| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-fusgr | Structured version Visualization version GIF version | ||
| Description: Define the class of all finite undirected simple graphs without loops (called "finite simple graphs" in the following). A finite simple graph is an undirected simple graph of finite order, i.e. with a finite set of vertices. (Contributed by AV, 3-Jan-2020.) (Revised by AV, 21-Oct-2020.) |
| Ref | Expression |
|---|---|
| df-fusgr | ⊢ FinUSGraph = {𝑔 ∈ USGraph ∣ (Vtx‘𝑔) ∈ Fin} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cfusgr 29295 | . 2 class FinUSGraph | |
| 2 | vg | . . . . . 6 setvar 𝑔 | |
| 3 | 2 | cv 1539 | . . . . 5 class 𝑔 |
| 4 | cvtx 28975 | . . . . 5 class Vtx | |
| 5 | 3, 4 | cfv 6531 | . . . 4 class (Vtx‘𝑔) |
| 6 | cfn 8959 | . . . 4 class Fin | |
| 7 | 5, 6 | wcel 2108 | . . 3 wff (Vtx‘𝑔) ∈ Fin |
| 8 | cusgr 29128 | . . 3 class USGraph | |
| 9 | 7, 2, 8 | crab 3415 | . 2 class {𝑔 ∈ USGraph ∣ (Vtx‘𝑔) ∈ Fin} |
| 10 | 1, 9 | wceq 1540 | 1 wff FinUSGraph = {𝑔 ∈ USGraph ∣ (Vtx‘𝑔) ∈ Fin} |
| Colors of variables: wff setvar class |
| This definition is referenced by: isfusgr 29297 |
| Copyright terms: Public domain | W3C validator |