MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isfrgr Structured version   Visualization version   GIF version

Theorem isfrgr 30196
Description: The property of being a friendship graph. (Contributed by Alexander van der Vekens, 4-Oct-2017.) (Revised by AV, 29-Mar-2021.) (Revised by AV, 3-Jan-2024.)
Hypotheses
Ref Expression
isfrgr.v 𝑉 = (Vtx‘𝐺)
isfrgr.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
isfrgr (𝐺 ∈ FriendGraph ↔ (𝐺 ∈ USGraph ∧ ∀𝑘𝑉𝑙 ∈ (𝑉 ∖ {𝑘})∃!𝑥𝑉 {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ 𝐸))
Distinct variable groups:   𝑘,𝐸,𝑙,𝑥   𝑘,𝑉,𝑙,𝑥
Allowed substitution hints:   𝐺(𝑥,𝑘,𝑙)

Proof of Theorem isfrgr
Dummy variables 𝑒 𝑔 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvex 6874 . . 3 (Vtx‘𝑔) ∈ V
2 fvex 6874 . . 3 (Edg‘𝑔) ∈ V
3 fveq2 6861 . . . . . . 7 (𝑔 = 𝐺 → (Vtx‘𝑔) = (Vtx‘𝐺))
43eqeq2d 2741 . . . . . 6 (𝑔 = 𝐺 → (𝑣 = (Vtx‘𝑔) ↔ 𝑣 = (Vtx‘𝐺)))
5 isfrgr.v . . . . . . . 8 𝑉 = (Vtx‘𝐺)
65eqcomi 2739 . . . . . . 7 (Vtx‘𝐺) = 𝑉
76eqeq2i 2743 . . . . . 6 (𝑣 = (Vtx‘𝐺) ↔ 𝑣 = 𝑉)
84, 7bitrdi 287 . . . . 5 (𝑔 = 𝐺 → (𝑣 = (Vtx‘𝑔) ↔ 𝑣 = 𝑉))
9 fveq2 6861 . . . . . . 7 (𝑔 = 𝐺 → (Edg‘𝑔) = (Edg‘𝐺))
109eqeq2d 2741 . . . . . 6 (𝑔 = 𝐺 → (𝑒 = (Edg‘𝑔) ↔ 𝑒 = (Edg‘𝐺)))
11 isfrgr.e . . . . . . . 8 𝐸 = (Edg‘𝐺)
1211eqcomi 2739 . . . . . . 7 (Edg‘𝐺) = 𝐸
1312eqeq2i 2743 . . . . . 6 (𝑒 = (Edg‘𝐺) ↔ 𝑒 = 𝐸)
1410, 13bitrdi 287 . . . . 5 (𝑔 = 𝐺 → (𝑒 = (Edg‘𝑔) ↔ 𝑒 = 𝐸))
158, 14anbi12d 632 . . . 4 (𝑔 = 𝐺 → ((𝑣 = (Vtx‘𝑔) ∧ 𝑒 = (Edg‘𝑔)) ↔ (𝑣 = 𝑉𝑒 = 𝐸)))
16 simpl 482 . . . . 5 ((𝑣 = 𝑉𝑒 = 𝐸) → 𝑣 = 𝑉)
17 difeq1 4085 . . . . . . 7 (𝑣 = 𝑉 → (𝑣 ∖ {𝑘}) = (𝑉 ∖ {𝑘}))
1817adantr 480 . . . . . 6 ((𝑣 = 𝑉𝑒 = 𝐸) → (𝑣 ∖ {𝑘}) = (𝑉 ∖ {𝑘}))
19 reueq1 3391 . . . . . . . 8 (𝑣 = 𝑉 → (∃!𝑥𝑣 {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ 𝑒 ↔ ∃!𝑥𝑉 {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ 𝑒))
2019adantr 480 . . . . . . 7 ((𝑣 = 𝑉𝑒 = 𝐸) → (∃!𝑥𝑣 {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ 𝑒 ↔ ∃!𝑥𝑉 {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ 𝑒))
21 sseq2 3976 . . . . . . . . 9 (𝑒 = 𝐸 → ({{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ 𝑒 ↔ {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ 𝐸))
2221adantl 481 . . . . . . . 8 ((𝑣 = 𝑉𝑒 = 𝐸) → ({{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ 𝑒 ↔ {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ 𝐸))
2322reubidv 3374 . . . . . . 7 ((𝑣 = 𝑉𝑒 = 𝐸) → (∃!𝑥𝑉 {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ 𝑒 ↔ ∃!𝑥𝑉 {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ 𝐸))
2420, 23bitrd 279 . . . . . 6 ((𝑣 = 𝑉𝑒 = 𝐸) → (∃!𝑥𝑣 {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ 𝑒 ↔ ∃!𝑥𝑉 {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ 𝐸))
2518, 24raleqbidv 3321 . . . . 5 ((𝑣 = 𝑉𝑒 = 𝐸) → (∀𝑙 ∈ (𝑣 ∖ {𝑘})∃!𝑥𝑣 {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ 𝑒 ↔ ∀𝑙 ∈ (𝑉 ∖ {𝑘})∃!𝑥𝑉 {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ 𝐸))
2616, 25raleqbidv 3321 . . . 4 ((𝑣 = 𝑉𝑒 = 𝐸) → (∀𝑘𝑣𝑙 ∈ (𝑣 ∖ {𝑘})∃!𝑥𝑣 {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ 𝑒 ↔ ∀𝑘𝑉𝑙 ∈ (𝑉 ∖ {𝑘})∃!𝑥𝑉 {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ 𝐸))
2715, 26biimtrdi 253 . . 3 (𝑔 = 𝐺 → ((𝑣 = (Vtx‘𝑔) ∧ 𝑒 = (Edg‘𝑔)) → (∀𝑘𝑣𝑙 ∈ (𝑣 ∖ {𝑘})∃!𝑥𝑣 {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ 𝑒 ↔ ∀𝑘𝑉𝑙 ∈ (𝑉 ∖ {𝑘})∃!𝑥𝑉 {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ 𝐸)))
281, 2, 27sbc2iedv 3833 . 2 (𝑔 = 𝐺 → ([(Vtx‘𝑔) / 𝑣][(Edg‘𝑔) / 𝑒]𝑘𝑣𝑙 ∈ (𝑣 ∖ {𝑘})∃!𝑥𝑣 {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ 𝑒 ↔ ∀𝑘𝑉𝑙 ∈ (𝑉 ∖ {𝑘})∃!𝑥𝑉 {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ 𝐸))
29 df-frgr 30195 . 2 FriendGraph = {𝑔 ∈ USGraph ∣ [(Vtx‘𝑔) / 𝑣][(Edg‘𝑔) / 𝑒]𝑘𝑣𝑙 ∈ (𝑣 ∖ {𝑘})∃!𝑥𝑣 {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ 𝑒}
3028, 29elrab2 3665 1 (𝐺 ∈ FriendGraph ↔ (𝐺 ∈ USGraph ∧ ∀𝑘𝑉𝑙 ∈ (𝑉 ∖ {𝑘})∃!𝑥𝑉 {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ 𝐸))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3045  ∃!wreu 3354  [wsbc 3756  cdif 3914  wss 3917  {csn 4592  {cpr 4594  cfv 6514  Vtxcvtx 28930  Edgcedg 28981  USGraphcusgr 29083   FriendGraph cfrgr 30194
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-nul 5264
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-iota 6467  df-fv 6522  df-frgr 30195
This theorem is referenced by:  frgrusgr  30197  frgr0v  30198  frgr0  30201  frcond1  30202  frgr1v  30207  nfrgr2v  30208  frgr3v  30211  2pthfrgrrn  30218  n4cyclfrgr  30227
  Copyright terms: Public domain W3C validator