Step | Hyp | Ref
| Expression |
1 | | fvex 6769 |
. . 3
⊢
(Vtx‘𝑔) ∈
V |
2 | | fvex 6769 |
. . 3
⊢
(Edg‘𝑔) ∈
V |
3 | | fveq2 6756 |
. . . . . . 7
⊢ (𝑔 = 𝐺 → (Vtx‘𝑔) = (Vtx‘𝐺)) |
4 | 3 | eqeq2d 2749 |
. . . . . 6
⊢ (𝑔 = 𝐺 → (𝑣 = (Vtx‘𝑔) ↔ 𝑣 = (Vtx‘𝐺))) |
5 | | isfrgr.v |
. . . . . . . 8
⊢ 𝑉 = (Vtx‘𝐺) |
6 | 5 | eqcomi 2747 |
. . . . . . 7
⊢
(Vtx‘𝐺) =
𝑉 |
7 | 6 | eqeq2i 2751 |
. . . . . 6
⊢ (𝑣 = (Vtx‘𝐺) ↔ 𝑣 = 𝑉) |
8 | 4, 7 | bitrdi 286 |
. . . . 5
⊢ (𝑔 = 𝐺 → (𝑣 = (Vtx‘𝑔) ↔ 𝑣 = 𝑉)) |
9 | | fveq2 6756 |
. . . . . . 7
⊢ (𝑔 = 𝐺 → (Edg‘𝑔) = (Edg‘𝐺)) |
10 | 9 | eqeq2d 2749 |
. . . . . 6
⊢ (𝑔 = 𝐺 → (𝑒 = (Edg‘𝑔) ↔ 𝑒 = (Edg‘𝐺))) |
11 | | isfrgr.e |
. . . . . . . 8
⊢ 𝐸 = (Edg‘𝐺) |
12 | 11 | eqcomi 2747 |
. . . . . . 7
⊢
(Edg‘𝐺) =
𝐸 |
13 | 12 | eqeq2i 2751 |
. . . . . 6
⊢ (𝑒 = (Edg‘𝐺) ↔ 𝑒 = 𝐸) |
14 | 10, 13 | bitrdi 286 |
. . . . 5
⊢ (𝑔 = 𝐺 → (𝑒 = (Edg‘𝑔) ↔ 𝑒 = 𝐸)) |
15 | 8, 14 | anbi12d 630 |
. . . 4
⊢ (𝑔 = 𝐺 → ((𝑣 = (Vtx‘𝑔) ∧ 𝑒 = (Edg‘𝑔)) ↔ (𝑣 = 𝑉 ∧ 𝑒 = 𝐸))) |
16 | | simpl 482 |
. . . . 5
⊢ ((𝑣 = 𝑉 ∧ 𝑒 = 𝐸) → 𝑣 = 𝑉) |
17 | | difeq1 4046 |
. . . . . . 7
⊢ (𝑣 = 𝑉 → (𝑣 ∖ {𝑘}) = (𝑉 ∖ {𝑘})) |
18 | 17 | adantr 480 |
. . . . . 6
⊢ ((𝑣 = 𝑉 ∧ 𝑒 = 𝐸) → (𝑣 ∖ {𝑘}) = (𝑉 ∖ {𝑘})) |
19 | | reueq1 3335 |
. . . . . . . 8
⊢ (𝑣 = 𝑉 → (∃!𝑥 ∈ 𝑣 {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ 𝑒 ↔ ∃!𝑥 ∈ 𝑉 {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ 𝑒)) |
20 | 19 | adantr 480 |
. . . . . . 7
⊢ ((𝑣 = 𝑉 ∧ 𝑒 = 𝐸) → (∃!𝑥 ∈ 𝑣 {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ 𝑒 ↔ ∃!𝑥 ∈ 𝑉 {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ 𝑒)) |
21 | | sseq2 3943 |
. . . . . . . . 9
⊢ (𝑒 = 𝐸 → ({{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ 𝑒 ↔ {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ 𝐸)) |
22 | 21 | adantl 481 |
. . . . . . . 8
⊢ ((𝑣 = 𝑉 ∧ 𝑒 = 𝐸) → ({{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ 𝑒 ↔ {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ 𝐸)) |
23 | 22 | reubidv 3315 |
. . . . . . 7
⊢ ((𝑣 = 𝑉 ∧ 𝑒 = 𝐸) → (∃!𝑥 ∈ 𝑉 {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ 𝑒 ↔ ∃!𝑥 ∈ 𝑉 {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ 𝐸)) |
24 | 20, 23 | bitrd 278 |
. . . . . 6
⊢ ((𝑣 = 𝑉 ∧ 𝑒 = 𝐸) → (∃!𝑥 ∈ 𝑣 {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ 𝑒 ↔ ∃!𝑥 ∈ 𝑉 {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ 𝐸)) |
25 | 18, 24 | raleqbidv 3327 |
. . . . 5
⊢ ((𝑣 = 𝑉 ∧ 𝑒 = 𝐸) → (∀𝑙 ∈ (𝑣 ∖ {𝑘})∃!𝑥 ∈ 𝑣 {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ 𝑒 ↔ ∀𝑙 ∈ (𝑉 ∖ {𝑘})∃!𝑥 ∈ 𝑉 {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ 𝐸)) |
26 | 16, 25 | raleqbidv 3327 |
. . . 4
⊢ ((𝑣 = 𝑉 ∧ 𝑒 = 𝐸) → (∀𝑘 ∈ 𝑣 ∀𝑙 ∈ (𝑣 ∖ {𝑘})∃!𝑥 ∈ 𝑣 {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ 𝑒 ↔ ∀𝑘 ∈ 𝑉 ∀𝑙 ∈ (𝑉 ∖ {𝑘})∃!𝑥 ∈ 𝑉 {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ 𝐸)) |
27 | 15, 26 | syl6bi 252 |
. . 3
⊢ (𝑔 = 𝐺 → ((𝑣 = (Vtx‘𝑔) ∧ 𝑒 = (Edg‘𝑔)) → (∀𝑘 ∈ 𝑣 ∀𝑙 ∈ (𝑣 ∖ {𝑘})∃!𝑥 ∈ 𝑣 {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ 𝑒 ↔ ∀𝑘 ∈ 𝑉 ∀𝑙 ∈ (𝑉 ∖ {𝑘})∃!𝑥 ∈ 𝑉 {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ 𝐸))) |
28 | 1, 2, 27 | sbc2iedv 3797 |
. 2
⊢ (𝑔 = 𝐺 → ([(Vtx‘𝑔) / 𝑣][(Edg‘𝑔) / 𝑒]∀𝑘 ∈ 𝑣 ∀𝑙 ∈ (𝑣 ∖ {𝑘})∃!𝑥 ∈ 𝑣 {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ 𝑒 ↔ ∀𝑘 ∈ 𝑉 ∀𝑙 ∈ (𝑉 ∖ {𝑘})∃!𝑥 ∈ 𝑉 {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ 𝐸)) |
29 | | df-frgr 28524 |
. 2
⊢
FriendGraph = {𝑔 ∈
USGraph ∣ [(Vtx‘𝑔) / 𝑣][(Edg‘𝑔) / 𝑒]∀𝑘 ∈ 𝑣 ∀𝑙 ∈ (𝑣 ∖ {𝑘})∃!𝑥 ∈ 𝑣 {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ 𝑒} |
30 | 28, 29 | elrab2 3620 |
1
⊢ (𝐺 ∈ FriendGraph ↔
(𝐺 ∈ USGraph ∧
∀𝑘 ∈ 𝑉 ∀𝑙 ∈ (𝑉 ∖ {𝑘})∃!𝑥 ∈ 𝑉 {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ 𝐸)) |