| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isfusgr | Structured version Visualization version GIF version | ||
| Description: The property of being a finite simple graph. (Contributed by AV, 3-Jan-2020.) (Revised by AV, 21-Oct-2020.) |
| Ref | Expression |
|---|---|
| isfusgr.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| Ref | Expression |
|---|---|
| isfusgr | ⊢ (𝐺 ∈ FinUSGraph ↔ (𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6822 | . . . 4 ⊢ (𝑔 = 𝐺 → (Vtx‘𝑔) = (Vtx‘𝐺)) | |
| 2 | isfusgr.v | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 3 | 1, 2 | eqtr4di 2784 | . . 3 ⊢ (𝑔 = 𝐺 → (Vtx‘𝑔) = 𝑉) |
| 4 | 3 | eleq1d 2816 | . 2 ⊢ (𝑔 = 𝐺 → ((Vtx‘𝑔) ∈ Fin ↔ 𝑉 ∈ Fin)) |
| 5 | df-fusgr 29296 | . 2 ⊢ FinUSGraph = {𝑔 ∈ USGraph ∣ (Vtx‘𝑔) ∈ Fin} | |
| 6 | 4, 5 | elrab2 3650 | 1 ⊢ (𝐺 ∈ FinUSGraph ↔ (𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ‘cfv 6481 Fincfn 8869 Vtxcvtx 28975 USGraphcusgr 29128 FinUSGraphcfusgr 29295 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-iota 6437 df-fv 6489 df-fusgr 29296 |
| This theorem is referenced by: fusgrvtxfi 29298 isfusgrf1 29299 isfusgrcl 29300 fusgrusgr 29301 opfusgr 29302 fusgredgfi 29304 fusgrfis 29309 cusgrsizeindslem 29431 cusgrsizeinds 29432 sizusglecusglem2 29442 fusgrmaxsize 29444 finrusgrfusgr 29545 rusgrnumwwlks 29953 rusgrnumwwlk 29954 frrusgrord0lem 30317 frrusgrord0 30318 clwlknon2num 30346 numclwlk1lem1 30347 numclwlk1lem2 30348 friendshipgt3 30376 |
| Copyright terms: Public domain | W3C validator |