MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isfrgr Structured version   Visualization version   GIF version

Theorem isfrgr 28624
Description: The property of being a friendship graph. (Contributed by Alexander van der Vekens, 4-Oct-2017.) (Revised by AV, 29-Mar-2021.) (Revised by AV, 3-Jan-2024.)
Hypotheses
Ref Expression
isfrgr.v 𝑉 = (Vtx‘𝐺)
isfrgr.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
isfrgr (𝐺 ∈ FriendGraph ↔ (𝐺 ∈ USGraph ∧ ∀𝑘𝑉𝑙 ∈ (𝑉 ∖ {𝑘})∃!𝑥𝑉 {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ 𝐸))
Distinct variable groups:   𝑘,𝐸,𝑙,𝑥   𝑘,𝑉,𝑙,𝑥
Allowed substitution hints:   𝐺(𝑥,𝑘,𝑙)

Proof of Theorem isfrgr
Dummy variables 𝑒 𝑔 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvex 6787 . . 3 (Vtx‘𝑔) ∈ V
2 fvex 6787 . . 3 (Edg‘𝑔) ∈ V
3 fveq2 6774 . . . . . . 7 (𝑔 = 𝐺 → (Vtx‘𝑔) = (Vtx‘𝐺))
43eqeq2d 2749 . . . . . 6 (𝑔 = 𝐺 → (𝑣 = (Vtx‘𝑔) ↔ 𝑣 = (Vtx‘𝐺)))
5 isfrgr.v . . . . . . . 8 𝑉 = (Vtx‘𝐺)
65eqcomi 2747 . . . . . . 7 (Vtx‘𝐺) = 𝑉
76eqeq2i 2751 . . . . . 6 (𝑣 = (Vtx‘𝐺) ↔ 𝑣 = 𝑉)
84, 7bitrdi 287 . . . . 5 (𝑔 = 𝐺 → (𝑣 = (Vtx‘𝑔) ↔ 𝑣 = 𝑉))
9 fveq2 6774 . . . . . . 7 (𝑔 = 𝐺 → (Edg‘𝑔) = (Edg‘𝐺))
109eqeq2d 2749 . . . . . 6 (𝑔 = 𝐺 → (𝑒 = (Edg‘𝑔) ↔ 𝑒 = (Edg‘𝐺)))
11 isfrgr.e . . . . . . . 8 𝐸 = (Edg‘𝐺)
1211eqcomi 2747 . . . . . . 7 (Edg‘𝐺) = 𝐸
1312eqeq2i 2751 . . . . . 6 (𝑒 = (Edg‘𝐺) ↔ 𝑒 = 𝐸)
1410, 13bitrdi 287 . . . . 5 (𝑔 = 𝐺 → (𝑒 = (Edg‘𝑔) ↔ 𝑒 = 𝐸))
158, 14anbi12d 631 . . . 4 (𝑔 = 𝐺 → ((𝑣 = (Vtx‘𝑔) ∧ 𝑒 = (Edg‘𝑔)) ↔ (𝑣 = 𝑉𝑒 = 𝐸)))
16 simpl 483 . . . . 5 ((𝑣 = 𝑉𝑒 = 𝐸) → 𝑣 = 𝑉)
17 difeq1 4050 . . . . . . 7 (𝑣 = 𝑉 → (𝑣 ∖ {𝑘}) = (𝑉 ∖ {𝑘}))
1817adantr 481 . . . . . 6 ((𝑣 = 𝑉𝑒 = 𝐸) → (𝑣 ∖ {𝑘}) = (𝑉 ∖ {𝑘}))
19 reueq1 3344 . . . . . . . 8 (𝑣 = 𝑉 → (∃!𝑥𝑣 {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ 𝑒 ↔ ∃!𝑥𝑉 {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ 𝑒))
2019adantr 481 . . . . . . 7 ((𝑣 = 𝑉𝑒 = 𝐸) → (∃!𝑥𝑣 {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ 𝑒 ↔ ∃!𝑥𝑉 {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ 𝑒))
21 sseq2 3947 . . . . . . . . 9 (𝑒 = 𝐸 → ({{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ 𝑒 ↔ {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ 𝐸))
2221adantl 482 . . . . . . . 8 ((𝑣 = 𝑉𝑒 = 𝐸) → ({{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ 𝑒 ↔ {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ 𝐸))
2322reubidv 3323 . . . . . . 7 ((𝑣 = 𝑉𝑒 = 𝐸) → (∃!𝑥𝑉 {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ 𝑒 ↔ ∃!𝑥𝑉 {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ 𝐸))
2420, 23bitrd 278 . . . . . 6 ((𝑣 = 𝑉𝑒 = 𝐸) → (∃!𝑥𝑣 {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ 𝑒 ↔ ∃!𝑥𝑉 {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ 𝐸))
2518, 24raleqbidv 3336 . . . . 5 ((𝑣 = 𝑉𝑒 = 𝐸) → (∀𝑙 ∈ (𝑣 ∖ {𝑘})∃!𝑥𝑣 {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ 𝑒 ↔ ∀𝑙 ∈ (𝑉 ∖ {𝑘})∃!𝑥𝑉 {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ 𝐸))
2616, 25raleqbidv 3336 . . . 4 ((𝑣 = 𝑉𝑒 = 𝐸) → (∀𝑘𝑣𝑙 ∈ (𝑣 ∖ {𝑘})∃!𝑥𝑣 {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ 𝑒 ↔ ∀𝑘𝑉𝑙 ∈ (𝑉 ∖ {𝑘})∃!𝑥𝑉 {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ 𝐸))
2715, 26syl6bi 252 . . 3 (𝑔 = 𝐺 → ((𝑣 = (Vtx‘𝑔) ∧ 𝑒 = (Edg‘𝑔)) → (∀𝑘𝑣𝑙 ∈ (𝑣 ∖ {𝑘})∃!𝑥𝑣 {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ 𝑒 ↔ ∀𝑘𝑉𝑙 ∈ (𝑉 ∖ {𝑘})∃!𝑥𝑉 {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ 𝐸)))
281, 2, 27sbc2iedv 3801 . 2 (𝑔 = 𝐺 → ([(Vtx‘𝑔) / 𝑣][(Edg‘𝑔) / 𝑒]𝑘𝑣𝑙 ∈ (𝑣 ∖ {𝑘})∃!𝑥𝑣 {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ 𝑒 ↔ ∀𝑘𝑉𝑙 ∈ (𝑉 ∖ {𝑘})∃!𝑥𝑉 {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ 𝐸))
29 df-frgr 28623 . 2 FriendGraph = {𝑔 ∈ USGraph ∣ [(Vtx‘𝑔) / 𝑣][(Edg‘𝑔) / 𝑒]𝑘𝑣𝑙 ∈ (𝑣 ∖ {𝑘})∃!𝑥𝑣 {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ 𝑒}
3028, 29elrab2 3627 1 (𝐺 ∈ FriendGraph ↔ (𝐺 ∈ USGraph ∧ ∀𝑘𝑉𝑙 ∈ (𝑉 ∖ {𝑘})∃!𝑥𝑉 {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ 𝐸))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396   = wceq 1539  wcel 2106  wral 3064  ∃!wreu 3066  [wsbc 3716  cdif 3884  wss 3887  {csn 4561  {cpr 4563  cfv 6433  Vtxcvtx 27366  Edgcedg 27417  USGraphcusgr 27519   FriendGraph cfrgr 28622
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-nul 5230
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-iota 6391  df-fv 6441  df-frgr 28623
This theorem is referenced by:  frgrusgr  28625  frgr0v  28626  frgr0  28629  frcond1  28630  frgr1v  28635  nfrgr2v  28636  frgr3v  28639  2pthfrgrrn  28646  n4cyclfrgr  28655
  Copyright terms: Public domain W3C validator