Detailed syntax breakdown of Definition df-frgr
| Step | Hyp | Ref
| Expression |
| 1 | | cfrgr 30277 |
. 2
class
FriendGraph |
| 2 | | vx |
. . . . . . . . . . . 12
setvar 𝑥 |
| 3 | 2 | cv 1539 |
. . . . . . . . . . 11
class 𝑥 |
| 4 | | vk |
. . . . . . . . . . . 12
setvar 𝑘 |
| 5 | 4 | cv 1539 |
. . . . . . . . . . 11
class 𝑘 |
| 6 | 3, 5 | cpr 4628 |
. . . . . . . . . 10
class {𝑥, 𝑘} |
| 7 | | vl |
. . . . . . . . . . . 12
setvar 𝑙 |
| 8 | 7 | cv 1539 |
. . . . . . . . . . 11
class 𝑙 |
| 9 | 3, 8 | cpr 4628 |
. . . . . . . . . 10
class {𝑥, 𝑙} |
| 10 | 6, 9 | cpr 4628 |
. . . . . . . . 9
class {{𝑥, 𝑘}, {𝑥, 𝑙}} |
| 11 | | ve |
. . . . . . . . . 10
setvar 𝑒 |
| 12 | 11 | cv 1539 |
. . . . . . . . 9
class 𝑒 |
| 13 | 10, 12 | wss 3951 |
. . . . . . . 8
wff {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ 𝑒 |
| 14 | | vv |
. . . . . . . . 9
setvar 𝑣 |
| 15 | 14 | cv 1539 |
. . . . . . . 8
class 𝑣 |
| 16 | 13, 2, 15 | wreu 3378 |
. . . . . . 7
wff
∃!𝑥 ∈
𝑣 {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ 𝑒 |
| 17 | 5 | csn 4626 |
. . . . . . . 8
class {𝑘} |
| 18 | 15, 17 | cdif 3948 |
. . . . . . 7
class (𝑣 ∖ {𝑘}) |
| 19 | 16, 7, 18 | wral 3061 |
. . . . . 6
wff
∀𝑙 ∈
(𝑣 ∖ {𝑘})∃!𝑥 ∈ 𝑣 {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ 𝑒 |
| 20 | 19, 4, 15 | wral 3061 |
. . . . 5
wff
∀𝑘 ∈
𝑣 ∀𝑙 ∈ (𝑣 ∖ {𝑘})∃!𝑥 ∈ 𝑣 {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ 𝑒 |
| 21 | | vg |
. . . . . . 7
setvar 𝑔 |
| 22 | 21 | cv 1539 |
. . . . . 6
class 𝑔 |
| 23 | | cedg 29064 |
. . . . . 6
class
Edg |
| 24 | 22, 23 | cfv 6561 |
. . . . 5
class
(Edg‘𝑔) |
| 25 | 20, 11, 24 | wsbc 3788 |
. . . 4
wff
[(Edg‘𝑔) / 𝑒]∀𝑘 ∈ 𝑣 ∀𝑙 ∈ (𝑣 ∖ {𝑘})∃!𝑥 ∈ 𝑣 {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ 𝑒 |
| 26 | | cvtx 29013 |
. . . . 5
class
Vtx |
| 27 | 22, 26 | cfv 6561 |
. . . 4
class
(Vtx‘𝑔) |
| 28 | 25, 14, 27 | wsbc 3788 |
. . 3
wff
[(Vtx‘𝑔) / 𝑣][(Edg‘𝑔) / 𝑒]∀𝑘 ∈ 𝑣 ∀𝑙 ∈ (𝑣 ∖ {𝑘})∃!𝑥 ∈ 𝑣 {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ 𝑒 |
| 29 | | cusgr 29166 |
. . 3
class
USGraph |
| 30 | 28, 21, 29 | crab 3436 |
. 2
class {𝑔 ∈ USGraph ∣
[(Vtx‘𝑔) /
𝑣][(Edg‘𝑔) / 𝑒]∀𝑘 ∈ 𝑣 ∀𝑙 ∈ (𝑣 ∖ {𝑘})∃!𝑥 ∈ 𝑣 {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ 𝑒} |
| 31 | 1, 30 | wceq 1540 |
1
wff
FriendGraph = {𝑔 ∈
USGraph ∣ [(Vtx‘𝑔) / 𝑣][(Edg‘𝑔) / 𝑒]∀𝑘 ∈ 𝑣 ∀𝑙 ∈ (𝑣 ∖ {𝑘})∃!𝑥 ∈ 𝑣 {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ 𝑒} |