![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isfusgr | Structured version Visualization version GIF version |
Description: The property of being a finite simple graph. (Contributed by AV, 3-Jan-2020.) (Revised by AV, 21-Oct-2020.) |
Ref | Expression |
---|---|
isfusgr.v | ⊢ 𝑉 = (Vtx‘𝐺) |
Ref | Expression |
---|---|
isfusgr | ⊢ (𝐺 ∈ FinUSGraph ↔ (𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6920 | . . . 4 ⊢ (𝑔 = 𝐺 → (Vtx‘𝑔) = (Vtx‘𝐺)) | |
2 | isfusgr.v | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
3 | 1, 2 | eqtr4di 2798 | . . 3 ⊢ (𝑔 = 𝐺 → (Vtx‘𝑔) = 𝑉) |
4 | 3 | eleq1d 2829 | . 2 ⊢ (𝑔 = 𝐺 → ((Vtx‘𝑔) ∈ Fin ↔ 𝑉 ∈ Fin)) |
5 | df-fusgr 29352 | . 2 ⊢ FinUSGraph = {𝑔 ∈ USGraph ∣ (Vtx‘𝑔) ∈ Fin} | |
6 | 4, 5 | elrab2 3711 | 1 ⊢ (𝐺 ∈ FinUSGraph ↔ (𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ‘cfv 6573 Fincfn 9003 Vtxcvtx 29031 USGraphcusgr 29184 FinUSGraphcfusgr 29351 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-iota 6525 df-fv 6581 df-fusgr 29352 |
This theorem is referenced by: fusgrvtxfi 29354 isfusgrf1 29355 isfusgrcl 29356 fusgrusgr 29357 opfusgr 29358 fusgredgfi 29360 fusgrfis 29365 cusgrsizeindslem 29487 cusgrsizeinds 29488 sizusglecusglem2 29498 fusgrmaxsize 29500 finrusgrfusgr 29601 rusgrnumwwlks 30007 rusgrnumwwlk 30008 frrusgrord0lem 30371 frrusgrord0 30372 clwlknon2num 30400 numclwlk1lem1 30401 numclwlk1lem2 30402 friendshipgt3 30430 |
Copyright terms: Public domain | W3C validator |