HomeHome Metamath Proof Explorer
Theorem List (p. 197 of 464)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-29181)
  Hilbert Space Explorer  Hilbert Space Explorer
(29182-30704)
  Users' Mathboxes  Users' Mathboxes
(30705-46395)
 

Theorem List for Metamath Proof Explorer - 19601-19700   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theorempgpfaclem3 19601* Lemma for pgpfac 19602. (Contributed by Mario Carneiro, 27-Apr-2016.) (Revised by Mario Carneiro, 3-May-2016.)
𝐵 = (Base‘𝐺)    &   𝐶 = {𝑟 ∈ (SubGrp‘𝐺) ∣ (𝐺s 𝑟) ∈ (CycGrp ∩ ran pGrp )}    &   (𝜑𝐺 ∈ Abel)    &   (𝜑𝑃 pGrp 𝐺)    &   (𝜑𝐵 ∈ Fin)    &   (𝜑𝑈 ∈ (SubGrp‘𝐺))    &   (𝜑 → ∀𝑡 ∈ (SubGrp‘𝐺)(𝑡𝑈 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡)))       (𝜑 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑈))
 
Theorempgpfac 19602* Full factorization of a finite abelian p-group, by iterating pgpfac1 19598. There is a direct product decomposition of any abelian group of prime-power order into cyclic subgroups. (Contributed by Mario Carneiro, 27-Apr-2016.) (Revised by Mario Carneiro, 3-May-2016.)
𝐵 = (Base‘𝐺)    &   𝐶 = {𝑟 ∈ (SubGrp‘𝐺) ∣ (𝐺s 𝑟) ∈ (CycGrp ∩ ran pGrp )}    &   (𝜑𝐺 ∈ Abel)    &   (𝜑𝑃 pGrp 𝐺)    &   (𝜑𝐵 ∈ Fin)       (𝜑 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵))
 
Theoremablfaclem1 19603* Lemma for ablfac 19606. (Contributed by Mario Carneiro, 27-Apr-2016.) (Revised by Mario Carneiro, 3-May-2016.)
𝐵 = (Base‘𝐺)    &   𝐶 = {𝑟 ∈ (SubGrp‘𝐺) ∣ (𝐺s 𝑟) ∈ (CycGrp ∩ ran pGrp )}    &   (𝜑𝐺 ∈ Abel)    &   (𝜑𝐵 ∈ Fin)    &   𝑂 = (od‘𝐺)    &   𝐴 = {𝑤 ∈ ℙ ∣ 𝑤 ∥ (♯‘𝐵)}    &   𝑆 = (𝑝𝐴 ↦ {𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))})    &   𝑊 = (𝑔 ∈ (SubGrp‘𝐺) ↦ {𝑠 ∈ Word 𝐶 ∣ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑔)})       (𝑈 ∈ (SubGrp‘𝐺) → (𝑊𝑈) = {𝑠 ∈ Word 𝐶 ∣ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑈)})
 
Theoremablfaclem2 19604* Lemma for ablfac 19606. (Contributed by Mario Carneiro, 27-Apr-2016.) (Proof shortened by Mario Carneiro, 3-May-2016.)
𝐵 = (Base‘𝐺)    &   𝐶 = {𝑟 ∈ (SubGrp‘𝐺) ∣ (𝐺s 𝑟) ∈ (CycGrp ∩ ran pGrp )}    &   (𝜑𝐺 ∈ Abel)    &   (𝜑𝐵 ∈ Fin)    &   𝑂 = (od‘𝐺)    &   𝐴 = {𝑤 ∈ ℙ ∣ 𝑤 ∥ (♯‘𝐵)}    &   𝑆 = (𝑝𝐴 ↦ {𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))})    &   𝑊 = (𝑔 ∈ (SubGrp‘𝐺) ↦ {𝑠 ∈ Word 𝐶 ∣ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑔)})    &   (𝜑𝐹:𝐴⟶Word 𝐶)    &   (𝜑 → ∀𝑦𝐴 (𝐹𝑦) ∈ (𝑊‘(𝑆𝑦)))    &   𝐿 = 𝑦𝐴 ({𝑦} × dom (𝐹𝑦))    &   (𝜑𝐻:(0..^(♯‘𝐿))–1-1-onto𝐿)       (𝜑 → (𝑊𝐵) ≠ ∅)
 
Theoremablfaclem3 19605* Lemma for ablfac 19606. (Contributed by Mario Carneiro, 27-Apr-2016.) (Revised by Mario Carneiro, 3-May-2016.)
𝐵 = (Base‘𝐺)    &   𝐶 = {𝑟 ∈ (SubGrp‘𝐺) ∣ (𝐺s 𝑟) ∈ (CycGrp ∩ ran pGrp )}    &   (𝜑𝐺 ∈ Abel)    &   (𝜑𝐵 ∈ Fin)    &   𝑂 = (od‘𝐺)    &   𝐴 = {𝑤 ∈ ℙ ∣ 𝑤 ∥ (♯‘𝐵)}    &   𝑆 = (𝑝𝐴 ↦ {𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))})    &   𝑊 = (𝑔 ∈ (SubGrp‘𝐺) ↦ {𝑠 ∈ Word 𝐶 ∣ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑔)})       (𝜑 → (𝑊𝐵) ≠ ∅)
 
Theoremablfac 19606* The Fundamental Theorem of (finite) Abelian Groups. Any finite abelian group is a direct product of cyclic p-groups. (Contributed by Mario Carneiro, 27-Apr-2016.) (Revised by Mario Carneiro, 3-May-2016.)
𝐵 = (Base‘𝐺)    &   𝐶 = {𝑟 ∈ (SubGrp‘𝐺) ∣ (𝐺s 𝑟) ∈ (CycGrp ∩ ran pGrp )}    &   (𝜑𝐺 ∈ Abel)    &   (𝜑𝐵 ∈ Fin)       (𝜑 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵))
 
Theoremablfac2 19607* Choose generators for each cyclic group in ablfac 19606. (Contributed by Mario Carneiro, 28-Apr-2016.)
𝐵 = (Base‘𝐺)    &   𝐶 = {𝑟 ∈ (SubGrp‘𝐺) ∣ (𝐺s 𝑟) ∈ (CycGrp ∩ ran pGrp )}    &   (𝜑𝐺 ∈ Abel)    &   (𝜑𝐵 ∈ Fin)    &    · = (.g𝐺)    &   𝑆 = (𝑘 ∈ dom 𝑤 ↦ ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑘))))       (𝜑 → ∃𝑤 ∈ Word 𝐵(𝑆:dom 𝑤𝐶𝐺dom DProd 𝑆 ∧ (𝐺 DProd 𝑆) = 𝐵))
 
10.2.15  Simple groups
 
10.2.15.1  Definition and basic properties
 
Syntaxcsimpg 19608 Extend class notation with the class of simple groups.
class SimpGrp
 
Definitiondf-simpg 19609 Define class of all simple groups. A simple group is a group (df-grp 18495) with exactly two normal subgroups. These are always the subgroup of all elements and the subgroup containing only the identity (simpgnsgbid 19621). (Contributed by Rohan Ridenour, 3-Aug-2023.)
SimpGrp = {𝑔 ∈ Grp ∣ (NrmSGrp‘𝑔) ≈ 2o}
 
Theoremissimpg 19610 The predicate "is a simple group". (Contributed by Rohan Ridenour, 3-Aug-2023.)
(𝐺 ∈ SimpGrp ↔ (𝐺 ∈ Grp ∧ (NrmSGrp‘𝐺) ≈ 2o))
 
Theoremissimpgd 19611 Deduce a simple group from its properties. (Contributed by Rohan Ridenour, 3-Aug-2023.)
(𝜑𝐺 ∈ Grp)    &   (𝜑 → (NrmSGrp‘𝐺) ≈ 2o)       (𝜑𝐺 ∈ SimpGrp)
 
Theoremsimpggrp 19612 A simple group is a group. (Contributed by Rohan Ridenour, 3-Aug-2023.)
(𝐺 ∈ SimpGrp → 𝐺 ∈ Grp)
 
Theoremsimpggrpd 19613 A simple group is a group. (Contributed by Rohan Ridenour, 3-Aug-2023.)
(𝜑𝐺 ∈ SimpGrp)       (𝜑𝐺 ∈ Grp)
 
Theoremsimpg2nsg 19614 A simple group has two normal subgroups. (Contributed by Rohan Ridenour, 3-Aug-2023.)
(𝐺 ∈ SimpGrp → (NrmSGrp‘𝐺) ≈ 2o)
 
Theoremtrivnsimpgd 19615 Trivial groups are not simple. (Contributed by Rohan Ridenour, 3-Aug-2023.)
𝐵 = (Base‘𝐺)    &    0 = (0g𝐺)    &   (𝜑𝐺 ∈ Grp)    &   (𝜑𝐵 = { 0 })       (𝜑 → ¬ 𝐺 ∈ SimpGrp)
 
Theoremsimpgntrivd 19616 Simple groups are nontrivial. (Contributed by Rohan Ridenour, 3-Aug-2023.)
𝐵 = (Base‘𝐺)    &    0 = (0g𝐺)    &   (𝜑𝐺 ∈ SimpGrp)       (𝜑 → ¬ 𝐵 = { 0 })
 
Theoremsimpgnideld 19617* A simple group contains a nonidentity element. (Contributed by Rohan Ridenour, 3-Aug-2023.)
𝐵 = (Base‘𝐺)    &    0 = (0g𝐺)    &   (𝜑𝐺 ∈ SimpGrp)       (𝜑 → ∃𝑥𝐵 ¬ 𝑥 = 0 )
 
Theoremsimpgnsgd 19618 The only normal subgroups of a simple group are the group itself and the trivial group. (Contributed by Rohan Ridenour, 3-Aug-2023.)
𝐵 = (Base‘𝐺)    &    0 = (0g𝐺)    &   (𝜑𝐺 ∈ SimpGrp)       (𝜑 → (NrmSGrp‘𝐺) = {{ 0 }, 𝐵})
 
Theoremsimpgnsgeqd 19619 A normal subgroup of a simple group is either the whole group or the trivial subgroup. (Contributed by Rohan Ridenour, 3-Aug-2023.)
𝐵 = (Base‘𝐺)    &    0 = (0g𝐺)    &   (𝜑𝐺 ∈ SimpGrp)    &   (𝜑𝐴 ∈ (NrmSGrp‘𝐺))       (𝜑 → (𝐴 = { 0 } ∨ 𝐴 = 𝐵))
 
Theorem2nsgsimpgd 19620* If any normal subgroup of a nontrivial group is either the trivial subgroup or the whole group, the group is simple. (Contributed by Rohan Ridenour, 3-Aug-2023.)
𝐵 = (Base‘𝐺)    &    0 = (0g𝐺)    &   (𝜑𝐺 ∈ Grp)    &   (𝜑 → ¬ { 0 } = 𝐵)    &   ((𝜑𝑥 ∈ (NrmSGrp‘𝐺)) → (𝑥 = { 0 } ∨ 𝑥 = 𝐵))       (𝜑𝐺 ∈ SimpGrp)
 
Theoremsimpgnsgbid 19621 A nontrivial group is simple if and only if its normal subgroups are exactly the group itself and the trivial subgroup. (Contributed by Rohan Ridenour, 4-Aug-2023.)
𝐵 = (Base‘𝐺)    &    0 = (0g𝐺)    &   (𝜑𝐺 ∈ Grp)    &   (𝜑 → ¬ { 0 } = 𝐵)       (𝜑 → (𝐺 ∈ SimpGrp ↔ (NrmSGrp‘𝐺) = {{ 0 }, 𝐵}))
 
10.2.15.2  Classification of abelian simple groups
 
Theoremablsimpnosubgd 19622 A subgroup of an abelian simple group containing a nonidentity element is the whole group. (Contributed by Rohan Ridenour, 3-Aug-2023.)
𝐵 = (Base‘𝐺)    &    0 = (0g𝐺)    &   (𝜑𝐺 ∈ Abel)    &   (𝜑𝐺 ∈ SimpGrp)    &   (𝜑𝑆 ∈ (SubGrp‘𝐺))    &   (𝜑𝐴𝑆)    &   (𝜑 → ¬ 𝐴 = 0 )       (𝜑𝑆 = 𝐵)
 
Theoremablsimpg1gend 19623* An abelian simple group is generated by any non-identity element. (Contributed by Rohan Ridenour, 3-Aug-2023.)
𝐵 = (Base‘𝐺)    &    0 = (0g𝐺)    &    · = (.g𝐺)    &   (𝜑𝐺 ∈ Abel)    &   (𝜑𝐺 ∈ SimpGrp)    &   (𝜑𝐴𝐵)    &   (𝜑 → ¬ 𝐴 = 0 )    &   (𝜑𝐶𝐵)       (𝜑 → ∃𝑛 ∈ ℤ 𝐶 = (𝑛 · 𝐴))
 
Theoremablsimpgcygd 19624 An abelian simple group is cyclic. (Contributed by Rohan Ridenour, 3-Aug-2023.) (Proof shortened by Rohan Ridenour, 31-Oct-2023.)
(𝜑𝐺 ∈ Abel)    &   (𝜑𝐺 ∈ SimpGrp)       (𝜑𝐺 ∈ CycGrp)
 
Theoremablsimpgfindlem1 19625* Lemma for ablsimpgfind 19628. An element of an abelian finite simple group which doesn't square to the identity has finite order. (Contributed by Rohan Ridenour, 3-Aug-2023.) (Proof shortened by Rohan Ridenour, 31-Oct-2023.)
𝐵 = (Base‘𝐺)    &    0 = (0g𝐺)    &    · = (.g𝐺)    &   𝑂 = (od‘𝐺)    &   (𝜑𝐺 ∈ Abel)    &   (𝜑𝐺 ∈ SimpGrp)       (((𝜑𝑥𝐵) ∧ (2 · 𝑥) ≠ 0 ) → (𝑂𝑥) ≠ 0)
 
Theoremablsimpgfindlem2 19626* Lemma for ablsimpgfind 19628. An element of an abelian finite simple group which squares to the identity has finite order. (Contributed by Rohan Ridenour, 3-Aug-2023.)
𝐵 = (Base‘𝐺)    &    0 = (0g𝐺)    &    · = (.g𝐺)    &   𝑂 = (od‘𝐺)    &   (𝜑𝐺 ∈ Abel)    &   (𝜑𝐺 ∈ SimpGrp)       (((𝜑𝑥𝐵) ∧ (2 · 𝑥) = 0 ) → (𝑂𝑥) ≠ 0)
 
Theoremcycsubggenodd 19627* Relationship between the order of a subgroup and the order of a generator of the subgroup. (Contributed by Rohan Ridenour, 3-Aug-2023.)
𝐵 = (Base‘𝐺)    &    · = (.g𝐺)    &   𝑂 = (od‘𝐺)    &   (𝜑𝐺 ∈ Grp)    &   (𝜑𝐴𝐵)    &   (𝜑𝐶 = ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝐴)))       (𝜑 → (𝑂𝐴) = if(𝐶 ∈ Fin, (♯‘𝐶), 0))
 
Theoremablsimpgfind 19628 An abelian simple group is finite. (Contributed by Rohan Ridenour, 3-Aug-2023.)
𝐵 = (Base‘𝐺)    &   (𝜑𝐺 ∈ Abel)    &   (𝜑𝐺 ∈ SimpGrp)       (𝜑𝐵 ∈ Fin)
 
Theoremfincygsubgd 19629* The subgroup referenced in fincygsubgodd 19630 is a subgroup. (Contributed by Rohan Ridenour, 3-Aug-2023.)
𝐵 = (Base‘𝐺)    &    · = (.g𝐺)    &   𝐻 = (𝑛 ∈ ℤ ↦ (𝑛 · (𝐶 · 𝐴)))    &   (𝜑𝐺 ∈ Grp)    &   (𝜑𝐴𝐵)    &   (𝜑𝐶 ∈ ℕ)       (𝜑 → ran 𝐻 ∈ (SubGrp‘𝐺))
 
Theoremfincygsubgodd 19630* Calculate the order of a subgroup of a finite cyclic group. (Contributed by Rohan Ridenour, 3-Aug-2023.)
𝐵 = (Base‘𝐺)    &    · = (.g𝐺)    &   𝐷 = ((♯‘𝐵) / 𝐶)    &   𝐹 = (𝑛 ∈ ℤ ↦ (𝑛 · 𝐴))    &   𝐻 = (𝑛 ∈ ℤ ↦ (𝑛 · (𝐶 · 𝐴)))    &   (𝜑𝐺 ∈ Grp)    &   (𝜑𝐴𝐵)    &   (𝜑 → ran 𝐹 = 𝐵)    &   (𝜑𝐶 ∥ (♯‘𝐵))    &   (𝜑𝐵 ∈ Fin)    &   (𝜑𝐶 ∈ ℕ)       (𝜑 → (♯‘ran 𝐻) = 𝐷)
 
Theoremfincygsubgodexd 19631* A finite cyclic group has subgroups of every possible order. (Contributed by Rohan Ridenour, 3-Aug-2023.)
𝐵 = (Base‘𝐺)    &   (𝜑𝐺 ∈ CycGrp)    &   (𝜑𝐶 ∥ (♯‘𝐵))    &   (𝜑𝐵 ∈ Fin)    &   (𝜑𝐶 ∈ ℕ)       (𝜑 → ∃𝑥 ∈ (SubGrp‘𝐺)(♯‘𝑥) = 𝐶)
 
Theoremprmgrpsimpgd 19632 A group of prime order is simple. (Contributed by Rohan Ridenour, 3-Aug-2023.)
𝐵 = (Base‘𝐺)    &   (𝜑𝐺 ∈ Grp)    &   (𝜑 → (♯‘𝐵) ∈ ℙ)       (𝜑𝐺 ∈ SimpGrp)
 
Theoremablsimpgprmd 19633 An abelian simple group has prime order. (Contributed by Rohan Ridenour, 3-Aug-2023.)
𝐵 = (Base‘𝐺)    &   (𝜑𝐺 ∈ Abel)    &   (𝜑𝐺 ∈ SimpGrp)       (𝜑 → (♯‘𝐵) ∈ ℙ)
 
Theoremablsimpgd 19634 An abelian group is simple if and only if its order is prime. (Contributed by Rohan Ridenour, 3-Aug-2023.)
𝐵 = (Base‘𝐺)    &   (𝜑𝐺 ∈ Abel)       (𝜑 → (𝐺 ∈ SimpGrp ↔ (♯‘𝐵) ∈ ℙ))
 
10.3  Rings
 
10.3.1  Multiplicative Group
 
Syntaxcmgp 19635 Multiplicative group.
class mulGrp
 
Definitiondf-mgp 19636 Define a structure that puts the multiplication operation of a ring in the addition slot. Note that this will not actually be a group for the average ring, or even for a field, but it will be a monoid, and unitgrp 19824 shows that we get a group if we restrict to the elements that have inverses. This allows us to formalize such notions as "the multiplication operation of a ring is a monoid" (ringmgp 19704) or "the multiplicative identity" in terms of the identity of a monoid (df-ur 19653). (Contributed by Mario Carneiro, 21-Dec-2014.)
mulGrp = (𝑤 ∈ V ↦ (𝑤 sSet ⟨(+g‘ndx), (.r𝑤)⟩))
 
Theoremfnmgp 19637 The multiplicative group operator is a function. (Contributed by Mario Carneiro, 11-Mar-2015.)
mulGrp Fn V
 
Theoremmgpval 19638 Value of the multiplication group operation. (Contributed by Mario Carneiro, 21-Dec-2014.)
𝑀 = (mulGrp‘𝑅)    &    · = (.r𝑅)       𝑀 = (𝑅 sSet ⟨(+g‘ndx), · ⟩)
 
Theoremmgpplusg 19639 Value of the group operation of the multiplication group. (Contributed by Mario Carneiro, 21-Dec-2014.)
𝑀 = (mulGrp‘𝑅)    &    · = (.r𝑅)        · = (+g𝑀)
 
TheoremmgplemOLD 19640 Obsolete version of setsplusg 18869 as of 18-Oct-2024. Lemma for mgpbas 19641. (Contributed by Mario Carneiro, 5-Oct-2015.) (Proof modification is discouraged.) (New usage is discouraged.)
𝑀 = (mulGrp‘𝑅)    &   𝐸 = Slot 𝑁    &   𝑁 ∈ ℕ    &   𝑁 ≠ 2       (𝐸𝑅) = (𝐸𝑀)
 
Theoremmgpbas 19641 Base set of the multiplication group. (Contributed by Mario Carneiro, 21-Dec-2014.) (Revised by Mario Carneiro, 5-Oct-2015.)
𝑀 = (mulGrp‘𝑅)    &   𝐵 = (Base‘𝑅)       𝐵 = (Base‘𝑀)
 
TheoremmgpbasOLD 19642 Obsolete version of mgpbas 19641 as of 18-Oct-2024. Base set of the multiplication group. (Contributed by Mario Carneiro, 21-Dec-2014.) (Revised by Mario Carneiro, 5-Oct-2015.) (Proof modification is discouraged.) (New usage is discouraged.)
𝑀 = (mulGrp‘𝑅)    &   𝐵 = (Base‘𝑅)       𝐵 = (Base‘𝑀)
 
Theoremmgpsca 19643 The multiplication monoid has the same (if any) scalars as the original ring. Mostly to simplify pwsmgp 19772. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by Mario Carneiro, 5-May-2015.)
𝑀 = (mulGrp‘𝑅)    &   𝑆 = (Scalar‘𝑅)       𝑆 = (Scalar‘𝑀)
 
TheoremmgpscaOLD 19644 Obsolete version of mgpsca 19643 as of 18-Oct-2024. The multiplication monoid has the same (if any) scalars as the original ring. Mostly to simplify pwsmgp 19772. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by Mario Carneiro, 5-May-2015.) (Proof modification is discouraged.) (New usage is discouraged.)
𝑀 = (mulGrp‘𝑅)    &   𝑆 = (Scalar‘𝑅)       𝑆 = (Scalar‘𝑀)
 
Theoremmgptset 19645 Topology component of the multiplication group. (Contributed by Mario Carneiro, 5-Oct-2015.)
𝑀 = (mulGrp‘𝑅)       (TopSet‘𝑅) = (TopSet‘𝑀)
 
TheoremmgptsetOLD 19646 Obsolete version of mgptset 19645 as of 18-Oct-2024. Topology component of the multiplication group. (Contributed by Mario Carneiro, 5-Oct-2015.) (Proof modification is discouraged.) (New usage is discouraged.)
𝑀 = (mulGrp‘𝑅)       (TopSet‘𝑅) = (TopSet‘𝑀)
 
Theoremmgptopn 19647 Topology of the multiplication group. (Contributed by Mario Carneiro, 5-Oct-2015.)
𝑀 = (mulGrp‘𝑅)    &   𝐽 = (TopOpen‘𝑅)       𝐽 = (TopOpen‘𝑀)
 
Theoremmgpds 19648 Distance function of the multiplication group. (Contributed by Mario Carneiro, 5-Oct-2015.)
𝑀 = (mulGrp‘𝑅)    &   𝐵 = (dist‘𝑅)       𝐵 = (dist‘𝑀)
 
TheoremmgpdsOLD 19649 Obsolete version of mgpds 19648 as of 18-Oct-2024. Distance function of the multiplication group. (Contributed by Mario Carneiro, 5-Oct-2015.) (Proof modification is discouraged.) (New usage is discouraged.)
𝑀 = (mulGrp‘𝑅)    &   𝐵 = (dist‘𝑅)       𝐵 = (dist‘𝑀)
 
Theoremmgpress 19650 Subgroup commutes with the multiplication group operator. (Contributed by Mario Carneiro, 10-Jan-2015.) (Proof shortened by AV, 18-Oct-2024.)
𝑆 = (𝑅s 𝐴)    &   𝑀 = (mulGrp‘𝑅)       ((𝑅𝑉𝐴𝑊) → (𝑀s 𝐴) = (mulGrp‘𝑆))
 
TheoremmgpressOLD 19651 Obsolete version of mgpress 19650 as of 18-Oct-2024. Subgroup commutes with the multiplication group operator. (Contributed by Mario Carneiro, 10-Jan-2015.) (Proof modification is discouraged.) (New usage is discouraged.)
𝑆 = (𝑅s 𝐴)    &   𝑀 = (mulGrp‘𝑅)       ((𝑅𝑉𝐴𝑊) → (𝑀s 𝐴) = (mulGrp‘𝑆))
 
10.3.2  Ring unit
 
Syntaxcur 19652 Extend class notation with ring unit.
class 1r
 
Definitiondf-ur 19653 Define the multiplicative neutral element of a ring. This definition works by extracting the 0g element, i.e. the neutral element in a group or monoid, and transferring it to the multiplicative monoid via the mulGrp function (df-mgp 19636). See also dfur2 19655, which derives the "traditional" definition as the unique element of a ring which is left- and right-neutral under multiplication. (Contributed by NM, 27-Aug-2011.) (Revised by Mario Carneiro, 27-Dec-2014.)
1r = (0g ∘ mulGrp)
 
Theoremringidval 19654 The value of the unity element of a ring. (Contributed by NM, 27-Aug-2011.) (Revised by Mario Carneiro, 27-Dec-2014.)
𝐺 = (mulGrp‘𝑅)    &    1 = (1r𝑅)        1 = (0g𝐺)
 
Theoremdfur2 19655* The multiplicative identity is the unique element of the ring that is left- and right-neutral on all elements under multiplication. (Contributed by Mario Carneiro, 10-Jan-2015.)
𝐵 = (Base‘𝑅)    &    · = (.r𝑅)    &    1 = (1r𝑅)        1 = (℩𝑒(𝑒𝐵 ∧ ∀𝑥𝐵 ((𝑒 · 𝑥) = 𝑥 ∧ (𝑥 · 𝑒) = 𝑥)))
 
10.3.2.1  Semirings
 
Syntaxcsrg 19656 Extend class notation with the class of all semirings.
class SRing
 
Definitiondf-srg 19657* Define class of all semirings. A semiring is a set equipped with two everywhere-defined internal operations, whose first one is an additive commutative monoid structure and the second one is a multiplicative monoid structure, and where multiplication is (left- and right-) distributive over addition. Compared to the definition of a ring, this definition also adds that the additive identity is an absorbing element of the multiplicative law, as this cannot be deduced from distributivity alone. Definition of [Golan] p. 1. Note that our semirings are unital. Such semirings are sometimes called "rigs", being "rings without negatives". (Contributed by Thierry Arnoux, 21-Mar-2018.)
SRing = {𝑓 ∈ CMnd ∣ ((mulGrp‘𝑓) ∈ Mnd ∧ [(Base‘𝑓) / 𝑟][(+g𝑓) / 𝑝][(.r𝑓) / 𝑡][(0g𝑓) / 𝑛]𝑥𝑟 (∀𝑦𝑟𝑧𝑟 ((𝑥𝑡(𝑦𝑝𝑧)) = ((𝑥𝑡𝑦)𝑝(𝑥𝑡𝑧)) ∧ ((𝑥𝑝𝑦)𝑡𝑧) = ((𝑥𝑡𝑧)𝑝(𝑦𝑡𝑧))) ∧ ((𝑛𝑡𝑥) = 𝑛 ∧ (𝑥𝑡𝑛) = 𝑛)))}
 
Theoremissrg 19658* The predicate "is a semiring". (Contributed by Thierry Arnoux, 21-Mar-2018.)
𝐵 = (Base‘𝑅)    &   𝐺 = (mulGrp‘𝑅)    &    + = (+g𝑅)    &    · = (.r𝑅)    &    0 = (0g𝑅)       (𝑅 ∈ SRing ↔ (𝑅 ∈ CMnd ∧ 𝐺 ∈ Mnd ∧ ∀𝑥𝐵 (∀𝑦𝐵𝑧𝐵 ((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))) ∧ (( 0 · 𝑥) = 0 ∧ (𝑥 · 0 ) = 0 ))))
 
Theoremsrgcmn 19659 A semiring is a commutative monoid. (Contributed by Thierry Arnoux, 21-Mar-2018.)
(𝑅 ∈ SRing → 𝑅 ∈ CMnd)
 
Theoremsrgmnd 19660 A semiring is a monoid. (Contributed by Thierry Arnoux, 21-Mar-2018.)
(𝑅 ∈ SRing → 𝑅 ∈ Mnd)
 
Theoremsrgmgp 19661 A semiring is a monoid under multiplication. (Contributed by Thierry Arnoux, 21-Mar-2018.)
𝐺 = (mulGrp‘𝑅)       (𝑅 ∈ SRing → 𝐺 ∈ Mnd)
 
Theoremsrgi 19662 Properties of a semiring. (Contributed by NM, 26-Aug-2011.) (Revised by Mario Carneiro, 6-Jan-2015.) (Revised by Thierry Arnoux, 1-Apr-2018.)
𝐵 = (Base‘𝑅)    &    + = (+g𝑅)    &    · = (.r𝑅)       ((𝑅 ∈ SRing ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 · (𝑌 + 𝑍)) = ((𝑋 · 𝑌) + (𝑋 · 𝑍)) ∧ ((𝑋 + 𝑌) · 𝑍) = ((𝑋 · 𝑍) + (𝑌 · 𝑍))))
 
Theoremsrgcl 19663 Closure of the multiplication operation of a semiring. (Contributed by NM, 26-Aug-2011.) (Revised by Mario Carneiro, 6-Jan-2015.) (Revised by Thierry Arnoux, 1-Apr-2018.)
𝐵 = (Base‘𝑅)    &    · = (.r𝑅)       ((𝑅 ∈ SRing ∧ 𝑋𝐵𝑌𝐵) → (𝑋 · 𝑌) ∈ 𝐵)
 
Theoremsrgass 19664 Associative law for the multiplication operation of a semiring. (Contributed by NM, 27-Aug-2011.) (Revised by Mario Carneiro, 6-Jan-2015.) (Revised by Thierry Arnoux, 1-Apr-2018.)
𝐵 = (Base‘𝑅)    &    · = (.r𝑅)       ((𝑅 ∈ SRing ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 · 𝑌) · 𝑍) = (𝑋 · (𝑌 · 𝑍)))
 
Theoremsrgideu 19665* The unit element of a semiring is unique. (Contributed by NM, 27-Aug-2011.) (Revised by Mario Carneiro, 6-Jan-2015.) (Revised by Thierry Arnoux, 1-Apr-2018.)
𝐵 = (Base‘𝑅)    &    · = (.r𝑅)       (𝑅 ∈ SRing → ∃!𝑢𝐵𝑥𝐵 ((𝑢 · 𝑥) = 𝑥 ∧ (𝑥 · 𝑢) = 𝑥))
 
Theoremsrgfcl 19666 Functionality of the multiplication operation of a ring. (Contributed by Steve Rodriguez, 9-Sep-2007.) (Revised by AV, 24-Aug-2021.)
𝐵 = (Base‘𝑅)    &    · = (.r𝑅)       ((𝑅 ∈ SRing ∧ · Fn (𝐵 × 𝐵)) → · :(𝐵 × 𝐵)⟶𝐵)
 
Theoremsrgdi 19667 Distributive law for the multiplication operation of a semiring. (Contributed by Steve Rodriguez, 9-Sep-2007.) (Revised by Thierry Arnoux, 1-Apr-2018.)
𝐵 = (Base‘𝑅)    &    + = (+g𝑅)    &    · = (.r𝑅)       ((𝑅 ∈ SRing ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 · (𝑌 + 𝑍)) = ((𝑋 · 𝑌) + (𝑋 · 𝑍)))
 
Theoremsrgdir 19668 Distributive law for the multiplication operation of a semiring. (Contributed by Steve Rodriguez, 9-Sep-2007.) (Revised by Thierry Arnoux, 1-Apr-2018.)
𝐵 = (Base‘𝑅)    &    + = (+g𝑅)    &    · = (.r𝑅)       ((𝑅 ∈ SRing ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 + 𝑌) · 𝑍) = ((𝑋 · 𝑍) + (𝑌 · 𝑍)))
 
Theoremsrgidcl 19669 The unit element of a semiring belongs to the base set of the semiring. (Contributed by NM, 27-Aug-2011.) (Revised by Mario Carneiro, 27-Dec-2014.) (Revised by Thierry Arnoux, 1-Apr-2018.)
𝐵 = (Base‘𝑅)    &    1 = (1r𝑅)       (𝑅 ∈ SRing → 1𝐵)
 
Theoremsrg0cl 19670 The zero element of a semiring belongs to its base set. (Contributed by Mario Carneiro, 12-Jan-2014.) (Revised by Thierry Arnoux, 1-Apr-2018.)
𝐵 = (Base‘𝑅)    &    0 = (0g𝑅)       (𝑅 ∈ SRing → 0𝐵)
 
Theoremsrgidmlem 19671 Lemma for srglidm 19672 and srgridm 19673. (Contributed by NM, 15-Sep-2011.) (Revised by Mario Carneiro, 27-Dec-2014.) (Revised by Thierry Arnoux, 1-Apr-2018.)
𝐵 = (Base‘𝑅)    &    · = (.r𝑅)    &    1 = (1r𝑅)       ((𝑅 ∈ SRing ∧ 𝑋𝐵) → (( 1 · 𝑋) = 𝑋 ∧ (𝑋 · 1 ) = 𝑋))
 
Theoremsrglidm 19672 The unit element of a semiring is a left multiplicative identity. (Contributed by NM, 15-Sep-2011.) (Revised by Thierry Arnoux, 1-Apr-2018.)
𝐵 = (Base‘𝑅)    &    · = (.r𝑅)    &    1 = (1r𝑅)       ((𝑅 ∈ SRing ∧ 𝑋𝐵) → ( 1 · 𝑋) = 𝑋)
 
Theoremsrgridm 19673 The unit element of a semiring is a right multiplicative identity. (Contributed by NM, 15-Sep-2011.) (Revised by Thierry Arnoux, 1-Apr-2018.)
𝐵 = (Base‘𝑅)    &    · = (.r𝑅)    &    1 = (1r𝑅)       ((𝑅 ∈ SRing ∧ 𝑋𝐵) → (𝑋 · 1 ) = 𝑋)
 
Theoremissrgid 19674* Properties showing that an element 𝐼 is the unity element of a semiring. (Contributed by NM, 7-Aug-2013.) (Revised by Thierry Arnoux, 1-Apr-2018.)
𝐵 = (Base‘𝑅)    &    · = (.r𝑅)    &    1 = (1r𝑅)       (𝑅 ∈ SRing → ((𝐼𝐵 ∧ ∀𝑥𝐵 ((𝐼 · 𝑥) = 𝑥 ∧ (𝑥 · 𝐼) = 𝑥)) ↔ 1 = 𝐼))
 
Theoremsrgacl 19675 Closure of the addition operation of a semiring. (Contributed by Mario Carneiro, 14-Jan-2014.) (Revised by Thierry Arnoux, 1-Apr-2018.)
𝐵 = (Base‘𝑅)    &    + = (+g𝑅)       ((𝑅 ∈ SRing ∧ 𝑋𝐵𝑌𝐵) → (𝑋 + 𝑌) ∈ 𝐵)
 
Theoremsrgcom 19676 Commutativity of the additive group of a semiring. (Contributed by Thierry Arnoux, 1-Apr-2018.)
𝐵 = (Base‘𝑅)    &    + = (+g𝑅)       ((𝑅 ∈ SRing ∧ 𝑋𝐵𝑌𝐵) → (𝑋 + 𝑌) = (𝑌 + 𝑋))
 
Theoremsrgrz 19677 The zero of a semiring is a right-absorbing element. (Contributed by Thierry Arnoux, 1-Apr-2018.)
𝐵 = (Base‘𝑅)    &    · = (.r𝑅)    &    0 = (0g𝑅)       ((𝑅 ∈ SRing ∧ 𝑋𝐵) → (𝑋 · 0 ) = 0 )
 
Theoremsrglz 19678 The zero of a semiring is a left-absorbing element. (Contributed by AV, 23-Aug-2019.)
𝐵 = (Base‘𝑅)    &    · = (.r𝑅)    &    0 = (0g𝑅)       ((𝑅 ∈ SRing ∧ 𝑋𝐵) → ( 0 · 𝑋) = 0 )
 
Theoremsrgisid 19679* In a semiring, the only left-absorbing element is the additive identity. Remark in [Golan] p. 1. (Contributed by Thierry Arnoux, 1-May-2018.)
𝐵 = (Base‘𝑅)    &    · = (.r𝑅)    &    0 = (0g𝑅)    &   (𝜑𝑅 ∈ SRing)    &   (𝜑𝑍𝐵)    &   ((𝜑𝑥𝐵) → (𝑍 · 𝑥) = 𝑍)       (𝜑𝑍 = 0 )
 
Theoremsrg1zr 19680 The only semiring with a base set consisting of one element is the zero ring (at least if its operations are internal binary operations). (Contributed by FL, 13-Feb-2010.) (Revised by AV, 25-Jan-2020.)
𝐵 = (Base‘𝑅)    &    + = (+g𝑅)    &    = (.r𝑅)       (((𝑅 ∈ SRing ∧ + Fn (𝐵 × 𝐵) ∧ Fn (𝐵 × 𝐵)) ∧ 𝑍𝐵) → (𝐵 = {𝑍} ↔ ( + = {⟨⟨𝑍, 𝑍⟩, 𝑍⟩} ∧ = {⟨⟨𝑍, 𝑍⟩, 𝑍⟩})))
 
Theoremsrgen1zr 19681 The only semiring with one element is the zero ring (at least if its operations are internal binary operations). (Contributed by FL, 14-Feb-2010.) (Revised by AV, 25-Jan-2020.)
𝐵 = (Base‘𝑅)    &    + = (+g𝑅)    &    = (.r𝑅)    &   𝑍 = (0g𝑅)       ((𝑅 ∈ SRing ∧ + Fn (𝐵 × 𝐵) ∧ Fn (𝐵 × 𝐵)) → (𝐵 ≈ 1o ↔ ( + = {⟨⟨𝑍, 𝑍⟩, 𝑍⟩} ∧ = {⟨⟨𝑍, 𝑍⟩, 𝑍⟩})))
 
Theoremsrgmulgass 19682 An associative property between group multiple and ring multiplication for semirings. (Contributed by AV, 23-Aug-2019.)
𝐵 = (Base‘𝑅)    &    · = (.g𝑅)    &    × = (.r𝑅)       ((𝑅 ∈ SRing ∧ (𝑁 ∈ ℕ0𝑋𝐵𝑌𝐵)) → ((𝑁 · 𝑋) × 𝑌) = (𝑁 · (𝑋 × 𝑌)))
 
Theoremsrgpcomp 19683 If two elements of a semiring commute, they also commute if one of the elements is raised to a higher power. (Contributed by AV, 23-Aug-2019.)
𝑆 = (Base‘𝑅)    &    × = (.r𝑅)    &   𝐺 = (mulGrp‘𝑅)    &    = (.g𝐺)    &   (𝜑𝑅 ∈ SRing)    &   (𝜑𝐴𝑆)    &   (𝜑𝐵𝑆)    &   (𝜑𝐾 ∈ ℕ0)    &   (𝜑 → (𝐴 × 𝐵) = (𝐵 × 𝐴))       (𝜑 → ((𝐾 𝐵) × 𝐴) = (𝐴 × (𝐾 𝐵)))
 
Theoremsrgpcompp 19684 If two elements of a semiring commute, they also commute if the elements are raised to a higher power. (Contributed by AV, 23-Aug-2019.)
𝑆 = (Base‘𝑅)    &    × = (.r𝑅)    &   𝐺 = (mulGrp‘𝑅)    &    = (.g𝐺)    &   (𝜑𝑅 ∈ SRing)    &   (𝜑𝐴𝑆)    &   (𝜑𝐵𝑆)    &   (𝜑𝐾 ∈ ℕ0)    &   (𝜑 → (𝐴 × 𝐵) = (𝐵 × 𝐴))    &   (𝜑𝑁 ∈ ℕ0)       (𝜑 → (((𝑁 𝐴) × (𝐾 𝐵)) × 𝐴) = (((𝑁 + 1) 𝐴) × (𝐾 𝐵)))
 
Theoremsrgpcomppsc 19685 If two elements of a semiring commute, they also commute if the elements are raised to a higher power and a scalar multiplication is involved. (Contributed by AV, 23-Aug-2019.)
𝑆 = (Base‘𝑅)    &    × = (.r𝑅)    &   𝐺 = (mulGrp‘𝑅)    &    = (.g𝐺)    &   (𝜑𝑅 ∈ SRing)    &   (𝜑𝐴𝑆)    &   (𝜑𝐵𝑆)    &   (𝜑𝐾 ∈ ℕ0)    &   (𝜑 → (𝐴 × 𝐵) = (𝐵 × 𝐴))    &   (𝜑𝑁 ∈ ℕ0)    &    · = (.g𝑅)    &   (𝜑𝐶 ∈ ℕ0)       (𝜑 → ((𝐶 · ((𝑁 𝐴) × (𝐾 𝐵))) × 𝐴) = (𝐶 · (((𝑁 + 1) 𝐴) × (𝐾 𝐵))))
 
Theoremsrglmhm 19686* Left-multiplication in a semiring by a fixed element of the ring is a monoid homomorphism, analogous to ringlghm 19758. (Contributed by AV, 23-Aug-2019.)
𝐵 = (Base‘𝑅)    &    · = (.r𝑅)       ((𝑅 ∈ SRing ∧ 𝑋𝐵) → (𝑥𝐵 ↦ (𝑋 · 𝑥)) ∈ (𝑅 MndHom 𝑅))
 
Theoremsrgrmhm 19687* Right-multiplication in a semiring by a fixed element of the ring is a monoid homomorphism, analogous to ringrghm 19759. (Contributed by AV, 23-Aug-2019.)
𝐵 = (Base‘𝑅)    &    · = (.r𝑅)       ((𝑅 ∈ SRing ∧ 𝑋𝐵) → (𝑥𝐵 ↦ (𝑥 · 𝑋)) ∈ (𝑅 MndHom 𝑅))
 
Theoremsrgsummulcr 19688* A finite semiring sum multiplied by a constant, analogous to gsummulc1 19760. (Contributed by AV, 23-Aug-2019.)
𝐵 = (Base‘𝑅)    &    0 = (0g𝑅)    &    + = (+g𝑅)    &    · = (.r𝑅)    &   (𝜑𝑅 ∈ SRing)    &   (𝜑𝐴𝑉)    &   (𝜑𝑌𝐵)    &   ((𝜑𝑘𝐴) → 𝑋𝐵)    &   (𝜑 → (𝑘𝐴𝑋) finSupp 0 )       (𝜑 → (𝑅 Σg (𝑘𝐴 ↦ (𝑋 · 𝑌))) = ((𝑅 Σg (𝑘𝐴𝑋)) · 𝑌))
 
Theoremsgsummulcl 19689* A finite semiring sum multiplied by a constant, analogous to gsummulc2 19761. (Contributed by AV, 23-Aug-2019.)
𝐵 = (Base‘𝑅)    &    0 = (0g𝑅)    &    + = (+g𝑅)    &    · = (.r𝑅)    &   (𝜑𝑅 ∈ SRing)    &   (𝜑𝐴𝑉)    &   (𝜑𝑌𝐵)    &   ((𝜑𝑘𝐴) → 𝑋𝐵)    &   (𝜑 → (𝑘𝐴𝑋) finSupp 0 )       (𝜑 → (𝑅 Σg (𝑘𝐴 ↦ (𝑌 · 𝑋))) = (𝑌 · (𝑅 Σg (𝑘𝐴𝑋))))
 
Theoremsrg1expzeq1 19690 The exponentiation (by a nonnegative integer) of the multiplicative identity of a semiring, analogous to mulgnn0z 18645. (Contributed by AV, 25-Nov-2019.)
𝐺 = (mulGrp‘𝑅)    &    · = (.g𝐺)    &    1 = (1r𝑅)       ((𝑅 ∈ SRing ∧ 𝑁 ∈ ℕ0) → (𝑁 · 1 ) = 1 )
 
10.3.2.2  The binomial theorem for semirings

In this section, we prove the binomial theorem for semirings, srgbinom 19696, which is a generalization of the binomial theorem for complex numbers, binom 15470: (𝐴 + 𝐵)↑𝑁 is the sum from 𝑘 = 0 to 𝑁 of (𝑁C𝑘) · ((𝐴𝑘) · (𝐵↑(𝑁𝑘)).

Note that the binomial theorem also holds in the non-unital case (that is, in a "rg") and actually, the additive unit is not needed in its proof either. Therefore, it can be proven in even more general cases. An example is the "rg" (resp. "rg without a zero") of integrable nonnegative (resp. positive) functions on .

Special cases of the binomial theorem are csrgbinom 19697 (binomial theorem for commutative semirings) and crngbinom 19775 (binomial theorem for commutative rings).

 
Theoremsrgbinomlem1 19691 Lemma 1 for srgbinomlem 19695. (Contributed by AV, 23-Aug-2019.)
𝑆 = (Base‘𝑅)    &    × = (.r𝑅)    &    · = (.g𝑅)    &    + = (+g𝑅)    &   𝐺 = (mulGrp‘𝑅)    &    = (.g𝐺)    &   (𝜑𝑅 ∈ SRing)    &   (𝜑𝐴𝑆)    &   (𝜑𝐵𝑆)    &   (𝜑 → (𝐴 × 𝐵) = (𝐵 × 𝐴))    &   (𝜑𝑁 ∈ ℕ0)       ((𝜑 ∧ (𝐷 ∈ ℕ0𝐸 ∈ ℕ0)) → ((𝐷 𝐴) × (𝐸 𝐵)) ∈ 𝑆)
 
Theoremsrgbinomlem2 19692 Lemma 2 for srgbinomlem 19695. (Contributed by AV, 23-Aug-2019.)
𝑆 = (Base‘𝑅)    &    × = (.r𝑅)    &    · = (.g𝑅)    &    + = (+g𝑅)    &   𝐺 = (mulGrp‘𝑅)    &    = (.g𝐺)    &   (𝜑𝑅 ∈ SRing)    &   (𝜑𝐴𝑆)    &   (𝜑𝐵𝑆)    &   (𝜑 → (𝐴 × 𝐵) = (𝐵 × 𝐴))    &   (𝜑𝑁 ∈ ℕ0)       ((𝜑 ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0𝐸 ∈ ℕ0)) → (𝐶 · ((𝐷 𝐴) × (𝐸 𝐵))) ∈ 𝑆)
 
Theoremsrgbinomlem3 19693* Lemma 3 for srgbinomlem 19695. (Contributed by AV, 23-Aug-2019.) (Proof shortened by AV, 27-Oct-2019.)
𝑆 = (Base‘𝑅)    &    × = (.r𝑅)    &    · = (.g𝑅)    &    + = (+g𝑅)    &   𝐺 = (mulGrp‘𝑅)    &    = (.g𝐺)    &   (𝜑𝑅 ∈ SRing)    &   (𝜑𝐴𝑆)    &   (𝜑𝐵𝑆)    &   (𝜑 → (𝐴 × 𝐵) = (𝐵 × 𝐴))    &   (𝜑𝑁 ∈ ℕ0)    &   (𝜓 → (𝑁 (𝐴 + 𝐵)) = (𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · (((𝑁𝑘) 𝐴) × (𝑘 𝐵))))))       ((𝜑𝜓) → ((𝑁 (𝐴 + 𝐵)) × 𝐴) = (𝑅 Σg (𝑘 ∈ (0...(𝑁 + 1)) ↦ ((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))))
 
Theoremsrgbinomlem4 19694* Lemma 4 for srgbinomlem 19695. (Contributed by AV, 24-Aug-2019.) (Proof shortened by AV, 19-Nov-2019.)
𝑆 = (Base‘𝑅)    &    × = (.r𝑅)    &    · = (.g𝑅)    &    + = (+g𝑅)    &   𝐺 = (mulGrp‘𝑅)    &    = (.g𝐺)    &   (𝜑𝑅 ∈ SRing)    &   (𝜑𝐴𝑆)    &   (𝜑𝐵𝑆)    &   (𝜑 → (𝐴 × 𝐵) = (𝐵 × 𝐴))    &   (𝜑𝑁 ∈ ℕ0)    &   (𝜓 → (𝑁 (𝐴 + 𝐵)) = (𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · (((𝑁𝑘) 𝐴) × (𝑘 𝐵))))))       ((𝜑𝜓) → ((𝑁 (𝐴 + 𝐵)) × 𝐵) = (𝑅 Σg (𝑘 ∈ (0...(𝑁 + 1)) ↦ ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))))
 
Theoremsrgbinomlem 19695* Lemma for srgbinom 19696. Inductive step, analogous to binomlem 15469. (Contributed by AV, 24-Aug-2019.)
𝑆 = (Base‘𝑅)    &    × = (.r𝑅)    &    · = (.g𝑅)    &    + = (+g𝑅)    &   𝐺 = (mulGrp‘𝑅)    &    = (.g𝐺)    &   (𝜑𝑅 ∈ SRing)    &   (𝜑𝐴𝑆)    &   (𝜑𝐵𝑆)    &   (𝜑 → (𝐴 × 𝐵) = (𝐵 × 𝐴))    &   (𝜑𝑁 ∈ ℕ0)    &   (𝜓 → (𝑁 (𝐴 + 𝐵)) = (𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · (((𝑁𝑘) 𝐴) × (𝑘 𝐵))))))       ((𝜑𝜓) → ((𝑁 + 1) (𝐴 + 𝐵)) = (𝑅 Σg (𝑘 ∈ (0...(𝑁 + 1)) ↦ (((𝑁 + 1)C𝑘) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))))
 
Theoremsrgbinom 19696* The binomial theorem for commuting elements of a semiring: (𝐴 + 𝐵)↑𝑁 is the sum from 𝑘 = 0 to 𝑁 of (𝑁C𝑘) · ((𝐴𝑘) · (𝐵↑(𝑁𝑘)) (generalization of binom 15470). (Contributed by AV, 24-Aug-2019.)
𝑆 = (Base‘𝑅)    &    × = (.r𝑅)    &    · = (.g𝑅)    &    + = (+g𝑅)    &   𝐺 = (mulGrp‘𝑅)    &    = (.g𝐺)       (((𝑅 ∈ SRing ∧ 𝑁 ∈ ℕ0) ∧ (𝐴𝑆𝐵𝑆 ∧ (𝐴 × 𝐵) = (𝐵 × 𝐴))) → (𝑁 (𝐴 + 𝐵)) = (𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · (((𝑁𝑘) 𝐴) × (𝑘 𝐵))))))
 
Theoremcsrgbinom 19697* The binomial theorem for commutative semirings. (Contributed by AV, 24-Aug-2019.)
𝑆 = (Base‘𝑅)    &    × = (.r𝑅)    &    · = (.g𝑅)    &    + = (+g𝑅)    &   𝐺 = (mulGrp‘𝑅)    &    = (.g𝐺)       (((𝑅 ∈ SRing ∧ 𝐺 ∈ CMnd ∧ 𝑁 ∈ ℕ0) ∧ (𝐴𝑆𝐵𝑆)) → (𝑁 (𝐴 + 𝐵)) = (𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · (((𝑁𝑘) 𝐴) × (𝑘 𝐵))))))
 
10.3.3  Definition and basic properties of unital rings
 
Syntaxcrg 19698 Extend class notation with class of all (unital) rings.
class Ring
 
Syntaxccrg 19699 Extend class notation with class of all (unital) commutative rings.
class CRing
 
Definitiondf-ring 19700* Define class of all (unital) rings. A unital ring is a set equipped with two everywhere-defined internal operations, whose first one is an additive group structure and the second one is a multiplicative monoid structure, and where the addition is left- and right-distributive for the multiplication. Definition 1 in [BourbakiAlg1] p. 92 or definition of a ring with identity in part Preliminaries of [Roman] p. 19. So that the additive structure must be abelian (see ringcom 19733), care must be taken that in the case of a non-unital ring, the commutativity of addition must be postulated and cannot be proved from the other conditions. (Contributed by NM, 18-Oct-2012.) (Revised by Mario Carneiro, 27-Dec-2014.)
Ring = {𝑓 ∈ Grp ∣ ((mulGrp‘𝑓) ∈ Mnd ∧ [(Base‘𝑓) / 𝑟][(+g𝑓) / 𝑝][(.r𝑓) / 𝑡]𝑥𝑟𝑦𝑟𝑧𝑟 ((𝑥𝑡(𝑦𝑝𝑧)) = ((𝑥𝑡𝑦)𝑝(𝑥𝑡𝑧)) ∧ ((𝑥𝑝𝑦)𝑡𝑧) = ((𝑥𝑡𝑧)𝑝(𝑦𝑡𝑧))))}
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42900 430 42901-43000 431 43001-43100 432 43101-43200 433 43201-43300 434 43301-43400 435 43401-43500 436 43501-43600 437 43601-43700 438 43701-43800 439 43801-43900 440 43901-44000 441 44001-44100 442 44101-44200 443 44201-44300 444 44301-44400 445 44401-44500 446 44501-44600 447 44601-44700 448 44701-44800 449 44801-44900 450 44901-45000 451 45001-45100 452 45101-45200 453 45201-45300 454 45301-45400 455 45401-45500 456 45501-45600 457 45601-45700 458 45701-45800 459 45801-45900 460 45901-46000 461 46001-46100 462 46101-46200 463 46201-46300 464 46301-46395
  Copyright terms: Public domain < Previous  Next >