Detailed syntax breakdown of Definition df-frgr
Step | Hyp | Ref
| Expression |
1 | | cfrgr 28155 |
. 2
class
FriendGraph |
2 | | vx |
. . . . . . . . . . . 12
setvar 𝑥 |
3 | 2 | cv 1537 |
. . . . . . . . . . 11
class 𝑥 |
4 | | vk |
. . . . . . . . . . . 12
setvar 𝑘 |
5 | 4 | cv 1537 |
. . . . . . . . . . 11
class 𝑘 |
6 | 3, 5 | cpr 4527 |
. . . . . . . . . 10
class {𝑥, 𝑘} |
7 | | vl |
. . . . . . . . . . . 12
setvar 𝑙 |
8 | 7 | cv 1537 |
. . . . . . . . . . 11
class 𝑙 |
9 | 3, 8 | cpr 4527 |
. . . . . . . . . 10
class {𝑥, 𝑙} |
10 | 6, 9 | cpr 4527 |
. . . . . . . . 9
class {{𝑥, 𝑘}, {𝑥, 𝑙}} |
11 | | ve |
. . . . . . . . . 10
setvar 𝑒 |
12 | 11 | cv 1537 |
. . . . . . . . 9
class 𝑒 |
13 | 10, 12 | wss 3860 |
. . . . . . . 8
wff {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ 𝑒 |
14 | | vv |
. . . . . . . . 9
setvar 𝑣 |
15 | 14 | cv 1537 |
. . . . . . . 8
class 𝑣 |
16 | 13, 2, 15 | wreu 3072 |
. . . . . . 7
wff
∃!𝑥 ∈
𝑣 {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ 𝑒 |
17 | 5 | csn 4525 |
. . . . . . . 8
class {𝑘} |
18 | 15, 17 | cdif 3857 |
. . . . . . 7
class (𝑣 ∖ {𝑘}) |
19 | 16, 7, 18 | wral 3070 |
. . . . . 6
wff
∀𝑙 ∈
(𝑣 ∖ {𝑘})∃!𝑥 ∈ 𝑣 {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ 𝑒 |
20 | 19, 4, 15 | wral 3070 |
. . . . 5
wff
∀𝑘 ∈
𝑣 ∀𝑙 ∈ (𝑣 ∖ {𝑘})∃!𝑥 ∈ 𝑣 {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ 𝑒 |
21 | | vg |
. . . . . . 7
setvar 𝑔 |
22 | 21 | cv 1537 |
. . . . . 6
class 𝑔 |
23 | | cedg 26952 |
. . . . . 6
class
Edg |
24 | 22, 23 | cfv 6340 |
. . . . 5
class
(Edg‘𝑔) |
25 | 20, 11, 24 | wsbc 3698 |
. . . 4
wff
[(Edg‘𝑔) / 𝑒]∀𝑘 ∈ 𝑣 ∀𝑙 ∈ (𝑣 ∖ {𝑘})∃!𝑥 ∈ 𝑣 {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ 𝑒 |
26 | | cvtx 26901 |
. . . . 5
class
Vtx |
27 | 22, 26 | cfv 6340 |
. . . 4
class
(Vtx‘𝑔) |
28 | 25, 14, 27 | wsbc 3698 |
. . 3
wff
[(Vtx‘𝑔) / 𝑣][(Edg‘𝑔) / 𝑒]∀𝑘 ∈ 𝑣 ∀𝑙 ∈ (𝑣 ∖ {𝑘})∃!𝑥 ∈ 𝑣 {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ 𝑒 |
29 | | cusgr 27054 |
. . 3
class
USGraph |
30 | 28, 21, 29 | crab 3074 |
. 2
class {𝑔 ∈ USGraph ∣
[(Vtx‘𝑔) /
𝑣][(Edg‘𝑔) / 𝑒]∀𝑘 ∈ 𝑣 ∀𝑙 ∈ (𝑣 ∖ {𝑘})∃!𝑥 ∈ 𝑣 {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ 𝑒} |
31 | 1, 30 | wceq 1538 |
1
wff
FriendGraph = {𝑔 ∈
USGraph ∣ [(Vtx‘𝑔) / 𝑣][(Edg‘𝑔) / 𝑒]∀𝑘 ∈ 𝑣 ∀𝑙 ∈ (𝑣 ∖ {𝑘})∃!𝑥 ∈ 𝑣 {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ 𝑒} |