Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > isfusgr | Structured version Visualization version GIF version |
Description: The property of being a finite simple graph. (Contributed by AV, 3-Jan-2020.) (Revised by AV, 21-Oct-2020.) |
Ref | Expression |
---|---|
isfusgr.v | ⊢ 𝑉 = (Vtx‘𝐺) |
Ref | Expression |
---|---|
isfusgr | ⊢ (𝐺 ∈ FinUSGraph ↔ (𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6804 | . . . 4 ⊢ (𝑔 = 𝐺 → (Vtx‘𝑔) = (Vtx‘𝐺)) | |
2 | isfusgr.v | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
3 | 1, 2 | eqtr4di 2794 | . . 3 ⊢ (𝑔 = 𝐺 → (Vtx‘𝑔) = 𝑉) |
4 | 3 | eleq1d 2821 | . 2 ⊢ (𝑔 = 𝐺 → ((Vtx‘𝑔) ∈ Fin ↔ 𝑉 ∈ Fin)) |
5 | df-fusgr 27733 | . 2 ⊢ FinUSGraph = {𝑔 ∈ USGraph ∣ (Vtx‘𝑔) ∈ Fin} | |
6 | 4, 5 | elrab2 3632 | 1 ⊢ (𝐺 ∈ FinUSGraph ↔ (𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 397 = wceq 1539 ∈ wcel 2104 ‘cfv 6458 Fincfn 8764 Vtxcvtx 27415 USGraphcusgr 27568 FinUSGraphcfusgr 27732 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-sb 2066 df-clab 2714 df-cleq 2728 df-clel 2814 df-rab 3306 df-v 3439 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-br 5082 df-iota 6410 df-fv 6466 df-fusgr 27733 |
This theorem is referenced by: fusgrvtxfi 27735 isfusgrf1 27736 isfusgrcl 27737 fusgrusgr 27738 opfusgr 27739 fusgredgfi 27741 fusgrfis 27746 cusgrsizeindslem 27867 cusgrsizeinds 27868 sizusglecusglem2 27878 fusgrmaxsize 27880 finrusgrfusgr 27981 rusgrnumwwlks 28388 rusgrnumwwlk 28389 frrusgrord0lem 28752 frrusgrord0 28753 clwlknon2num 28781 numclwlk1lem1 28782 numclwlk1lem2 28783 friendshipgt3 28811 |
Copyright terms: Public domain | W3C validator |