Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > isfusgr | Structured version Visualization version GIF version |
Description: The property of being a finite simple graph. (Contributed by AV, 3-Jan-2020.) (Revised by AV, 21-Oct-2020.) |
Ref | Expression |
---|---|
isfusgr.v | ⊢ 𝑉 = (Vtx‘𝐺) |
Ref | Expression |
---|---|
isfusgr | ⊢ (𝐺 ∈ FinUSGraph ↔ (𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6768 | . . . 4 ⊢ (𝑔 = 𝐺 → (Vtx‘𝑔) = (Vtx‘𝐺)) | |
2 | isfusgr.v | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
3 | 1, 2 | eqtr4di 2797 | . . 3 ⊢ (𝑔 = 𝐺 → (Vtx‘𝑔) = 𝑉) |
4 | 3 | eleq1d 2824 | . 2 ⊢ (𝑔 = 𝐺 → ((Vtx‘𝑔) ∈ Fin ↔ 𝑉 ∈ Fin)) |
5 | df-fusgr 27665 | . 2 ⊢ FinUSGraph = {𝑔 ∈ USGraph ∣ (Vtx‘𝑔) ∈ Fin} | |
6 | 4, 5 | elrab2 3628 | 1 ⊢ (𝐺 ∈ FinUSGraph ↔ (𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 = wceq 1541 ∈ wcel 2109 ‘cfv 6430 Fincfn 8707 Vtxcvtx 27347 USGraphcusgr 27500 FinUSGraphcfusgr 27664 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-rab 3074 df-v 3432 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-br 5079 df-iota 6388 df-fv 6438 df-fusgr 27665 |
This theorem is referenced by: fusgrvtxfi 27667 isfusgrf1 27668 isfusgrcl 27669 fusgrusgr 27670 opfusgr 27671 fusgredgfi 27673 fusgrfis 27678 cusgrsizeindslem 27799 cusgrsizeinds 27800 sizusglecusglem2 27810 fusgrmaxsize 27812 finrusgrfusgr 27913 rusgrnumwwlks 28318 rusgrnumwwlk 28319 frrusgrord0lem 28682 frrusgrord0 28683 clwlknon2num 28711 numclwlk1lem1 28712 numclwlk1lem2 28713 friendshipgt3 28741 |
Copyright terms: Public domain | W3C validator |