Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > isfusgr | Structured version Visualization version GIF version |
Description: The property of being a finite simple graph. (Contributed by AV, 3-Jan-2020.) (Revised by AV, 21-Oct-2020.) |
Ref | Expression |
---|---|
isfusgr.v | ⊢ 𝑉 = (Vtx‘𝐺) |
Ref | Expression |
---|---|
isfusgr | ⊢ (𝐺 ∈ FinUSGraph ↔ (𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6771 | . . . 4 ⊢ (𝑔 = 𝐺 → (Vtx‘𝑔) = (Vtx‘𝐺)) | |
2 | isfusgr.v | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
3 | 1, 2 | eqtr4di 2798 | . . 3 ⊢ (𝑔 = 𝐺 → (Vtx‘𝑔) = 𝑉) |
4 | 3 | eleq1d 2825 | . 2 ⊢ (𝑔 = 𝐺 → ((Vtx‘𝑔) ∈ Fin ↔ 𝑉 ∈ Fin)) |
5 | df-fusgr 27682 | . 2 ⊢ FinUSGraph = {𝑔 ∈ USGraph ∣ (Vtx‘𝑔) ∈ Fin} | |
6 | 4, 5 | elrab2 3629 | 1 ⊢ (𝐺 ∈ FinUSGraph ↔ (𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 = wceq 1542 ∈ wcel 2110 ‘cfv 6432 Fincfn 8716 Vtxcvtx 27364 USGraphcusgr 27517 FinUSGraphcfusgr 27681 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-ext 2711 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-sb 2072 df-clab 2718 df-cleq 2732 df-clel 2818 df-rab 3075 df-v 3433 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-br 5080 df-iota 6390 df-fv 6440 df-fusgr 27682 |
This theorem is referenced by: fusgrvtxfi 27684 isfusgrf1 27685 isfusgrcl 27686 fusgrusgr 27687 opfusgr 27688 fusgredgfi 27690 fusgrfis 27695 cusgrsizeindslem 27816 cusgrsizeinds 27817 sizusglecusglem2 27827 fusgrmaxsize 27829 finrusgrfusgr 27930 rusgrnumwwlks 28335 rusgrnumwwlk 28336 frrusgrord0lem 28699 frrusgrord0 28700 clwlknon2num 28728 numclwlk1lem1 28729 numclwlk1lem2 28730 friendshipgt3 28758 |
Copyright terms: Public domain | W3C validator |