MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isfusgr Structured version   Visualization version   GIF version

Theorem isfusgr 29353
Description: The property of being a finite simple graph. (Contributed by AV, 3-Jan-2020.) (Revised by AV, 21-Oct-2020.)
Hypothesis
Ref Expression
isfusgr.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
isfusgr (𝐺 ∈ FinUSGraph ↔ (𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin))

Proof of Theorem isfusgr
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6920 . . . 4 (𝑔 = 𝐺 → (Vtx‘𝑔) = (Vtx‘𝐺))
2 isfusgr.v . . . 4 𝑉 = (Vtx‘𝐺)
31, 2eqtr4di 2798 . . 3 (𝑔 = 𝐺 → (Vtx‘𝑔) = 𝑉)
43eleq1d 2829 . 2 (𝑔 = 𝐺 → ((Vtx‘𝑔) ∈ Fin ↔ 𝑉 ∈ Fin))
5 df-fusgr 29352 . 2 FinUSGraph = {𝑔 ∈ USGraph ∣ (Vtx‘𝑔) ∈ Fin}
64, 5elrab2 3711 1 (𝐺 ∈ FinUSGraph ↔ (𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1537  wcel 2108  cfv 6573  Fincfn 9003  Vtxcvtx 29031  USGraphcusgr 29184  FinUSGraphcfusgr 29351
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-iota 6525  df-fv 6581  df-fusgr 29352
This theorem is referenced by:  fusgrvtxfi  29354  isfusgrf1  29355  isfusgrcl  29356  fusgrusgr  29357  opfusgr  29358  fusgredgfi  29360  fusgrfis  29365  cusgrsizeindslem  29487  cusgrsizeinds  29488  sizusglecusglem2  29498  fusgrmaxsize  29500  finrusgrfusgr  29601  rusgrnumwwlks  30007  rusgrnumwwlk  30008  frrusgrord0lem  30371  frrusgrord0  30372  clwlknon2num  30400  numclwlk1lem1  30401  numclwlk1lem2  30402  friendshipgt3  30430
  Copyright terms: Public domain W3C validator