![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isfusgr | Structured version Visualization version GIF version |
Description: The property of being a finite simple graph. (Contributed by AV, 3-Jan-2020.) (Revised by AV, 21-Oct-2020.) |
Ref | Expression |
---|---|
isfusgr.v | ⢠ð = (Vtxâðº) |
Ref | Expression |
---|---|
isfusgr | ⢠(ðº â FinUSGraph â (ðº â USGraph ⧠ð â Fin)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6892 | . . . 4 ⢠(ð = ðº â (Vtxâð) = (Vtxâðº)) | |
2 | isfusgr.v | . . . 4 ⢠ð = (Vtxâðº) | |
3 | 1, 2 | eqtr4di 2791 | . . 3 ⢠(ð = ðº â (Vtxâð) = ð) |
4 | 3 | eleq1d 2819 | . 2 ⢠(ð = ðº â ((Vtxâð) â Fin â ð â Fin)) |
5 | df-fusgr 28605 | . 2 ⢠FinUSGraph = {ð â USGraph ⣠(Vtxâð) â Fin} | |
6 | 4, 5 | elrab2 3687 | 1 ⢠(ðº â FinUSGraph â (ðº â USGraph ⧠ð â Fin)) |
Colors of variables: wff setvar class |
Syntax hints: â wb 205 ⧠wa 397 = wceq 1542 â wcel 2107 âcfv 6544 Fincfn 8939 Vtxcvtx 28287 USGraphcusgr 28440 FinUSGraphcfusgr 28604 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-iota 6496 df-fv 6552 df-fusgr 28605 |
This theorem is referenced by: fusgrvtxfi 28607 isfusgrf1 28608 isfusgrcl 28609 fusgrusgr 28610 opfusgr 28611 fusgredgfi 28613 fusgrfis 28618 cusgrsizeindslem 28739 cusgrsizeinds 28740 sizusglecusglem2 28750 fusgrmaxsize 28752 finrusgrfusgr 28853 rusgrnumwwlks 29259 rusgrnumwwlk 29260 frrusgrord0lem 29623 frrusgrord0 29624 clwlknon2num 29652 numclwlk1lem1 29653 numclwlk1lem2 29654 friendshipgt3 29682 |
Copyright terms: Public domain | W3C validator |