MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isfusgr Structured version   Visualization version   GIF version

Theorem isfusgr 29254
Description: The property of being a finite simple graph. (Contributed by AV, 3-Jan-2020.) (Revised by AV, 21-Oct-2020.)
Hypothesis
Ref Expression
isfusgr.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
isfusgr (𝐺 ∈ FinUSGraph ↔ (𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin))

Proof of Theorem isfusgr
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6901 . . . 4 (𝑔 = 𝐺 → (Vtx‘𝑔) = (Vtx‘𝐺))
2 isfusgr.v . . . 4 𝑉 = (Vtx‘𝐺)
31, 2eqtr4di 2784 . . 3 (𝑔 = 𝐺 → (Vtx‘𝑔) = 𝑉)
43eleq1d 2811 . 2 (𝑔 = 𝐺 → ((Vtx‘𝑔) ∈ Fin ↔ 𝑉 ∈ Fin))
5 df-fusgr 29253 . 2 FinUSGraph = {𝑔 ∈ USGraph ∣ (Vtx‘𝑔) ∈ Fin}
64, 5elrab2 3684 1 (𝐺 ∈ FinUSGraph ↔ (𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 394   = wceq 1534  wcel 2099  cfv 6554  Fincfn 8974  Vtxcvtx 28932  USGraphcusgr 29085  FinUSGraphcfusgr 29252
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-ext 2697
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-sb 2061  df-clab 2704  df-cleq 2718  df-clel 2803  df-rab 3420  df-v 3464  df-dif 3950  df-un 3952  df-ss 3964  df-nul 4326  df-if 4534  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4914  df-br 5154  df-iota 6506  df-fv 6562  df-fusgr 29253
This theorem is referenced by:  fusgrvtxfi  29255  isfusgrf1  29256  isfusgrcl  29257  fusgrusgr  29258  opfusgr  29259  fusgredgfi  29261  fusgrfis  29266  cusgrsizeindslem  29388  cusgrsizeinds  29389  sizusglecusglem2  29399  fusgrmaxsize  29401  finrusgrfusgr  29502  rusgrnumwwlks  29908  rusgrnumwwlk  29909  frrusgrord0lem  30272  frrusgrord0  30273  clwlknon2num  30301  numclwlk1lem1  30302  numclwlk1lem2  30303  friendshipgt3  30331
  Copyright terms: Public domain W3C validator