍‘𝑈)) ⇒ ⊢ (𝜑 → 𝑈 ⊆ (𝑍‘𝑇)) | ||
| Theorem | lsmcntz 19616 | The "subgroups commute" predicate applied to a subgroup sum. (Contributed by Mario Carneiro, 21-Apr-2016.) |
| ⊢ ⊕ = (LSSum‘𝐺) & ⊢ (𝜑 → 𝑆 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) & ⊢ 𝑍 = (Cntz‘𝐺) ⇒ ⊢ (𝜑 → ((𝑆 ⊕ 𝑇) ⊆ (𝑍‘𝑈) ↔ (𝑆 ⊆ (𝑍‘𝑈) ∧ 𝑇 ⊆ (𝑍‘𝑈)))) | ||
| Theorem | lsmcntzr 19617 | The "subgroups commute" predicate applied to a subgroup sum. (Contributed by Mario Carneiro, 21-Apr-2016.) |
| ⊢ ⊕ = (LSSum‘𝐺) & ⊢ (𝜑 → 𝑆 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) & ⊢ 𝑍 = (Cntz‘𝐺) ⇒ ⊢ (𝜑 → (𝑆 ⊆ (𝑍‘(𝑇 ⊕ 𝑈)) ↔ (𝑆 ⊆ (𝑍‘𝑇) ∧ 𝑆 ⊆ (𝑍‘𝑈)))) | ||
| Theorem | lsmdisj 19618 | Disjointness from a subgroup sum. (Contributed by Mario Carneiro, 21-Apr-2016.) |
| ⊢ ⊕ = (LSSum‘𝐺) & ⊢ (𝜑 → 𝑆 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) & ⊢ 0 = (0g‘𝐺) & ⊢ (𝜑 → ((𝑆 ⊕ 𝑇) ∩ 𝑈) = { 0 }) ⇒ ⊢ (𝜑 → ((𝑆 ∩ 𝑈) = { 0 } ∧ (𝑇 ∩ 𝑈) = { 0 })) | ||
| Theorem | lsmdisj2 19619 | Association of the disjointness constraint in a subgroup sum. (Contributed by Mario Carneiro, 22-Apr-2016.) |
| ⊢ ⊕ = (LSSum‘𝐺) & ⊢ (𝜑 → 𝑆 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) & ⊢ 0 = (0g‘𝐺) & ⊢ (𝜑 → ((𝑆 ⊕ 𝑇) ∩ 𝑈) = { 0 }) & ⊢ (𝜑 → (𝑆 ∩ 𝑇) = { 0 }) ⇒ ⊢ (𝜑 → (𝑇 ∩ (𝑆 ⊕ 𝑈)) = { 0 }) | ||
| Theorem | lsmdisj3 19620 | Association of the disjointness constraint in a subgroup sum. (Contributed by Mario Carneiro, 21-Apr-2016.) |
| ⊢ ⊕ = (LSSum‘𝐺) & ⊢ (𝜑 → 𝑆 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) & ⊢ 0 = (0g‘𝐺) & ⊢ (𝜑 → ((𝑆 ⊕ 𝑇) ∩ 𝑈) = { 0 }) & ⊢ (𝜑 → (𝑆 ∩ 𝑇) = { 0 }) & ⊢ 𝑍 = (Cntz‘𝐺) & ⊢ (𝜑 → 𝑆 ⊆ (𝑍‘𝑇)) ⇒ ⊢ (𝜑 → (𝑆 ∩ (𝑇 ⊕ 𝑈)) = { 0 }) | ||
| Theorem | lsmdisjr 19621 | Disjointness from a subgroup sum. (Contributed by Mario Carneiro, 21-Apr-2016.) |
| ⊢ ⊕ = (LSSum‘𝐺) & ⊢ (𝜑 → 𝑆 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) & ⊢ 0 = (0g‘𝐺) & ⊢ (𝜑 → (𝑆 ∩ (𝑇 ⊕ 𝑈)) = { 0 }) ⇒ ⊢ (𝜑 → ((𝑆 ∩ 𝑇) = { 0 } ∧ (𝑆 ∩ 𝑈) = { 0 })) | ||
| Theorem | lsmdisj2r 19622 | Association of the disjointness constraint in a subgroup sum. (Contributed by Mario Carneiro, 22-Apr-2016.) |
| ⊢ ⊕ = (LSSum‘𝐺) & ⊢ (𝜑 → 𝑆 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) & ⊢ 0 = (0g‘𝐺) & ⊢ (𝜑 → (𝑆 ∩ (𝑇 ⊕ 𝑈)) = { 0 }) & ⊢ (𝜑 → (𝑇 ∩ 𝑈) = { 0 }) ⇒ ⊢ (𝜑 → ((𝑆 ⊕ 𝑈) ∩ 𝑇) = { 0 }) | ||
| Theorem | lsmdisj3r 19623 | Association of the disjointness constraint in a subgroup sum. (Contributed by Mario Carneiro, 22-Apr-2016.) |
| ⊢ ⊕ = (LSSum‘𝐺) & ⊢ (𝜑 → 𝑆 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) & ⊢ 0 = (0g‘𝐺) & ⊢ (𝜑 → (𝑆 ∩ (𝑇 ⊕ 𝑈)) = { 0 }) & ⊢ (𝜑 → (𝑇 ∩ 𝑈) = { 0 }) & ⊢ 𝑍 = (Cntz‘𝐺) & ⊢ (𝜑 → 𝑇 ⊆ (𝑍‘𝑈)) ⇒ ⊢ (𝜑 → ((𝑆 ⊕ 𝑇) ∩ 𝑈) = { 0 }) | ||
| Theorem | lsmdisj2a 19624 | Association of the disjointness constraint in a subgroup sum. (Contributed by Mario Carneiro, 21-Apr-2016.) |
| ⊢ ⊕ = (LSSum‘𝐺) & ⊢ (𝜑 → 𝑆 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) & ⊢ 0 = (0g‘𝐺) ⇒ ⊢ (𝜑 → ((((𝑆 ⊕ 𝑇) ∩ 𝑈) = { 0 } ∧ (𝑆 ∩ 𝑇) = { 0 }) ↔ ((𝑇 ∩ (𝑆 ⊕ 𝑈)) = { 0 } ∧ (𝑆 ∩ 𝑈) = { 0 }))) | ||
| Theorem | lsmdisj2b 19625 | Association of the disjointness constraint in a subgroup sum. (Contributed by Mario Carneiro, 21-Apr-2016.) |
| ⊢ ⊕ = (LSSum‘𝐺) & ⊢ (𝜑 → 𝑆 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) & ⊢ 0 = (0g‘𝐺) ⇒ ⊢ (𝜑 → ((((𝑆 ⊕ 𝑈) ∩ 𝑇) = { 0 } ∧ (𝑆 ∩ 𝑈) = { 0 }) ↔ ((𝑆 ∩ (𝑇 ⊕ 𝑈)) = { 0 } ∧ (𝑇 ∩ 𝑈) = { 0 }))) | ||
| Theorem | lsmdisj3a 19626 | Association of the disjointness constraint in a subgroup sum. (Contributed by Mario Carneiro, 21-Apr-2016.) |
| ⊢ ⊕ = (LSSum‘𝐺) & ⊢ (𝜑 → 𝑆 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) & ⊢ 0 = (0g‘𝐺) & ⊢ 𝑍 = (Cntz‘𝐺) & ⊢ (𝜑 → 𝑆 ⊆ (𝑍‘𝑇)) ⇒ ⊢ (𝜑 → ((((𝑆 ⊕ 𝑇) ∩ 𝑈) = { 0 } ∧ (𝑆 ∩ 𝑇) = { 0 }) ↔ ((𝑆 ∩ (𝑇 ⊕ 𝑈)) = { 0 } ∧ (𝑇 ∩ 𝑈) = { 0 }))) | ||
| Theorem | lsmdisj3b 19627 | Association of the disjointness constraint in a subgroup sum. (Contributed by Mario Carneiro, 21-Apr-2016.) |
| ⊢ ⊕ = (LSSum‘𝐺) & ⊢ (𝜑 → 𝑆 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) & ⊢ 0 = (0g‘𝐺) & ⊢ 𝑍 = (Cntz‘𝐺) & ⊢ (𝜑 → 𝑇 ⊆ (𝑍‘𝑈)) ⇒ ⊢ (𝜑 → ((((𝑆 ⊕ 𝑇) ∩ 𝑈) = { 0 } ∧ (𝑆 ∩ 𝑇) = { 0 }) ↔ ((𝑆 ∩ (𝑇 ⊕ 𝑈)) = { 0 } ∧ (𝑇 ∩ 𝑈) = { 0 }))) | ||
| Theorem | subgdisj1 19628 | Vectors belonging to disjoint commuting subgroups are uniquely determined by their sum. (Contributed by NM, 2-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2016.) |
| ⊢ + = (+g‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ 𝑍 = (Cntz‘𝐺) & ⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → (𝑇 ∩ 𝑈) = { 0 }) & ⊢ (𝜑 → 𝑇 ⊆ (𝑍‘𝑈)) & ⊢ (𝜑 → 𝐴 ∈ 𝑇) & ⊢ (𝜑 → 𝐶 ∈ 𝑇) & ⊢ (𝜑 → 𝐵 ∈ 𝑈) & ⊢ (𝜑 → 𝐷 ∈ 𝑈) & ⊢ (𝜑 → (𝐴 + 𝐵) = (𝐶 + 𝐷)) ⇒ ⊢ (𝜑 → 𝐴 = 𝐶) | ||
| Theorem | subgdisj2 19629 | Vectors belonging to disjoint commuting subgroups are uniquely determined by their sum. (Contributed by NM, 12-Jul-2014.) (Revised by Mario Carneiro, 19-Apr-2016.) |
| ⊢ + = (+g‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ 𝑍 = (Cntz‘𝐺) & ⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → (𝑇 ∩ 𝑈) = { 0 }) & ⊢ (𝜑 → 𝑇 ⊆ (𝑍‘𝑈)) & ⊢ (𝜑 → 𝐴 ∈ 𝑇) & ⊢ (𝜑 → 𝐶 ∈ 𝑇) & ⊢ (𝜑 → 𝐵 ∈ 𝑈) & ⊢ (𝜑 → 𝐷 ∈ 𝑈) & ⊢ (𝜑 → (𝐴 + 𝐵) = (𝐶 + 𝐷)) ⇒ ⊢ (𝜑 → 𝐵 = 𝐷) | ||
| Theorem | subgdisjb 19630 | Vectors belonging to disjoint commuting subgroups are uniquely determined by their sum. Analogous to opth 5439, this theorem shows a way of representing a pair of vectors. (Contributed by NM, 5-Jul-2014.) (Revised by Mario Carneiro, 19-Apr-2016.) |
| ⊢ + = (+g‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ 𝑍 = (Cntz‘𝐺) & ⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → (𝑇 ∩ 𝑈) = { 0 }) & ⊢ (𝜑 → 𝑇 ⊆ (𝑍‘𝑈)) & ⊢ (𝜑 → 𝐴 ∈ 𝑇) & ⊢ (𝜑 → 𝐶 ∈ 𝑇) & ⊢ (𝜑 → 𝐵 ∈ 𝑈) & ⊢ (𝜑 → 𝐷 ∈ 𝑈) ⇒ ⊢ (𝜑 → ((𝐴 + 𝐵) = (𝐶 + 𝐷) ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) | ||
| Theorem | pj1fval 19631* | The left projection function (for a direct product of group subspaces). (Contributed by Mario Carneiro, 15-Oct-2015.) (Revised by Mario Carneiro, 21-Apr-2016.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ ⊕ = (LSSum‘𝐺) & ⊢ 𝑃 = (proj1‘𝐺) ⇒ ⊢ ((𝐺 ∈ 𝑉 ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) → (𝑇𝑃𝑈) = (𝑧 ∈ (𝑇 ⊕ 𝑈) ↦ (℩𝑥 ∈ 𝑇 ∃𝑦 ∈ 𝑈 𝑧 = (𝑥 + 𝑦)))) | ||
| Theorem | pj1val 19632* | The left projection function (for a direct product of group subspaces). (Contributed by Mario Carneiro, 15-Oct-2015.) (Revised by Mario Carneiro, 21-Apr-2016.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ ⊕ = (LSSum‘𝐺) & ⊢ 𝑃 = (proj1‘𝐺) ⇒ ⊢ (((𝐺 ∈ 𝑉 ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) ∧ 𝑋 ∈ (𝑇 ⊕ 𝑈)) → ((𝑇𝑃𝑈)‘𝑋) = (℩𝑥 ∈ 𝑇 ∃𝑦 ∈ 𝑈 𝑋 = (𝑥 + 𝑦))) | ||
| Theorem | pj1eu 19633* | Uniqueness of a left projection. (Contributed by Mario Carneiro, 15-Oct-2015.) |
| ⊢ + = (+g‘𝐺) & ⊢ ⊕ = (LSSum‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ 𝑍 = (Cntz‘𝐺) & ⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → (𝑇 ∩ 𝑈) = { 0 }) & ⊢ (𝜑 → 𝑇 ⊆ (𝑍‘𝑈)) ⇒ ⊢ ((𝜑 ∧ 𝑋 ∈ (𝑇 ⊕ 𝑈)) → ∃!𝑥 ∈ 𝑇 ∃𝑦 ∈ 𝑈 𝑋 = (𝑥 + 𝑦)) | ||
| Theorem | pj1f 19634 | The left projection function maps a direct subspace sum onto the left factor. (Contributed by Mario Carneiro, 15-Oct-2015.) |
| ⊢ + = (+g‘𝐺) & ⊢ ⊕ = (LSSum‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ 𝑍 = (Cntz‘𝐺) & ⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → (𝑇 ∩ 𝑈) = { 0 }) & ⊢ (𝜑 → 𝑇 ⊆ (𝑍‘𝑈)) & ⊢ 𝑃 = (proj1‘𝐺) ⇒ ⊢ (𝜑 → (𝑇𝑃𝑈):(𝑇 ⊕ 𝑈)⟶𝑇) | ||
| Theorem | pj2f 19635 | The right projection function maps a direct subspace sum onto the right factor. (Contributed by Mario Carneiro, 15-Oct-2015.) |
| ⊢ + = (+g‘𝐺) & ⊢ ⊕ = (LSSum‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ 𝑍 = (Cntz‘𝐺) & ⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → (𝑇 ∩ 𝑈) = { 0 }) & ⊢ (𝜑 → 𝑇 ⊆ (𝑍‘𝑈)) & ⊢ 𝑃 = (proj1‘𝐺) ⇒ ⊢ (𝜑 → (𝑈𝑃𝑇):(𝑇 ⊕ 𝑈)⟶𝑈) | ||
| Theorem | pj1id 19636 | Any element of a direct subspace sum can be decomposed into projections onto the left and right factors. (Contributed by Mario Carneiro, 15-Oct-2015.) (Revised by Mario Carneiro, 21-Apr-2016.) |
| ⊢ + = (+g‘𝐺) & ⊢ ⊕ = (LSSum‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ 𝑍 = (Cntz‘𝐺) & ⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → (𝑇 ∩ 𝑈) = { 0 }) & ⊢ (𝜑 → 𝑇 ⊆ (𝑍‘𝑈)) & ⊢ 𝑃 = (proj1‘𝐺) ⇒ ⊢ ((𝜑 ∧ 𝑋 ∈ (𝑇 ⊕ 𝑈)) → 𝑋 = (((𝑇𝑃𝑈)‘𝑋) + ((𝑈𝑃𝑇)‘𝑋))) | ||
| Theorem | pj1eq 19637 | Any element of a direct subspace sum can be decomposed uniquely into projections onto the left and right factors. (Contributed by Mario Carneiro, 16-Oct-2015.) |
| ⊢ + = (+g‘𝐺) & ⊢ ⊕ = (LSSum‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ 𝑍 = (Cntz‘𝐺) & ⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → (𝑇 ∩ 𝑈) = { 0 }) & ⊢ (𝜑 → 𝑇 ⊆ (𝑍‘𝑈)) & ⊢ 𝑃 = (proj1‘𝐺) & ⊢ (𝜑 → 𝑋 ∈ (𝑇 ⊕ 𝑈)) & ⊢ (𝜑 → 𝐵 ∈ 𝑇) & ⊢ (𝜑 → 𝐶 ∈ 𝑈) ⇒ ⊢ (𝜑 → (𝑋 = (𝐵 + 𝐶) ↔ (((𝑇𝑃𝑈)‘𝑋) = 𝐵 ∧ ((𝑈𝑃𝑇)‘𝑋) = 𝐶))) | ||
| Theorem | pj1lid 19638 | The left projection function is the identity on the left subspace. (Contributed by Mario Carneiro, 15-Oct-2015.) |
| ⊢ + = (+g‘𝐺) & ⊢ ⊕ = (LSSum‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ 𝑍 = (Cntz‘𝐺) & ⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → (𝑇 ∩ 𝑈) = { 0 }) & ⊢ (𝜑 → 𝑇 ⊆ (𝑍‘𝑈)) & ⊢ 𝑃 = (proj1‘𝐺) ⇒ ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑇) → ((𝑇𝑃𝑈)‘𝑋) = 𝑋) | ||
| Theorem | pj1rid 19639 | The left projection function is the zero operator on the right subspace. (Contributed by Mario Carneiro, 15-Oct-2015.) |
| ⊢ + = (+g‘𝐺) & ⊢ ⊕ = (LSSum‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ 𝑍 = (Cntz‘𝐺) & ⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → (𝑇 ∩ 𝑈) = { 0 }) & ⊢ (𝜑 → 𝑇 ⊆ (𝑍‘𝑈)) & ⊢ 𝑃 = (proj1‘𝐺) ⇒ ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑈) → ((𝑇𝑃𝑈)‘𝑋) = 0 ) | ||
| Theorem | pj1ghm 19640 | The left projection function is a group homomorphism. (Contributed by Mario Carneiro, 21-Apr-2016.) |
| ⊢ + = (+g‘𝐺) & ⊢ ⊕ = (LSSum‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ 𝑍 = (Cntz‘𝐺) & ⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → (𝑇 ∩ 𝑈) = { 0 }) & ⊢ (𝜑 → 𝑇 ⊆ (𝑍‘𝑈)) & ⊢ 𝑃 = (proj1‘𝐺) ⇒ ⊢ (𝜑 → (𝑇𝑃𝑈) ∈ ((𝐺 ↾s (𝑇 ⊕ 𝑈)) GrpHom 𝐺)) | ||
| Theorem | pj1ghm2 19641 | The left projection function is a group homomorphism. (Contributed by Mario Carneiro, 21-Apr-2016.) |
| ⊢ + = (+g‘𝐺) & ⊢ ⊕ = (LSSum‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ 𝑍 = (Cntz‘𝐺) & ⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → (𝑇 ∩ 𝑈) = { 0 }) & ⊢ (𝜑 → 𝑇 ⊆ (𝑍‘𝑈)) & ⊢ 𝑃 = (proj1‘𝐺) ⇒ ⊢ (𝜑 → (𝑇𝑃𝑈) ∈ ((𝐺 ↾s (𝑇 ⊕ 𝑈)) GrpHom (𝐺 ↾s 𝑇))) | ||
| Theorem | lsmhash 19642 | The order of the direct product of groups. (Contributed by Mario Carneiro, 21-Apr-2016.) |
| ⊢ ⊕ = (LSSum‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ 𝑍 = (Cntz‘𝐺) & ⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → (𝑇 ∩ 𝑈) = { 0 }) & ⊢ (𝜑 → 𝑇 ⊆ (𝑍‘𝑈)) & ⊢ (𝜑 → 𝑇 ∈ Fin) & ⊢ (𝜑 → 𝑈 ∈ Fin) ⇒ ⊢ (𝜑 → (♯‘(𝑇 ⊕ 𝑈)) = ((♯‘𝑇) · (♯‘𝑈))) | ||
| Syntax | cefg 19643 | Extend class notation with the free group equivalence relation. |
| class ~FG | ||
| Syntax | cfrgp 19644 | Extend class notation with the free group construction. |
| class freeGrp | ||
| Syntax | cvrgp 19645 | Extend class notation with free group injection. |
| class varFGrp | ||
| Definition | df-efg 19646* | Define the free group equivalence relation, which is the smallest equivalence relation ≈ such that for any words 𝐴, 𝐵 and formal symbol 𝑥 with inverse invg𝑥, 𝐴𝐵 ≈ 𝐴𝑥(invg𝑥)𝐵. (Contributed by Mario Carneiro, 1-Oct-2015.) |
| ⊢ ~FG = (𝑖 ∈ V ↦ ∩ {𝑟 ∣ (𝑟 Er Word (𝑖 × 2o) ∧ ∀𝑥 ∈ Word (𝑖 × 2o)∀𝑛 ∈ (0...(♯‘𝑥))∀𝑦 ∈ 𝑖 ∀𝑧 ∈ 2o 𝑥𝑟(𝑥 splice 〈𝑛, 𝑛, 〈“〈𝑦, 𝑧〉〈𝑦, (1o ∖ 𝑧)〉”〉〉))}) | ||
| Definition | df-frgp 19647 | Define the free group on a set 𝐼 of generators, defined as the quotient of the free monoid on 𝐼 × 2o (representing the generator elements and their formal inverses) by the free group equivalence relation df-efg 19646. (Contributed by Mario Carneiro, 1-Oct-2015.) |
| ⊢ freeGrp = (𝑖 ∈ V ↦ ((freeMnd‘(𝑖 × 2o)) /s ( ~FG ‘𝑖))) | ||
| Definition | df-vrgp 19648* | Define the canonical injection from the generating set 𝐼 into the base set of the free group. (Contributed by Mario Carneiro, 2-Oct-2015.) |
| ⊢ varFGrp = (𝑖 ∈ V ↦ (𝑗 ∈ 𝑖 ↦ [〈“〈𝑗, ∅〉”〉]( ~FG ‘𝑖))) | ||
| Theorem | efgmval 19649* | Value of the formal inverse operation for the generating set of a free group. (Contributed by Mario Carneiro, 27-Sep-2015.) |
| ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) ⇒ ⊢ ((𝐴 ∈ 𝐼 ∧ 𝐵 ∈ 2o) → (𝐴𝑀𝐵) = 〈𝐴, (1o ∖ 𝐵)〉) | ||
| Theorem | efgmf 19650* | The formal inverse operation is an endofunction on the generating set. (Contributed by Mario Carneiro, 27-Sep-2015.) |
| ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) ⇒ ⊢ 𝑀:(𝐼 × 2o)⟶(𝐼 × 2o) | ||
| Theorem | efgmnvl 19651* | The inversion function on the generators is an involution. (Contributed by Mario Carneiro, 1-Oct-2015.) |
| ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) ⇒ ⊢ (𝐴 ∈ (𝐼 × 2o) → (𝑀‘(𝑀‘𝐴)) = 𝐴) | ||
| Theorem | efgrcl 19652 | Lemma for efgval 19654. (Contributed by Mario Carneiro, 1-Oct-2015.) (Revised by Mario Carneiro, 27-Feb-2016.) |
| ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) ⇒ ⊢ (𝐴 ∈ 𝑊 → (𝐼 ∈ V ∧ 𝑊 = Word (𝐼 × 2o))) | ||
| Theorem | efglem 19653* | Lemma for efgval 19654. (Contributed by Mario Carneiro, 27-Sep-2015.) |
| ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) ⇒ ⊢ ∃𝑟(𝑟 Er 𝑊 ∧ ∀𝑥 ∈ 𝑊 ∀𝑛 ∈ (0...(♯‘𝑥))∀𝑦 ∈ 𝐼 ∀𝑧 ∈ 2o 𝑥𝑟(𝑥 splice 〈𝑛, 𝑛, 〈“〈𝑦, 𝑧〉〈𝑦, (1o ∖ 𝑧)〉”〉〉)) | ||
| Theorem | efgval 19654* | Value of the free group construction. (Contributed by Mario Carneiro, 1-Oct-2015.) |
| ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) & ⊢ ∼ = ( ~FG ‘𝐼) ⇒ ⊢ ∼ = ∩ {𝑟 ∣ (𝑟 Er 𝑊 ∧ ∀𝑥 ∈ 𝑊 ∀𝑛 ∈ (0...(♯‘𝑥))∀𝑦 ∈ 𝐼 ∀𝑧 ∈ 2o 𝑥𝑟(𝑥 splice 〈𝑛, 𝑛, 〈“〈𝑦, 𝑧〉〈𝑦, (1o ∖ 𝑧)〉”〉〉))} | ||
| Theorem | efger 19655 | Value of the free group construction. (Contributed by Mario Carneiro, 27-Sep-2015.) (Revised by Mario Carneiro, 27-Feb-2016.) |
| ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) & ⊢ ∼ = ( ~FG ‘𝐼) ⇒ ⊢ ∼ Er 𝑊 | ||
| Theorem | efgi 19656 | Value of the free group construction. (Contributed by Mario Carneiro, 27-Sep-2015.) (Revised by Mario Carneiro, 27-Feb-2016.) |
| ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) & ⊢ ∼ = ( ~FG ‘𝐼) ⇒ ⊢ (((𝐴 ∈ 𝑊 ∧ 𝑁 ∈ (0...(♯‘𝐴))) ∧ (𝐽 ∈ 𝐼 ∧ 𝐾 ∈ 2o)) → 𝐴 ∼ (𝐴 splice 〈𝑁, 𝑁, 〈“〈𝐽, 𝐾〉〈𝐽, (1o ∖ 𝐾)〉”〉〉)) | ||
| Theorem | efgi0 19657 | Value of the free group construction. (Contributed by Mario Carneiro, 27-Sep-2015.) (Revised by Mario Carneiro, 27-Feb-2016.) |
| ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) & ⊢ ∼ = ( ~FG ‘𝐼) ⇒ ⊢ ((𝐴 ∈ 𝑊 ∧ 𝑁 ∈ (0...(♯‘𝐴)) ∧ 𝐽 ∈ 𝐼) → 𝐴 ∼ (𝐴 splice 〈𝑁, 𝑁, 〈“〈𝐽, ∅〉〈𝐽, 1o〉”〉〉)) | ||
| Theorem | efgi1 19658 | Value of the free group construction. (Contributed by Mario Carneiro, 27-Sep-2015.) (Revised by Mario Carneiro, 27-Feb-2016.) |
| ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) & ⊢ ∼ = ( ~FG ‘𝐼) ⇒ ⊢ ((𝐴 ∈ 𝑊 ∧ 𝑁 ∈ (0...(♯‘𝐴)) ∧ 𝐽 ∈ 𝐼) → 𝐴 ∼ (𝐴 splice 〈𝑁, 𝑁, 〈“〈𝐽, 1o〉〈𝐽, ∅〉”〉〉)) | ||
| Theorem | efgtf 19659* | Value of the free group construction. (Contributed by Mario Carneiro, 27-Sep-2015.) |
| ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) & ⊢ ∼ = ( ~FG ‘𝐼) & ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) & ⊢ 𝑇 = (𝑣 ∈ 𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉))) ⇒ ⊢ (𝑋 ∈ 𝑊 → ((𝑇‘𝑋) = (𝑎 ∈ (0...(♯‘𝑋)), 𝑏 ∈ (𝐼 × 2o) ↦ (𝑋 splice 〈𝑎, 𝑎, 〈“𝑏(𝑀‘𝑏)”〉〉)) ∧ (𝑇‘𝑋):((0...(♯‘𝑋)) × (𝐼 × 2o))⟶𝑊)) | ||
| Theorem | efgtval 19660* | Value of the extension function, which maps a word (a representation of the group element as a sequence of elements and their inverses) to its direct extensions, defined as the original representation with an element and its inverse inserted somewhere in the string. (Contributed by Mario Carneiro, 29-Sep-2015.) |
| ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) & ⊢ ∼ = ( ~FG ‘𝐼) & ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) & ⊢ 𝑇 = (𝑣 ∈ 𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉))) ⇒ ⊢ ((𝑋 ∈ 𝑊 ∧ 𝑁 ∈ (0...(♯‘𝑋)) ∧ 𝐴 ∈ (𝐼 × 2o)) → (𝑁(𝑇‘𝑋)𝐴) = (𝑋 splice 〈𝑁, 𝑁, 〈“𝐴(𝑀‘𝐴)”〉〉)) | ||
| Theorem | efgval2 19661* | Value of the free group construction. (Contributed by Mario Carneiro, 27-Sep-2015.) |
| ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) & ⊢ ∼ = ( ~FG ‘𝐼) & ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) & ⊢ 𝑇 = (𝑣 ∈ 𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉))) ⇒ ⊢ ∼ = ∩ {𝑟 ∣ (𝑟 Er 𝑊 ∧ ∀𝑥 ∈ 𝑊 ran (𝑇‘𝑥) ⊆ [𝑥]𝑟)} | ||
| Theorem | efgi2 19662* | Value of the free group construction. (Contributed by Mario Carneiro, 1-Oct-2015.) |
| ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) & ⊢ ∼ = ( ~FG ‘𝐼) & ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) & ⊢ 𝑇 = (𝑣 ∈ 𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉))) ⇒ ⊢ ((𝐴 ∈ 𝑊 ∧ 𝐵 ∈ ran (𝑇‘𝐴)) → 𝐴 ∼ 𝐵) | ||
| Theorem | efgtlen 19663* | Value of the free group construction. (Contributed by Mario Carneiro, 27-Sep-2015.) |
| ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) & ⊢ ∼ = ( ~FG ‘𝐼) & ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) & ⊢ 𝑇 = (𝑣 ∈ 𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉))) ⇒ ⊢ ((𝑋 ∈ 𝑊 ∧ 𝐴 ∈ ran (𝑇‘𝑋)) → (♯‘𝐴) = ((♯‘𝑋) + 2)) | ||
| Theorem | efginvrel2 19664* | The inverse of the reverse of a word composed with the word relates to the identity. (This provides an explicit expression for the representation of the group inverse, given a representative of the free group equivalence class.) (Contributed by Mario Carneiro, 1-Oct-2015.) |
| ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) & ⊢ ∼ = ( ~FG ‘𝐼) & ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) & ⊢ 𝑇 = (𝑣 ∈ 𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉))) ⇒ ⊢ (𝐴 ∈ 𝑊 → (𝐴 ++ (𝑀 ∘ (reverse‘𝐴))) ∼ ∅) | ||
| Theorem | efginvrel1 19665* | The inverse of the reverse of a word composed with the word relates to the identity. (This provides an explicit expression for the representation of the group inverse, given a representative of the free group equivalence class.) (Contributed by Mario Carneiro, 1-Oct-2015.) |
| ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) & ⊢ ∼ = ( ~FG ‘𝐼) & ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) & ⊢ 𝑇 = (𝑣 ∈ 𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉))) ⇒ ⊢ (𝐴 ∈ 𝑊 → ((𝑀 ∘ (reverse‘𝐴)) ++ 𝐴) ∼ ∅) | ||
| Theorem | efgsf 19666* | Value of the auxiliary function 𝑆 defining a sequence of extensions starting at some irreducible word. (Contributed by Mario Carneiro, 1-Oct-2015.) |
| ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) & ⊢ ∼ = ( ~FG ‘𝐼) & ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) & ⊢ 𝑇 = (𝑣 ∈ 𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉))) & ⊢ 𝐷 = (𝑊 ∖ ∪ 𝑥 ∈ 𝑊 ran (𝑇‘𝑥)) & ⊢ 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡‘𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1))) ⇒ ⊢ 𝑆:{𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡‘𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))}⟶𝑊 | ||
| Theorem | efgsdm 19667* | Elementhood in the domain of 𝑆, the set of sequences of extensions starting at an irreducible word. (Contributed by Mario Carneiro, 27-Sep-2015.) |
| ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) & ⊢ ∼ = ( ~FG ‘𝐼) & ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) & ⊢ 𝑇 = (𝑣 ∈ 𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉))) & ⊢ 𝐷 = (𝑊 ∖ ∪ 𝑥 ∈ 𝑊 ran (𝑇‘𝑥)) & ⊢ 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡‘𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1))) ⇒ ⊢ (𝐹 ∈ dom 𝑆 ↔ (𝐹 ∈ (Word 𝑊 ∖ {∅}) ∧ (𝐹‘0) ∈ 𝐷 ∧ ∀𝑖 ∈ (1..^(♯‘𝐹))(𝐹‘𝑖) ∈ ran (𝑇‘(𝐹‘(𝑖 − 1))))) | ||
| Theorem | efgsval 19668* | Value of the auxiliary function 𝑆 defining a sequence of extensions. (Contributed by Mario Carneiro, 27-Sep-2015.) |
| ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) & ⊢ ∼ = ( ~FG ‘𝐼) & ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) & ⊢ 𝑇 = (𝑣 ∈ 𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉))) & ⊢ 𝐷 = (𝑊 ∖ ∪ 𝑥 ∈ 𝑊 ran (𝑇‘𝑥)) & ⊢ 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡‘𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1))) ⇒ ⊢ (𝐹 ∈ dom 𝑆 → (𝑆‘𝐹) = (𝐹‘((♯‘𝐹) − 1))) | ||
| Theorem | efgsdmi 19669* | Property of the last link in the chain of extensions. (Contributed by Mario Carneiro, 29-Sep-2015.) |
| ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) & ⊢ ∼ = ( ~FG ‘𝐼) & ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) & ⊢ 𝑇 = (𝑣 ∈ 𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉))) & ⊢ 𝐷 = (𝑊 ∖ ∪ 𝑥 ∈ 𝑊 ran (𝑇‘𝑥)) & ⊢ 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡‘𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1))) ⇒ ⊢ ((𝐹 ∈ dom 𝑆 ∧ ((♯‘𝐹) − 1) ∈ ℕ) → (𝑆‘𝐹) ∈ ran (𝑇‘(𝐹‘(((♯‘𝐹) − 1) − 1)))) | ||
| Theorem | efgsval2 19670* | Value of the auxiliary function 𝑆 defining a sequence of extensions. (Contributed by Mario Carneiro, 1-Oct-2015.) |
| ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) & ⊢ ∼ = ( ~FG ‘𝐼) & ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) & ⊢ 𝑇 = (𝑣 ∈ 𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉))) & ⊢ 𝐷 = (𝑊 ∖ ∪ 𝑥 ∈ 𝑊 ran (𝑇‘𝑥)) & ⊢ 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡‘𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1))) ⇒ ⊢ ((𝐴 ∈ Word 𝑊 ∧ 𝐵 ∈ 𝑊 ∧ (𝐴 ++ 〈“𝐵”〉) ∈ dom 𝑆) → (𝑆‘(𝐴 ++ 〈“𝐵”〉)) = 𝐵) | ||
| Theorem | efgsrel 19671* | The start and end of any extension sequence are related (i.e. evaluate to the same element of the quotient group to be created). (Contributed by Mario Carneiro, 1-Oct-2015.) |
| ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) & ⊢ ∼ = ( ~FG ‘𝐼) & ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) & ⊢ 𝑇 = (𝑣 ∈ 𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉))) & ⊢ 𝐷 = (𝑊 ∖ ∪ 𝑥 ∈ 𝑊 ran (𝑇‘𝑥)) & ⊢ 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡‘𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1))) ⇒ ⊢ (𝐹 ∈ dom 𝑆 → (𝐹‘0) ∼ (𝑆‘𝐹)) | ||
| Theorem | efgs1 19672* | A singleton of an irreducible word is an extension sequence. (Contributed by Mario Carneiro, 27-Sep-2015.) |
| ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) & ⊢ ∼ = ( ~FG ‘𝐼) & ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) & ⊢ 𝑇 = (𝑣 ∈ 𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉))) & ⊢ 𝐷 = (𝑊 ∖ ∪ 𝑥 ∈ 𝑊 ran (𝑇‘𝑥)) & ⊢ 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡‘𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1))) ⇒ ⊢ (𝐴 ∈ 𝐷 → 〈“𝐴”〉 ∈ dom 𝑆) | ||
| Theorem | efgs1b 19673* | Every extension sequence ending in an irreducible word is trivial. (Contributed by Mario Carneiro, 1-Oct-2015.) |
| ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) & ⊢ ∼ = ( ~FG ‘𝐼) & ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) & ⊢ 𝑇 = (𝑣 ∈ 𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉))) & ⊢ 𝐷 = (𝑊 ∖ ∪ 𝑥 ∈ 𝑊 ran (𝑇‘𝑥)) & ⊢ 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡‘𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1))) ⇒ ⊢ (𝐴 ∈ dom 𝑆 → ((𝑆‘𝐴) ∈ 𝐷 ↔ (♯‘𝐴) = 1)) | ||
| Theorem | efgsp1 19674* | If 𝐹 is an extension sequence and 𝐴 is an extension of the last element of 𝐹, then 𝐹 + 〈“𝐴”〉 is an extension sequence. (Contributed by Mario Carneiro, 1-Oct-2015.) |
| ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) & ⊢ ∼ = ( ~FG ‘𝐼) & ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) & ⊢ 𝑇 = (𝑣 ∈ 𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉))) & ⊢ 𝐷 = (𝑊 ∖ ∪ 𝑥 ∈ 𝑊 ran (𝑇‘𝑥)) & ⊢ 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡‘𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1))) ⇒ ⊢ ((𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran (𝑇‘(𝑆‘𝐹))) → (𝐹 ++ 〈“𝐴”〉) ∈ dom 𝑆) | ||
| Theorem | efgsres 19675* | An initial segment of an extension sequence is an extension sequence. (Contributed by Mario Carneiro, 1-Oct-2015.) (Proof shortened by AV, 3-Nov-2022.) |
| ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) & ⊢ ∼ = ( ~FG ‘𝐼) & ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) & ⊢ 𝑇 = (𝑣 ∈ 𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉))) & ⊢ 𝐷 = (𝑊 ∖ ∪ 𝑥 ∈ 𝑊 ran (𝑇‘𝑥)) & ⊢ 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡‘𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1))) ⇒ ⊢ ((𝐹 ∈ dom 𝑆 ∧ 𝑁 ∈ (1...(♯‘𝐹))) → (𝐹 ↾ (0..^𝑁)) ∈ dom 𝑆) | ||
| Theorem | efgsfo 19676* | For any word, there is a sequence of extensions starting at a reduced word and ending at the target word, such that each word in the chain is an extension of the previous (inserting an element and its inverse at adjacent indices somewhere in the sequence). (Contributed by Mario Carneiro, 27-Sep-2015.) |
| ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) & ⊢ ∼ = ( ~FG ‘𝐼) & ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) & ⊢ 𝑇 = (𝑣 ∈ 𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉))) & ⊢ 𝐷 = (𝑊 ∖ ∪ 𝑥 ∈ 𝑊 ran (𝑇‘𝑥)) & ⊢ 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡‘𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1))) ⇒ ⊢ 𝑆:dom 𝑆–onto→𝑊 | ||
| Theorem | efgredlema 19677* | The reduced word that forms the base of the sequence in efgsval 19668 is uniquely determined, given the ending representation. (Contributed by Mario Carneiro, 1-Oct-2015.) |
| ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) & ⊢ ∼ = ( ~FG ‘𝐼) & ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) & ⊢ 𝑇 = (𝑣 ∈ 𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉))) & ⊢ 𝐷 = (𝑊 ∖ ∪ 𝑥 ∈ 𝑊 ran (𝑇‘𝑥)) & ⊢ 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡‘𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1))) & ⊢ (𝜑 → ∀𝑎 ∈ dom 𝑆∀𝑏 ∈ dom 𝑆((♯‘(𝑆‘𝑎)) < (♯‘(𝑆‘𝐴)) → ((𝑆‘𝑎) = (𝑆‘𝑏) → (𝑎‘0) = (𝑏‘0)))) & ⊢ (𝜑 → 𝐴 ∈ dom 𝑆) & ⊢ (𝜑 → 𝐵 ∈ dom 𝑆) & ⊢ (𝜑 → (𝑆‘𝐴) = (𝑆‘𝐵)) & ⊢ (𝜑 → ¬ (𝐴‘0) = (𝐵‘0)) ⇒ ⊢ (𝜑 → (((♯‘𝐴) − 1) ∈ ℕ ∧ ((♯‘𝐵) − 1) ∈ ℕ)) | ||
| Theorem | efgredlemf 19678* | Lemma for efgredleme 19680. (Contributed by Mario Carneiro, 4-Jun-2016.) |
| ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) & ⊢ ∼ = ( ~FG ‘𝐼) & ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) & ⊢ 𝑇 = (𝑣 ∈ 𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉))) & ⊢ 𝐷 = (𝑊 ∖ ∪ 𝑥 ∈ 𝑊 ran (𝑇‘𝑥)) & ⊢ 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡‘𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1))) & ⊢ (𝜑 → ∀𝑎 ∈ dom 𝑆∀𝑏 ∈ dom 𝑆((♯‘(𝑆‘𝑎)) < (♯‘(𝑆‘𝐴)) → ((𝑆‘𝑎) = (𝑆‘𝑏) → (𝑎‘0) = (𝑏‘0)))) & ⊢ (𝜑 → 𝐴 ∈ dom 𝑆) & ⊢ (𝜑 → 𝐵 ∈ dom 𝑆) & ⊢ (𝜑 → (𝑆‘𝐴) = (𝑆‘𝐵)) & ⊢ (𝜑 → ¬ (𝐴‘0) = (𝐵‘0)) & ⊢ 𝐾 = (((♯‘𝐴) − 1) − 1) & ⊢ 𝐿 = (((♯‘𝐵) − 1) − 1) ⇒ ⊢ (𝜑 → ((𝐴‘𝐾) ∈ 𝑊 ∧ (𝐵‘𝐿) ∈ 𝑊)) | ||
| Theorem | efgredlemg 19679* | Lemma for efgred 19685. (Contributed by Mario Carneiro, 4-Jun-2016.) |
| ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) & ⊢ ∼ = ( ~FG ‘𝐼) & ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) & ⊢ 𝑇 = (𝑣 ∈ 𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉))) & ⊢ 𝐷 = (𝑊 ∖ ∪ 𝑥 ∈ 𝑊 ran (𝑇‘𝑥)) & ⊢ 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡‘𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1))) & ⊢ (𝜑 → ∀𝑎 ∈ dom 𝑆∀𝑏 ∈ dom 𝑆((♯‘(𝑆‘𝑎)) < (♯‘(𝑆‘𝐴)) → ((𝑆‘𝑎) = (𝑆‘𝑏) → (𝑎‘0) = (𝑏‘0)))) & ⊢ (𝜑 → 𝐴 ∈ dom 𝑆) & ⊢ (𝜑 → 𝐵 ∈ dom 𝑆) & ⊢ (𝜑 → (𝑆‘𝐴) = (𝑆‘𝐵)) & ⊢ (𝜑 → ¬ (𝐴‘0) = (𝐵‘0)) & ⊢ 𝐾 = (((♯‘𝐴) − 1) − 1) & ⊢ 𝐿 = (((♯‘𝐵) − 1) − 1) & ⊢ (𝜑 → 𝑃 ∈ (0...(♯‘(𝐴‘𝐾)))) & ⊢ (𝜑 → 𝑄 ∈ (0...(♯‘(𝐵‘𝐿)))) & ⊢ (𝜑 → 𝑈 ∈ (𝐼 × 2o)) & ⊢ (𝜑 → 𝑉 ∈ (𝐼 × 2o)) & ⊢ (𝜑 → (𝑆‘𝐴) = (𝑃(𝑇‘(𝐴‘𝐾))𝑈)) & ⊢ (𝜑 → (𝑆‘𝐵) = (𝑄(𝑇‘(𝐵‘𝐿))𝑉)) ⇒ ⊢ (𝜑 → (♯‘(𝐴‘𝐾)) = (♯‘(𝐵‘𝐿))) | ||
| Theorem | efgredleme 19680* | Lemma for efgred 19685. (Contributed by Mario Carneiro, 1-Oct-2015.) (Proof shortened by AV, 15-Oct-2022.) |
| ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) & ⊢ ∼ = ( ~FG ‘𝐼) & ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) & ⊢ 𝑇 = (𝑣 ∈ 𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉))) & ⊢ 𝐷 = (𝑊 ∖ ∪ 𝑥 ∈ 𝑊 ran (𝑇‘𝑥)) & ⊢ 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡‘𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1))) & ⊢ (𝜑 → ∀𝑎 ∈ dom 𝑆∀𝑏 ∈ dom 𝑆((♯‘(𝑆‘𝑎)) < (♯‘(𝑆‘𝐴)) → ((𝑆‘𝑎) = (𝑆‘𝑏) → (𝑎‘0) = (𝑏‘0)))) & ⊢ (𝜑 → 𝐴 ∈ dom 𝑆) & ⊢ (𝜑 → 𝐵 ∈ dom 𝑆) & ⊢ (𝜑 → (𝑆‘𝐴) = (𝑆‘𝐵)) & ⊢ (𝜑 → ¬ (𝐴‘0) = (𝐵‘0)) & ⊢ 𝐾 = (((♯‘𝐴) − 1) − 1) & ⊢ 𝐿 = (((♯‘𝐵) − 1) − 1) & ⊢ (𝜑 → 𝑃 ∈ (0...(♯‘(𝐴‘𝐾)))) & ⊢ (𝜑 → 𝑄 ∈ (0...(♯‘(𝐵‘𝐿)))) & ⊢ (𝜑 → 𝑈 ∈ (𝐼 × 2o)) & ⊢ (𝜑 → 𝑉 ∈ (𝐼 × 2o)) & ⊢ (𝜑 → (𝑆‘𝐴) = (𝑃(𝑇‘(𝐴‘𝐾))𝑈)) & ⊢ (𝜑 → (𝑆‘𝐵) = (𝑄(𝑇‘(𝐵‘𝐿))𝑉)) & ⊢ (𝜑 → ¬ (𝐴‘𝐾) = (𝐵‘𝐿)) & ⊢ (𝜑 → 𝑃 ∈ (ℤ≥‘(𝑄 + 2))) & ⊢ (𝜑 → 𝐶 ∈ dom 𝑆) & ⊢ (𝜑 → (𝑆‘𝐶) = (((𝐵‘𝐿) prefix 𝑄) ++ ((𝐴‘𝐾) substr 〈(𝑄 + 2), (♯‘(𝐴‘𝐾))〉))) ⇒ ⊢ (𝜑 → ((𝐴‘𝐾) ∈ ran (𝑇‘(𝑆‘𝐶)) ∧ (𝐵‘𝐿) ∈ ran (𝑇‘(𝑆‘𝐶)))) | ||
| Theorem | efgredlemd 19681* | The reduced word that forms the base of the sequence in efgsval 19668 is uniquely determined, given the ending representation. (Contributed by Mario Carneiro, 1-Oct-2015.) (Proof shortened by AV, 15-Oct-2022.) |
| ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) & ⊢ ∼ = ( ~FG ‘𝐼) & ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) & ⊢ 𝑇 = (𝑣 ∈ 𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉))) & ⊢ 𝐷 = (𝑊 ∖ ∪ 𝑥 ∈ 𝑊 ran (𝑇‘𝑥)) & ⊢ 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡‘𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1))) & ⊢ (𝜑 → ∀𝑎 ∈ dom 𝑆∀𝑏 ∈ dom 𝑆((♯‘(𝑆‘𝑎)) < (♯‘(𝑆‘𝐴)) → ((𝑆‘𝑎) = (𝑆‘𝑏) → (𝑎‘0) = (𝑏‘0)))) & ⊢ (𝜑 → 𝐴 ∈ dom 𝑆) & ⊢ (𝜑 → 𝐵 ∈ dom 𝑆) & ⊢ (𝜑 → (𝑆‘𝐴) = (𝑆‘𝐵)) & ⊢ (𝜑 → ¬ (𝐴‘0) = (𝐵‘0)) & ⊢ 𝐾 = (((♯‘𝐴) − 1) − 1) & ⊢ 𝐿 = (((♯‘𝐵) − 1) − 1) & ⊢ (𝜑 → 𝑃 ∈ (0...(♯‘(𝐴‘𝐾)))) & ⊢ (𝜑 → 𝑄 ∈ (0...(♯‘(𝐵‘𝐿)))) & ⊢ (𝜑 → 𝑈 ∈ (𝐼 × 2o)) & ⊢ (𝜑 → 𝑉 ∈ (𝐼 × 2o)) & ⊢ (𝜑 → (𝑆‘𝐴) = (𝑃(𝑇‘(𝐴‘𝐾))𝑈)) & ⊢ (𝜑 → (𝑆‘𝐵) = (𝑄(𝑇‘(𝐵‘𝐿))𝑉)) & ⊢ (𝜑 → ¬ (𝐴‘𝐾) = (𝐵‘𝐿)) & ⊢ (𝜑 → 𝑃 ∈ (ℤ≥‘(𝑄 + 2))) & ⊢ (𝜑 → 𝐶 ∈ dom 𝑆) & ⊢ (𝜑 → (𝑆‘𝐶) = (((𝐵‘𝐿) prefix 𝑄) ++ ((𝐴‘𝐾) substr 〈(𝑄 + 2), (♯‘(𝐴‘𝐾))〉))) ⇒ ⊢ (𝜑 → (𝐴‘0) = (𝐵‘0)) | ||
| Theorem | efgredlemc 19682* | The reduced word that forms the base of the sequence in efgsval 19668 is uniquely determined, given the ending representation. (Contributed by Mario Carneiro, 1-Oct-2015.) (Proof shortened by AV, 15-Oct-2022.) |
| ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) & ⊢ ∼ = ( ~FG ‘𝐼) & ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) & ⊢ 𝑇 = (𝑣 ∈ 𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉))) & ⊢ 𝐷 = (𝑊 ∖ ∪ 𝑥 ∈ 𝑊 ran (𝑇‘𝑥)) & ⊢ 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡‘𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1))) & ⊢ (𝜑 → ∀𝑎 ∈ dom 𝑆∀𝑏 ∈ dom 𝑆((♯‘(𝑆‘𝑎)) < (♯‘(𝑆‘𝐴)) → ((𝑆‘𝑎) = (𝑆‘𝑏) → (𝑎‘0) = (𝑏‘0)))) & ⊢ (𝜑 → 𝐴 ∈ dom 𝑆) & ⊢ (𝜑 → 𝐵 ∈ dom 𝑆) & ⊢ (𝜑 → (𝑆‘𝐴) = (𝑆‘𝐵)) & ⊢ (𝜑 → ¬ (𝐴‘0) = (𝐵‘0)) & ⊢ 𝐾 = (((♯‘𝐴) − 1) − 1) & ⊢ 𝐿 = (((♯‘𝐵) − 1) − 1) & ⊢ (𝜑 → 𝑃 ∈ (0...(♯‘(𝐴‘𝐾)))) & ⊢ (𝜑 → 𝑄 ∈ (0...(♯‘(𝐵‘𝐿)))) & ⊢ (𝜑 → 𝑈 ∈ (𝐼 × 2o)) & ⊢ (𝜑 → 𝑉 ∈ (𝐼 × 2o)) & ⊢ (𝜑 → (𝑆‘𝐴) = (𝑃(𝑇‘(𝐴‘𝐾))𝑈)) & ⊢ (𝜑 → (𝑆‘𝐵) = (𝑄(𝑇‘(𝐵‘𝐿))𝑉)) & ⊢ (𝜑 → ¬ (𝐴‘𝐾) = (𝐵‘𝐿)) ⇒ ⊢ (𝜑 → (𝑃 ∈ (ℤ≥‘𝑄) → (𝐴‘0) = (𝐵‘0))) | ||
| Theorem | efgredlemb 19683* | The reduced word that forms the base of the sequence in efgsval 19668 is uniquely determined, given the ending representation. (Contributed by Mario Carneiro, 30-Sep-2015.) |
| ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) & ⊢ ∼ = ( ~FG ‘𝐼) & ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) & ⊢ 𝑇 = (𝑣 ∈ 𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉))) & ⊢ 𝐷 = (𝑊 ∖ ∪ 𝑥 ∈ 𝑊 ran (𝑇‘𝑥)) & ⊢ 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡‘𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1))) & ⊢ (𝜑 → ∀𝑎 ∈ dom 𝑆∀𝑏 ∈ dom 𝑆((♯‘(𝑆‘𝑎)) < (♯‘(𝑆‘𝐴)) → ((𝑆‘𝑎) = (𝑆‘𝑏) → (𝑎‘0) = (𝑏‘0)))) & ⊢ (𝜑 → 𝐴 ∈ dom 𝑆) & ⊢ (𝜑 → 𝐵 ∈ dom 𝑆) & ⊢ (𝜑 → (𝑆‘𝐴) = (𝑆‘𝐵)) & ⊢ (𝜑 → ¬ (𝐴‘0) = (𝐵‘0)) & ⊢ 𝐾 = (((♯‘𝐴) − 1) − 1) & ⊢ 𝐿 = (((♯‘𝐵) − 1) − 1) & ⊢ (𝜑 → 𝑃 ∈ (0...(♯‘(𝐴‘𝐾)))) & ⊢ (𝜑 → 𝑄 ∈ (0...(♯‘(𝐵‘𝐿)))) & ⊢ (𝜑 → 𝑈 ∈ (𝐼 × 2o)) & ⊢ (𝜑 → 𝑉 ∈ (𝐼 × 2o)) & ⊢ (𝜑 → (𝑆‘𝐴) = (𝑃(𝑇‘(𝐴‘𝐾))𝑈)) & ⊢ (𝜑 → (𝑆‘𝐵) = (𝑄(𝑇‘(𝐵‘𝐿))𝑉)) & ⊢ (𝜑 → ¬ (𝐴‘𝐾) = (𝐵‘𝐿)) ⇒ ⊢ ¬ 𝜑 | ||
| Theorem | efgredlem 19684* | The reduced word that forms the base of the sequence in efgsval 19668 is uniquely determined, given the ending representation. (Contributed by Mario Carneiro, 30-Sep-2015.) (Proof shortened by AV, 3-Nov-2022.) |
| ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) & ⊢ ∼ = ( ~FG ‘𝐼) & ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) & ⊢ 𝑇 = (𝑣 ∈ 𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉))) & ⊢ 𝐷 = (𝑊 ∖ ∪ 𝑥 ∈ 𝑊 ran (𝑇‘𝑥)) & ⊢ 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡‘𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1))) & ⊢ (𝜑 → ∀𝑎 ∈ dom 𝑆∀𝑏 ∈ dom 𝑆((♯‘(𝑆‘𝑎)) < (♯‘(𝑆‘𝐴)) → ((𝑆‘𝑎) = (𝑆‘𝑏) → (𝑎‘0) = (𝑏‘0)))) & ⊢ (𝜑 → 𝐴 ∈ dom 𝑆) & ⊢ (𝜑 → 𝐵 ∈ dom 𝑆) & ⊢ (𝜑 → (𝑆‘𝐴) = (𝑆‘𝐵)) & ⊢ (𝜑 → ¬ (𝐴‘0) = (𝐵‘0)) ⇒ ⊢ ¬ 𝜑 | ||
| Theorem | efgred 19685* | The reduced word that forms the base of the sequence in efgsval 19668 is uniquely determined, given the terminal point. (Contributed by Mario Carneiro, 28-Sep-2015.) |
| ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) & ⊢ ∼ = ( ~FG ‘𝐼) & ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) & ⊢ 𝑇 = (𝑣 ∈ 𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉))) & ⊢ 𝐷 = (𝑊 ∖ ∪ 𝑥 ∈ 𝑊 ran (𝑇‘𝑥)) & ⊢ 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡‘𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1))) ⇒ ⊢ ((𝐴 ∈ dom 𝑆 ∧ 𝐵 ∈ dom 𝑆 ∧ (𝑆‘𝐴) = (𝑆‘𝐵)) → (𝐴‘0) = (𝐵‘0)) | ||
| Theorem | efgrelexlema 19686* | If two words 𝐴, 𝐵 are related under the free group equivalence, then there exist two extension sequences 𝑎, 𝑏 such that 𝑎 ends at 𝐴, 𝑏 ends at 𝐵, and 𝑎 and 𝐵 have the same starting point. (Contributed by Mario Carneiro, 1-Oct-2015.) |
| ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) & ⊢ ∼ = ( ~FG ‘𝐼) & ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) & ⊢ 𝑇 = (𝑣 ∈ 𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉))) & ⊢ 𝐷 = (𝑊 ∖ ∪ 𝑥 ∈ 𝑊 ran (𝑇‘𝑥)) & ⊢ 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡‘𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1))) & ⊢ 𝐿 = {〈𝑖, 𝑗〉 ∣ ∃𝑐 ∈ (◡𝑆 “ {𝑖})∃𝑑 ∈ (◡𝑆 “ {𝑗})(𝑐‘0) = (𝑑‘0)} ⇒ ⊢ (𝐴𝐿𝐵 ↔ ∃𝑎 ∈ (◡𝑆 “ {𝐴})∃𝑏 ∈ (◡𝑆 “ {𝐵})(𝑎‘0) = (𝑏‘0)) | ||
| Theorem | efgrelexlemb 19687* | If two words 𝐴, 𝐵 are related under the free group equivalence, then there exist two extension sequences 𝑎, 𝑏 such that 𝑎 ends at 𝐴, 𝑏 ends at 𝐵, and 𝑎 and 𝐵 have the same starting point. (Contributed by Mario Carneiro, 1-Oct-2015.) |
| ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) & ⊢ ∼ = ( ~FG ‘𝐼) & ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) & ⊢ 𝑇 = (𝑣 ∈ 𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉))) & ⊢ 𝐷 = (𝑊 ∖ ∪ 𝑥 ∈ 𝑊 ran (𝑇‘𝑥)) & ⊢ 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡‘𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1))) & ⊢ 𝐿 = {〈𝑖, 𝑗〉 ∣ ∃𝑐 ∈ (◡𝑆 “ {𝑖})∃𝑑 ∈ (◡𝑆 “ {𝑗})(𝑐‘0) = (𝑑‘0)} ⇒ ⊢ ∼ ⊆ 𝐿 | ||
| Theorem | efgrelex 19688* | If two words 𝐴, 𝐵 are related under the free group equivalence, then there exist two extension sequences 𝑎, 𝑏 such that 𝑎 ends at 𝐴, 𝑏 ends at 𝐵, and 𝑎 and 𝐵 have the same starting point. (Contributed by Mario Carneiro, 1-Oct-2015.) |
| ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) & ⊢ ∼ = ( ~FG ‘𝐼) & ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) & ⊢ 𝑇 = (𝑣 ∈ 𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉))) & ⊢ 𝐷 = (𝑊 ∖ ∪ 𝑥 ∈ 𝑊 ran (𝑇‘𝑥)) & ⊢ 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡‘𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1))) ⇒ ⊢ (𝐴 ∼ 𝐵 → ∃𝑎 ∈ (◡𝑆 “ {𝐴})∃𝑏 ∈ (◡𝑆 “ {𝐵})(𝑎‘0) = (𝑏‘0)) | ||
| Theorem | efgredeu 19689* | There is a unique reduced word equivalent to a given word. (Contributed by Mario Carneiro, 1-Oct-2015.) |
| ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) & ⊢ ∼ = ( ~FG ‘𝐼) & ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) & ⊢ 𝑇 = (𝑣 ∈ 𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉))) & ⊢ 𝐷 = (𝑊 ∖ ∪ 𝑥 ∈ 𝑊 ran (𝑇‘𝑥)) & ⊢ 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡‘𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1))) ⇒ ⊢ (𝐴 ∈ 𝑊 → ∃!𝑑 ∈ 𝐷 𝑑 ∼ 𝐴) | ||
| Theorem | efgred2 19690* | Two extension sequences have related endpoints iff they have the same base. (Contributed by Mario Carneiro, 1-Oct-2015.) |
| ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) & ⊢ ∼ = ( ~FG ‘𝐼) & ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) & ⊢ 𝑇 = (𝑣 ∈ 𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉))) & ⊢ 𝐷 = (𝑊 ∖ ∪ 𝑥 ∈ 𝑊 ran (𝑇‘𝑥)) & ⊢ 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡‘𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1))) ⇒ ⊢ ((𝐴 ∈ dom 𝑆 ∧ 𝐵 ∈ dom 𝑆) → ((𝑆‘𝐴) ∼ (𝑆‘𝐵) ↔ (𝐴‘0) = (𝐵‘0))) | ||
| Theorem | efgcpbllema 19691* | Lemma for efgrelex 19688. Define an auxiliary equivalence relation 𝐿 such that 𝐴𝐿𝐵 if there are sequences from 𝐴 to 𝐵 passing through the same reduced word. (Contributed by Mario Carneiro, 1-Oct-2015.) |
| ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) & ⊢ ∼ = ( ~FG ‘𝐼) & ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) & ⊢ 𝑇 = (𝑣 ∈ 𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉))) & ⊢ 𝐷 = (𝑊 ∖ ∪ 𝑥 ∈ 𝑊 ran (𝑇‘𝑥)) & ⊢ 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡‘𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1))) & ⊢ 𝐿 = {〈𝑖, 𝑗〉 ∣ ({𝑖, 𝑗} ⊆ 𝑊 ∧ ((𝐴 ++ 𝑖) ++ 𝐵) ∼ ((𝐴 ++ 𝑗) ++ 𝐵))} ⇒ ⊢ (𝑋𝐿𝑌 ↔ (𝑋 ∈ 𝑊 ∧ 𝑌 ∈ 𝑊 ∧ ((𝐴 ++ 𝑋) ++ 𝐵) ∼ ((𝐴 ++ 𝑌) ++ 𝐵))) | ||
| Theorem | efgcpbllemb 19692* | Lemma for efgrelex 19688. Show that 𝐿 is an equivalence relation containing all direct extensions of a word, so is closed under ∼. (Contributed by Mario Carneiro, 1-Oct-2015.) |
| ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) & ⊢ ∼ = ( ~FG ‘𝐼) & ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) & ⊢ 𝑇 = (𝑣 ∈ 𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉))) & ⊢ 𝐷 = (𝑊 ∖ ∪ 𝑥 ∈ 𝑊 ran (𝑇‘𝑥)) & ⊢ 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡‘𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1))) & ⊢ 𝐿 = {〈𝑖, 𝑗〉 ∣ ({𝑖, 𝑗} ⊆ 𝑊 ∧ ((𝐴 ++ 𝑖) ++ 𝐵) ∼ ((𝐴 ++ 𝑗) ++ 𝐵))} ⇒ ⊢ ((𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑊) → ∼ ⊆ 𝐿) | ||
| Theorem | efgcpbl 19693* | Two extension sequences have related endpoints iff they have the same base. (Contributed by Mario Carneiro, 1-Oct-2015.) |
| ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) & ⊢ ∼ = ( ~FG ‘𝐼) & ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) & ⊢ 𝑇 = (𝑣 ∈ 𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉))) & ⊢ 𝐷 = (𝑊 ∖ ∪ 𝑥 ∈ 𝑊 ran (𝑇‘𝑥)) & ⊢ 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡‘𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1))) ⇒ ⊢ ((𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑊 ∧ 𝑋 ∼ 𝑌) → ((𝐴 ++ 𝑋) ++ 𝐵) ∼ ((𝐴 ++ 𝑌) ++ 𝐵)) | ||
| Theorem | efgcpbl2 19694* | Two extension sequences have related endpoints iff they have the same base. (Contributed by Mario Carneiro, 1-Oct-2015.) |
| ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) & ⊢ ∼ = ( ~FG ‘𝐼) & ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) & ⊢ 𝑇 = (𝑣 ∈ 𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉))) & ⊢ 𝐷 = (𝑊 ∖ ∪ 𝑥 ∈ 𝑊 ran (𝑇‘𝑥)) & ⊢ 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡‘𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1))) ⇒ ⊢ ((𝐴 ∼ 𝑋 ∧ 𝐵 ∼ 𝑌) → (𝐴 ++ 𝐵) ∼ (𝑋 ++ 𝑌)) | ||
| Theorem | frgpval 19695 | Value of the free group construction. (Contributed by Mario Carneiro, 1-Oct-2015.) |
| ⊢ 𝐺 = (freeGrp‘𝐼) & ⊢ 𝑀 = (freeMnd‘(𝐼 × 2o)) & ⊢ ∼ = ( ~FG ‘𝐼) ⇒ ⊢ (𝐼 ∈ 𝑉 → 𝐺 = (𝑀 /s ∼ )) | ||
| Theorem | frgpcpbl 19696 | Compatibility of the group operation with the free group equivalence relation. (Contributed by Mario Carneiro, 1-Oct-2015.) (Revised by Mario Carneiro, 27-Feb-2016.) |
| ⊢ 𝐺 = (freeGrp‘𝐼) & ⊢ 𝑀 = (freeMnd‘(𝐼 × 2o)) & ⊢ ∼ = ( ~FG ‘𝐼) & ⊢ + = (+g‘𝑀) ⇒ ⊢ ((𝐴 ∼ 𝐶 ∧ 𝐵 ∼ 𝐷) → (𝐴 + 𝐵) ∼ (𝐶 + 𝐷)) | ||
| Theorem | frgp0 19697 | The free group is a group. (Contributed by Mario Carneiro, 1-Oct-2015.) (Revised by Mario Carneiro, 27-Feb-2016.) |
| ⊢ 𝐺 = (freeGrp‘𝐼) & ⊢ ∼ = ( ~FG ‘𝐼) ⇒ ⊢ (𝐼 ∈ 𝑉 → (𝐺 ∈ Grp ∧ [∅] ∼ = (0g‘𝐺))) | ||
| Theorem | frgpeccl 19698 | Closure of the quotient map in a free group. (Contributed by Mario Carneiro, 1-Oct-2015.) |
| ⊢ 𝐺 = (freeGrp‘𝐼) & ⊢ ∼ = ( ~FG ‘𝐼) & ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) & ⊢ 𝐵 = (Base‘𝐺) ⇒ ⊢ (𝑋 ∈ 𝑊 → [𝑋] ∼ ∈ 𝐵) | ||
| Theorem | frgpgrp 19699 | The free group is a group. (Contributed by Mario Carneiro, 1-Oct-2015.) |
| ⊢ 𝐺 = (freeGrp‘𝐼) ⇒ ⊢ (𝐼 ∈ 𝑉 → 𝐺 ∈ Grp) | ||
| Theorem | frgpadd 19700 | Addition in the free group is given by concatenation. (Contributed by Mario Carneiro, 1-Oct-2015.) |
| ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) & ⊢ 𝐺 = (freeGrp‘𝐼) & ⊢ ∼ = ( ~FG ‘𝐼) & ⊢ + = (+g‘𝐺) ⇒ ⊢ ((𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑊) → ([𝐴] ∼ + [𝐵] ∼ ) = [(𝐴 ++ 𝐵)] ∼ ) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |