MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isfusgr Structured version   Visualization version   GIF version

Theorem isfusgr 29297
Description: The property of being a finite simple graph. (Contributed by AV, 3-Jan-2020.) (Revised by AV, 21-Oct-2020.)
Hypothesis
Ref Expression
isfusgr.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
isfusgr (𝐺 ∈ FinUSGraph ↔ (𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin))

Proof of Theorem isfusgr
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6822 . . . 4 (𝑔 = 𝐺 → (Vtx‘𝑔) = (Vtx‘𝐺))
2 isfusgr.v . . . 4 𝑉 = (Vtx‘𝐺)
31, 2eqtr4di 2784 . . 3 (𝑔 = 𝐺 → (Vtx‘𝑔) = 𝑉)
43eleq1d 2816 . 2 (𝑔 = 𝐺 → ((Vtx‘𝑔) ∈ Fin ↔ 𝑉 ∈ Fin))
5 df-fusgr 29296 . 2 FinUSGraph = {𝑔 ∈ USGraph ∣ (Vtx‘𝑔) ∈ Fin}
64, 5elrab2 3650 1 (𝐺 ∈ FinUSGraph ↔ (𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1541  wcel 2111  cfv 6481  Fincfn 8869  Vtxcvtx 28975  USGraphcusgr 29128  FinUSGraphcfusgr 29295
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-iota 6437  df-fv 6489  df-fusgr 29296
This theorem is referenced by:  fusgrvtxfi  29298  isfusgrf1  29299  isfusgrcl  29300  fusgrusgr  29301  opfusgr  29302  fusgredgfi  29304  fusgrfis  29309  cusgrsizeindslem  29431  cusgrsizeinds  29432  sizusglecusglem2  29442  fusgrmaxsize  29444  finrusgrfusgr  29545  rusgrnumwwlks  29953  rusgrnumwwlk  29954  frrusgrord0lem  30317  frrusgrord0  30318  clwlknon2num  30346  numclwlk1lem1  30347  numclwlk1lem2  30348  friendshipgt3  30376
  Copyright terms: Public domain W3C validator