| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isfusgr | Structured version Visualization version GIF version | ||
| Description: The property of being a finite simple graph. (Contributed by AV, 3-Jan-2020.) (Revised by AV, 21-Oct-2020.) |
| Ref | Expression |
|---|---|
| isfusgr.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| Ref | Expression |
|---|---|
| isfusgr | ⊢ (𝐺 ∈ FinUSGraph ↔ (𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6830 | . . . 4 ⊢ (𝑔 = 𝐺 → (Vtx‘𝑔) = (Vtx‘𝐺)) | |
| 2 | isfusgr.v | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 3 | 1, 2 | eqtr4di 2786 | . . 3 ⊢ (𝑔 = 𝐺 → (Vtx‘𝑔) = 𝑉) |
| 4 | 3 | eleq1d 2818 | . 2 ⊢ (𝑔 = 𝐺 → ((Vtx‘𝑔) ∈ Fin ↔ 𝑉 ∈ Fin)) |
| 5 | df-fusgr 29299 | . 2 ⊢ FinUSGraph = {𝑔 ∈ USGraph ∣ (Vtx‘𝑔) ∈ Fin} | |
| 6 | 4, 5 | elrab2 3646 | 1 ⊢ (𝐺 ∈ FinUSGraph ↔ (𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ‘cfv 6488 Fincfn 8877 Vtxcvtx 28978 USGraphcusgr 29131 FinUSGraphcfusgr 29298 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-iota 6444 df-fv 6496 df-fusgr 29299 |
| This theorem is referenced by: fusgrvtxfi 29301 isfusgrf1 29302 isfusgrcl 29303 fusgrusgr 29304 opfusgr 29305 fusgredgfi 29307 fusgrfis 29312 cusgrsizeindslem 29434 cusgrsizeinds 29435 sizusglecusglem2 29445 fusgrmaxsize 29447 finrusgrfusgr 29548 rusgrnumwwlks 29959 rusgrnumwwlk 29960 frrusgrord0lem 30323 frrusgrord0 30324 clwlknon2num 30352 numclwlk1lem1 30353 numclwlk1lem2 30354 friendshipgt3 30382 |
| Copyright terms: Public domain | W3C validator |