Detailed syntax breakdown of Definition df-frgr
Step | Hyp | Ref
| Expression |
1 | | cfrgr 27723 |
. 2
class
FriendGraph |
2 | | vg |
. . . . . 6
setvar 𝑔 |
3 | 2 | cv 1524 |
. . . . 5
class 𝑔 |
4 | | cusgr 26621 |
. . . . 5
class
USGraph |
5 | 3, 4 | wcel 2083 |
. . . 4
wff 𝑔 ∈ USGraph |
6 | | vx |
. . . . . . . . . . . . 13
setvar 𝑥 |
7 | 6 | cv 1524 |
. . . . . . . . . . . 12
class 𝑥 |
8 | | vk |
. . . . . . . . . . . . 13
setvar 𝑘 |
9 | 8 | cv 1524 |
. . . . . . . . . . . 12
class 𝑘 |
10 | 7, 9 | cpr 4480 |
. . . . . . . . . . 11
class {𝑥, 𝑘} |
11 | | vl |
. . . . . . . . . . . . 13
setvar 𝑙 |
12 | 11 | cv 1524 |
. . . . . . . . . . . 12
class 𝑙 |
13 | 7, 12 | cpr 4480 |
. . . . . . . . . . 11
class {𝑥, 𝑙} |
14 | 10, 13 | cpr 4480 |
. . . . . . . . . 10
class {{𝑥, 𝑘}, {𝑥, 𝑙}} |
15 | | ve |
. . . . . . . . . . 11
setvar 𝑒 |
16 | 15 | cv 1524 |
. . . . . . . . . 10
class 𝑒 |
17 | 14, 16 | wss 3865 |
. . . . . . . . 9
wff {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ 𝑒 |
18 | | vv |
. . . . . . . . . 10
setvar 𝑣 |
19 | 18 | cv 1524 |
. . . . . . . . 9
class 𝑣 |
20 | 17, 6, 19 | wreu 3109 |
. . . . . . . 8
wff
∃!𝑥 ∈
𝑣 {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ 𝑒 |
21 | 9 | csn 4478 |
. . . . . . . . 9
class {𝑘} |
22 | 19, 21 | cdif 3862 |
. . . . . . . 8
class (𝑣 ∖ {𝑘}) |
23 | 20, 11, 22 | wral 3107 |
. . . . . . 7
wff
∀𝑙 ∈
(𝑣 ∖ {𝑘})∃!𝑥 ∈ 𝑣 {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ 𝑒 |
24 | 23, 8, 19 | wral 3107 |
. . . . . 6
wff
∀𝑘 ∈
𝑣 ∀𝑙 ∈ (𝑣 ∖ {𝑘})∃!𝑥 ∈ 𝑣 {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ 𝑒 |
25 | | cedg 26519 |
. . . . . . 7
class
Edg |
26 | 3, 25 | cfv 6232 |
. . . . . 6
class
(Edg‘𝑔) |
27 | 24, 15, 26 | wsbc 3711 |
. . . . 5
wff
[(Edg‘𝑔) / 𝑒]∀𝑘 ∈ 𝑣 ∀𝑙 ∈ (𝑣 ∖ {𝑘})∃!𝑥 ∈ 𝑣 {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ 𝑒 |
28 | | cvtx 26468 |
. . . . . 6
class
Vtx |
29 | 3, 28 | cfv 6232 |
. . . . 5
class
(Vtx‘𝑔) |
30 | 27, 18, 29 | wsbc 3711 |
. . . 4
wff
[(Vtx‘𝑔) / 𝑣][(Edg‘𝑔) / 𝑒]∀𝑘 ∈ 𝑣 ∀𝑙 ∈ (𝑣 ∖ {𝑘})∃!𝑥 ∈ 𝑣 {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ 𝑒 |
31 | 5, 30 | wa 396 |
. . 3
wff (𝑔 ∈ USGraph ∧
[(Vtx‘𝑔) /
𝑣][(Edg‘𝑔) / 𝑒]∀𝑘 ∈ 𝑣 ∀𝑙 ∈ (𝑣 ∖ {𝑘})∃!𝑥 ∈ 𝑣 {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ 𝑒) |
32 | 31, 2 | cab 2777 |
. 2
class {𝑔 ∣ (𝑔 ∈ USGraph ∧
[(Vtx‘𝑔) /
𝑣][(Edg‘𝑔) / 𝑒]∀𝑘 ∈ 𝑣 ∀𝑙 ∈ (𝑣 ∖ {𝑘})∃!𝑥 ∈ 𝑣 {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ 𝑒)} |
33 | 1, 32 | wceq 1525 |
1
wff
FriendGraph = {𝑔 ∣
(𝑔 ∈ USGraph ∧
[(Vtx‘𝑔) /
𝑣][(Edg‘𝑔) / 𝑒]∀𝑘 ∈ 𝑣 ∀𝑙 ∈ (𝑣 ∖ {𝑘})∃!𝑥 ∈ 𝑣 {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ 𝑒)} |