![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isfusgr | Structured version Visualization version GIF version |
Description: The property of being a finite simple graph. (Contributed by AV, 3-Jan-2020.) (Revised by AV, 21-Oct-2020.) |
Ref | Expression |
---|---|
isfusgr.v | ⊢ 𝑉 = (Vtx‘𝐺) |
Ref | Expression |
---|---|
isfusgr | ⊢ (𝐺 ∈ FinUSGraph ↔ (𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6907 | . . . 4 ⊢ (𝑔 = 𝐺 → (Vtx‘𝑔) = (Vtx‘𝐺)) | |
2 | isfusgr.v | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
3 | 1, 2 | eqtr4di 2793 | . . 3 ⊢ (𝑔 = 𝐺 → (Vtx‘𝑔) = 𝑉) |
4 | 3 | eleq1d 2824 | . 2 ⊢ (𝑔 = 𝐺 → ((Vtx‘𝑔) ∈ Fin ↔ 𝑉 ∈ Fin)) |
5 | df-fusgr 29349 | . 2 ⊢ FinUSGraph = {𝑔 ∈ USGraph ∣ (Vtx‘𝑔) ∈ Fin} | |
6 | 4, 5 | elrab2 3698 | 1 ⊢ (𝐺 ∈ FinUSGraph ↔ (𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ‘cfv 6563 Fincfn 8984 Vtxcvtx 29028 USGraphcusgr 29181 FinUSGraphcfusgr 29348 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-iota 6516 df-fv 6571 df-fusgr 29349 |
This theorem is referenced by: fusgrvtxfi 29351 isfusgrf1 29352 isfusgrcl 29353 fusgrusgr 29354 opfusgr 29355 fusgredgfi 29357 fusgrfis 29362 cusgrsizeindslem 29484 cusgrsizeinds 29485 sizusglecusglem2 29495 fusgrmaxsize 29497 finrusgrfusgr 29598 rusgrnumwwlks 30004 rusgrnumwwlk 30005 frrusgrord0lem 30368 frrusgrord0 30369 clwlknon2num 30397 numclwlk1lem1 30398 numclwlk1lem2 30399 friendshipgt3 30427 |
Copyright terms: Public domain | W3C validator |