HomeHome Metamath Proof Explorer
Theorem List (p. 294 of 466)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-29289)
  Hilbert Space Explorer  Hilbert Space Explorer
(29290-30812)
  Users' Mathboxes  Users' Mathboxes
(30813-46532)
 

Theorem List for Metamath Proof Explorer - 29301-29400   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Syntaxcort 29301 Extend class notation with orthogonal complement in C.
class
 
Syntaxcph 29302 Extend class notation with subspace sum in C.
class +
 
Syntaxcspn 29303 Extend class notation with subspace span in C.
class span
 
Syntaxchj 29304 Extend class notation with join in C.
class
 
Syntaxchsup 29305 Extend class notation with supremum of a collection in C.
class
 
Syntaxc0h 29306 Extend class notation with zero of C.
class 0
 
Syntaxccm 29307 Extend class notation with the commutes relation on a Hilbert lattice.
class 𝐶
 
Syntaxcpjh 29308 Extend class notation with set of projections on a Hilbert space.
class proj
 
Syntaxchos 29309 Extend class notation with sum of Hilbert space operators.
class +op
 
Syntaxchot 29310 Extend class notation with scalar product of a Hilbert space operator.
class ·op
 
Syntaxchod 29311 Extend class notation with difference of Hilbert space operators.
class op
 
Syntaxchfs 29312 Extend class notation with sum of Hilbert space functionals.
class +fn
 
Syntaxchft 29313 Extend class notation with scalar product of Hilbert space functional.
class ·fn
 
Syntaxch0o 29314 Extend class notation with the Hilbert space zero operator.
class 0hop
 
Syntaxchio 29315 Extend class notation with Hilbert space identity operator.
class Iop
 
Syntaxcnop 29316 Extend class notation with the operator norm function.
class normop
 
Syntaxccop 29317 Extend class notation with set of continuous Hilbert space operators.
class ContOp
 
Syntaxclo 29318 Extend class notation with set of linear Hilbert space operators.
class LinOp
 
Syntaxcbo 29319 Extend class notation with set of bounded linear operators.
class BndLinOp
 
Syntaxcuo 29320 Extend class notation with set of unitary Hilbert space operators.
class UniOp
 
Syntaxcho 29321 Extend class notation with set of Hermitian Hilbert space operators.
class HrmOp
 
Syntaxcnmf 29322 Extend class notation with the functional norm function.
class normfn
 
Syntaxcnl 29323 Extend class notation with the functional nullspace function.
class null
 
Syntaxccnfn 29324 Extend class notation with set of continuous Hilbert space functionals.
class ContFn
 
Syntaxclf 29325 Extend class notation with set of linear Hilbert space functionals.
class LinFn
 
Syntaxcado 29326 Extend class notation with Hilbert space adjoint function.
class adj
 
Syntaxcbr 29327 Extend class notation with the bra of a vector in Dirac bra-ket notation.
class bra
 
Syntaxck 29328 Extend class notation with the outer product of two vectors in Dirac bra-ket notation.
class ketbra
 
Syntaxcleo 29329 Extend class notation with positive operator ordering.
class op
 
Syntaxcei 29330 Extend class notation with Hilbert space eigenvector function.
class eigvec
 
Syntaxcel 29331 Extend class notation with Hilbert space eigenvalue function.
class eigval
 
Syntaxcspc 29332 Extend class notation with the spectrum of an operator.
class Lambda
 
Syntaxcst 29333 Extend class notation with set of states on a Hilbert lattice.
class States
 
Syntaxchst 29334 Extend class notation with set of Hilbert-space-valued states on a Hilbert lattice.
class CHStates
 
Syntaxccv 29335 Extend class notation with the covers relation on a Hilbert lattice.
class
 
Syntaxcat 29336 Extend class notation with set of atoms on a Hilbert lattice.
class HAtoms
 
Syntaxcmd 29337 Extend class notation with the modular pair relation on a Hilbert lattice.
class 𝑀
 
Syntaxcdmd 29338 Extend class notation with the dual modular pair relation on a Hilbert lattice.
class 𝑀*
 
19.1.2  Preliminary ZFC lemmas
 
Definitiondf-hnorm 29339 Define the function for the norm of a vector of Hilbert space. See normval 29495 for its value and normcl 29496 for its closure. Theorems norm-i-i 29504, norm-ii-i 29508, and norm-iii-i 29510 show it has the expected properties of a norm. In the literature, the norm of 𝐴 is usually written "|| 𝐴 ||", but we use function notation to take advantage of our existing theorems about functions. Definition of norm in [Beran] p. 96. (Contributed by NM, 6-Jun-2008.) (New usage is discouraged.)
norm = (𝑥 ∈ dom dom ·ih ↦ (√‘(𝑥 ·ih 𝑥)))
 
Definitiondf-hba 29340 Define base set of Hilbert space, for use if we want to develop Hilbert space independently from the axioms (see comments in ax-hilex 29370). Note that is considered a primitive in the Hilbert space axioms below, and we don't use this definition outside of this section. This definition can be proved independently from those axioms as Theorem hhba 29538. (Contributed by NM, 31-May-2008.) (New usage is discouraged.)
ℋ = (BaseSet‘⟨⟨ + , · ⟩, norm⟩)
 
Definitiondf-h0v 29341 Define the zero vector of Hilbert space. Note that 0vec is considered a primitive in the Hilbert space axioms below, and we don't use this definition outside of this section. It is proved from the axioms as Theorem hh0v 29539. (Contributed by NM, 31-May-2008.) (New usage is discouraged.)
0 = (0vec‘⟨⟨ + , · ⟩, norm⟩)
 
Definitiondf-hvsub 29342* Define vector subtraction. See hvsubvali 29391 for its value and hvsubcli 29392 for its closure. (Contributed by NM, 6-Jun-2008.) (New usage is discouraged.)
= (𝑥 ∈ ℋ, 𝑦 ∈ ℋ ↦ (𝑥 + (-1 · 𝑦)))
 
Definitiondf-hlim 29343* Define the limit relation for Hilbert space. See hlimi 29559 for its relational expression. Note that 𝑓:ℕ⟶ ℋ is an infinite sequence of vectors, i.e. a mapping from integers to vectors. Definition of converge in [Beran] p. 96. (Contributed by NM, 6-Jun-2008.) (New usage is discouraged.)
𝑣 = {⟨𝑓, 𝑤⟩ ∣ ((𝑓:ℕ⟶ ℋ ∧ 𝑤 ∈ ℋ) ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ𝑦)(norm‘((𝑓𝑧) − 𝑤)) < 𝑥)}
 
Definitiondf-hcau 29344* Define the set of Cauchy sequences on a Hilbert space. See hcau 29555 for its membership relation. Note that 𝑓:ℕ⟶ ℋ is an infinite sequence of vectors, i.e. a mapping from integers to vectors. Definition of Cauchy sequence in [Beran] p. 96. (Contributed by NM, 6-Jun-2008.) (New usage is discouraged.)
Cauchy = {𝑓 ∈ ( ℋ ↑m ℕ) ∣ ∀𝑥 ∈ ℝ+𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ𝑦)(norm‘((𝑓𝑦) − (𝑓𝑧))) < 𝑥}
 
Theoremh2hva 29345 The group (addition) operation of Hilbert space. (Contributed by NM, 31-May-2008.) (New usage is discouraged.)
𝑈 = ⟨⟨ + , · ⟩, norm    &   𝑈 ∈ NrmCVec        + = ( +𝑣𝑈)
 
Theoremh2hsm 29346 The scalar product operation of Hilbert space. (Contributed by NM, 31-May-2008.) (New usage is discouraged.)
𝑈 = ⟨⟨ + , · ⟩, norm    &   𝑈 ∈ NrmCVec        · = ( ·𝑠OLD𝑈)
 
Theoremh2hnm 29347 The norm function of Hilbert space. (Contributed by NM, 5-Jun-2008.) (New usage is discouraged.)
𝑈 = ⟨⟨ + , · ⟩, norm    &   𝑈 ∈ NrmCVec       norm = (normCV𝑈)
 
Theoremh2hvs 29348 The vector subtraction operation of Hilbert space. (Contributed by NM, 6-Jun-2008.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.)
𝑈 = ⟨⟨ + , · ⟩, norm    &   𝑈 ∈ NrmCVec    &    ℋ = (BaseSet‘𝑈)        = ( −𝑣𝑈)
 
Theoremh2hmetdval 29349 Value of the distance function of the metric space of Hilbert space. (Contributed by NM, 6-Jun-2008.) (New usage is discouraged.)
𝑈 = ⟨⟨ + , · ⟩, norm    &   𝑈 ∈ NrmCVec    &    ℋ = (BaseSet‘𝑈)    &   𝐷 = (IndMet‘𝑈)       ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴𝐷𝐵) = (norm‘(𝐴 𝐵)))
 
Theoremh2hcau 29350 The Cauchy sequences of Hilbert space. (Contributed by NM, 6-Jun-2008.) (Revised by Mario Carneiro, 13-May-2014.) (New usage is discouraged.)
𝑈 = ⟨⟨ + , · ⟩, norm    &   𝑈 ∈ NrmCVec    &    ℋ = (BaseSet‘𝑈)    &   𝐷 = (IndMet‘𝑈)       Cauchy = ((Cau‘𝐷) ∩ ( ℋ ↑m ℕ))
 
Theoremh2hlm 29351 The limit sequences of Hilbert space. (Contributed by NM, 6-Jun-2008.) (Revised by Mario Carneiro, 13-May-2014.) (Proof shortened by Peter Mazsa, 2-Oct-2022.) (New usage is discouraged.)
𝑈 = ⟨⟨ + , · ⟩, norm    &   𝑈 ∈ NrmCVec    &    ℋ = (BaseSet‘𝑈)    &   𝐷 = (IndMet‘𝑈)    &   𝐽 = (MetOpen‘𝐷)       𝑣 = ((⇝𝑡𝐽) ↾ ( ℋ ↑m ℕ))
 
19.1.3  Derive the Hilbert space axioms from ZFC set theory

Before introducing the 18 axioms for Hilbert space, we first prove them as the conclusions of Theorems axhilex-zf 29352 through axhcompl-zf 29369, using ZFC set theory only. These show that if we are given a known, fixed Hilbert space 𝑈 = ⟨⟨ + , · ⟩, norm that satisfies their hypotheses, then we can derive the Hilbert space axioms as theorems of ZFC set theory. In practice, in order to use these theorems to convert the Hilbert Space explorer to a ZFC-only subtheory, we would also have to provide definitions for the 3 (otherwise primitive) class constants +, ·, and ·ih before df-hnorm 29339 above. See also the comment in ax-hilex 29370.

 
Theoremaxhilex-zf 29352 Derive Axiom ax-hilex 29370 from Hilbert space under ZF set theory. (Contributed by NM, 31-May-2008.) (New usage is discouraged.)
𝑈 = ⟨⟨ + , · ⟩, norm    &   𝑈 ∈ CHilOLD        ℋ ∈ V
 
Theoremaxhfvadd-zf 29353 Derive Axiom ax-hfvadd 29371 from Hilbert space under ZF set theory. (Contributed by NM, 31-May-2008.) (New usage is discouraged.)
𝑈 = ⟨⟨ + , · ⟩, norm    &   𝑈 ∈ CHilOLD        + :( ℋ × ℋ)⟶ ℋ
 
Theoremaxhvcom-zf 29354 Derive Axiom ax-hvcom 29372 from Hilbert space under ZF set theory. (Contributed by NM, 27-May-2008.) (New usage is discouraged.)
𝑈 = ⟨⟨ + , · ⟩, norm    &   𝑈 ∈ CHilOLD       ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 + 𝐵) = (𝐵 + 𝐴))
 
Theoremaxhvass-zf 29355 Derive Axiom ax-hvass 29373 from Hilbert space under ZF set theory. (Contributed by NM, 31-May-2008.) (New usage is discouraged.)
𝑈 = ⟨⟨ + , · ⟩, norm    &   𝑈 ∈ CHilOLD       ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶)))
 
Theoremaxhv0cl-zf 29356 Derive Axiom ax-hv0cl 29374 from Hilbert space under ZF set theory. (Contributed by NM, 31-May-2008.) (New usage is discouraged.)
𝑈 = ⟨⟨ + , · ⟩, norm    &   𝑈 ∈ CHilOLD       0 ∈ ℋ
 
Theoremaxhvaddid-zf 29357 Derive Axiom ax-hvaddid 29375 from Hilbert space under ZF set theory. (Contributed by NM, 31-May-2008.) (New usage is discouraged.)
𝑈 = ⟨⟨ + , · ⟩, norm    &   𝑈 ∈ CHilOLD       (𝐴 ∈ ℋ → (𝐴 + 0) = 𝐴)
 
Theoremaxhfvmul-zf 29358 Derive Axiom ax-hfvmul 29376 from Hilbert space under ZF set theory. (Contributed by NM, 31-May-2008.) (New usage is discouraged.)
𝑈 = ⟨⟨ + , · ⟩, norm    &   𝑈 ∈ CHilOLD        · :(ℂ × ℋ)⟶ ℋ
 
Theoremaxhvmulid-zf 29359 Derive Axiom ax-hvmulid 29377 from Hilbert space under ZF set theory. (Contributed by NM, 31-May-2008.) (New usage is discouraged.)
𝑈 = ⟨⟨ + , · ⟩, norm    &   𝑈 ∈ CHilOLD       (𝐴 ∈ ℋ → (1 · 𝐴) = 𝐴)
 
Theoremaxhvmulass-zf 29360 Derive Axiom ax-hvmulass 29378 from Hilbert space under ZF set theory. (Contributed by NM, 31-May-2008.) (New usage is discouraged.)
𝑈 = ⟨⟨ + , · ⟩, norm    &   𝑈 ∈ CHilOLD       ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶)))
 
Theoremaxhvdistr1-zf 29361 Derive Axiom ax-hvdistr1 29379 from Hilbert space under ZF set theory. (Contributed by NM, 31-May-2008.) (New usage is discouraged.)
𝑈 = ⟨⟨ + , · ⟩, norm    &   𝑈 ∈ CHilOLD       ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐴 · (𝐵 + 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶)))
 
Theoremaxhvdistr2-zf 29362 Derive Axiom ax-hvdistr2 29380 from Hilbert space under ZF set theory. (Contributed by NM, 31-May-2008.) (New usage is discouraged.)
𝑈 = ⟨⟨ + , · ⟩, norm    &   𝑈 ∈ CHilOLD       ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → ((𝐴 + 𝐵) · 𝐶) = ((𝐴 · 𝐶) + (𝐵 · 𝐶)))
 
Theoremaxhvmul0-zf 29363 Derive Axiom ax-hvmul0 29381 from Hilbert space under ZF set theory. (Contributed by NM, 31-May-2008.) (New usage is discouraged.)
𝑈 = ⟨⟨ + , · ⟩, norm    &   𝑈 ∈ CHilOLD       (𝐴 ∈ ℋ → (0 · 𝐴) = 0)
 
Theoremaxhfi-zf 29364 Derive Axiom ax-hfi 29450 from Hilbert space under ZF set theory. (Contributed by NM, 31-May-2008.) (New usage is discouraged.)
𝑈 = ⟨⟨ + , · ⟩, norm    &   𝑈 ∈ CHilOLD    &    ·ih = (·𝑖OLD𝑈)        ·ih :( ℋ × ℋ)⟶ℂ
 
Theoremaxhis1-zf 29365 Derive Axiom ax-his1 29453 from Hilbert space under ZF set theory. (Contributed by NM, 31-May-2008.) (New usage is discouraged.)
𝑈 = ⟨⟨ + , · ⟩, norm    &   𝑈 ∈ CHilOLD    &    ·ih = (·𝑖OLD𝑈)       ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 ·ih 𝐵) = (∗‘(𝐵 ·ih 𝐴)))
 
Theoremaxhis2-zf 29366 Derive Axiom ax-his2 29454 from Hilbert space under ZF set theory. (Contributed by NM, 31-May-2008.) (New usage is discouraged.)
𝑈 = ⟨⟨ + , · ⟩, norm    &   𝑈 ∈ CHilOLD    &    ·ih = (·𝑖OLD𝑈)       ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 + 𝐵) ·ih 𝐶) = ((𝐴 ·ih 𝐶) + (𝐵 ·ih 𝐶)))
 
Theoremaxhis3-zf 29367 Derive Axiom ax-his3 29455 from Hilbert space under ZF set theory. (Contributed by NM, 31-May-2008.) (New usage is discouraged.)
𝑈 = ⟨⟨ + , · ⟩, norm    &   𝑈 ∈ CHilOLD    &    ·ih = (·𝑖OLD𝑈)       ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 · 𝐵) ·ih 𝐶) = (𝐴 · (𝐵 ·ih 𝐶)))
 
Theoremaxhis4-zf 29368 Derive Axiom ax-his4 29456 from Hilbert space under ZF set theory. (Contributed by NM, 31-May-2008.) (New usage is discouraged.)
𝑈 = ⟨⟨ + , · ⟩, norm    &   𝑈 ∈ CHilOLD    &    ·ih = (·𝑖OLD𝑈)       ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → 0 < (𝐴 ·ih 𝐴))
 
Theoremaxhcompl-zf 29369* Derive Axiom ax-hcompl 29573 from Hilbert space under ZF set theory. (Contributed by NM, 6-Jun-2008.) (Revised by Mario Carneiro, 13-May-2014.) (Proof shortened by Peter Mazsa, 2-Oct-2022.) (New usage is discouraged.)
𝑈 = ⟨⟨ + , · ⟩, norm    &   𝑈 ∈ CHilOLD       (𝐹 ∈ Cauchy → ∃𝑥 ∈ ℋ 𝐹𝑣 𝑥)
 
19.1.4  Introduce the vector space axioms for a Hilbert space

Here we introduce the axioms a complex Hilbert space, which is the foundation for quantum mechanics and quantum field theory. The 18 axioms for a complex Hilbert space consist of ax-hilex 29370, ax-hfvadd 29371, ax-hvcom 29372, ax-hvass 29373, ax-hv0cl 29374, ax-hvaddid 29375, ax-hfvmul 29376, ax-hvmulid 29377, ax-hvmulass 29378, ax-hvdistr1 29379, ax-hvdistr2 29380, ax-hvmul0 29381, ax-hfi 29450, ax-his1 29453, ax-his2 29454, ax-his3 29455, ax-his4 29456, and ax-hcompl 29573.

The axioms specify the properties of 5 primitive symbols, , +, ·, 0, and ·ih.

If we can prove in ZFC set theory that a class 𝑈 = ⟨⟨ + , · ⟩, norm is a complex Hilbert space, i.e. that 𝑈 ∈ CHilOLD, then these axioms can be proved as Theorems axhilex-zf 29352, axhfvadd-zf 29353, axhvcom-zf 29354, axhvass-zf 29355, axhv0cl-zf 29356, axhvaddid-zf 29357, axhfvmul-zf 29358, axhvmulid-zf 29359, axhvmulass-zf 29360, axhvdistr1-zf 29361, axhvdistr2-zf 29362, axhvmul0-zf 29363, axhfi-zf 29364, axhis1-zf 29365, axhis2-zf 29366, axhis3-zf 29367, axhis4-zf 29368, and axhcompl-zf 29369 respectively. In that case, the theorems of the Hilbert Space Explorer will become theorems of ZFC set theory. See also the comments in axhilex-zf 29352.

 
Axiomax-hilex 29370 This is our first axiom for a complex Hilbert space, which is the foundation for quantum mechanics and quantum field theory. We assume that there exists a primitive class, , which contains objects called vectors. (Contributed by NM, 16-Aug-1999.) (New usage is discouraged.)
ℋ ∈ V
 
Axiomax-hfvadd 29371 Vector addition is an operation on . (Contributed by NM, 16-Aug-1999.) (New usage is discouraged.)
+ :( ℋ × ℋ)⟶ ℋ
 
Axiomax-hvcom 29372 Vector addition is commutative. (Contributed by NM, 3-Sep-1999.) (New usage is discouraged.)
((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 + 𝐵) = (𝐵 + 𝐴))
 
Axiomax-hvass 29373 Vector addition is associative. (Contributed by NM, 3-Sep-1999.) (New usage is discouraged.)
((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶)))
 
Axiomax-hv0cl 29374 The zero vector is in the vector space. (Contributed by NM, 29-May-1999.) (New usage is discouraged.)
0 ∈ ℋ
 
Axiomax-hvaddid 29375 Addition with the zero vector. (Contributed by NM, 16-Aug-1999.) (New usage is discouraged.)
(𝐴 ∈ ℋ → (𝐴 + 0) = 𝐴)
 
Axiomax-hfvmul 29376 Scalar multiplication is an operation on and . (Contributed by NM, 16-Aug-1999.) (New usage is discouraged.)
· :(ℂ × ℋ)⟶ ℋ
 
Axiomax-hvmulid 29377 Scalar multiplication by one. (Contributed by NM, 30-May-1999.) (New usage is discouraged.)
(𝐴 ∈ ℋ → (1 · 𝐴) = 𝐴)
 
Axiomax-hvmulass 29378 Scalar multiplication associative law. (Contributed by NM, 30-May-1999.) (New usage is discouraged.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶)))
 
Axiomax-hvdistr1 29379 Scalar multiplication distributive law. (Contributed by NM, 3-Sep-1999.) (New usage is discouraged.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐴 · (𝐵 + 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶)))
 
Axiomax-hvdistr2 29380 Scalar multiplication distributive law. (Contributed by NM, 30-May-1999.) (New usage is discouraged.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → ((𝐴 + 𝐵) · 𝐶) = ((𝐴 · 𝐶) + (𝐵 · 𝐶)))
 
Axiomax-hvmul0 29381 Scalar multiplication by zero. We can derive the existence of the negative of a vector from this axiom (see hvsubid 29397 and hvsubval 29387). (Contributed by NM, 29-May-1999.) (New usage is discouraged.)
(𝐴 ∈ ℋ → (0 · 𝐴) = 0)
 
19.1.5  Vector operations
 
Theoremhvmulex 29382 The Hilbert space scalar product operation is a set. (Contributed by NM, 17-Apr-2007.) (New usage is discouraged.)
· ∈ V
 
Theoremhvaddcl 29383 Closure of vector addition. (Contributed by NM, 18-Apr-2007.) (New usage is discouraged.)
((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 + 𝐵) ∈ ℋ)
 
Theoremhvmulcl 29384 Closure of scalar multiplication. (Contributed by NM, 19-Apr-2007.) (New usage is discouraged.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (𝐴 · 𝐵) ∈ ℋ)
 
Theoremhvmulcli 29385 Closure inference for scalar multiplication. (Contributed by NM, 1-Aug-1999.) (New usage is discouraged.)
𝐴 ∈ ℂ    &   𝐵 ∈ ℋ       (𝐴 · 𝐵) ∈ ℋ
 
Theoremhvsubf 29386 Mapping domain and codomain of vector subtraction. (Contributed by NM, 6-Sep-2007.) (New usage is discouraged.)
:( ℋ × ℋ)⟶ ℋ
 
Theoremhvsubval 29387 Value of vector subtraction. (Contributed by NM, 5-Sep-1999.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.)
((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 𝐵) = (𝐴 + (-1 · 𝐵)))
 
Theoremhvsubcl 29388 Closure of vector subtraction. (Contributed by NM, 17-Aug-1999.) (New usage is discouraged.)
((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 𝐵) ∈ ℋ)
 
Theoremhvaddcli 29389 Closure of vector addition. (Contributed by NM, 1-Aug-1999.) (New usage is discouraged.)
𝐴 ∈ ℋ    &   𝐵 ∈ ℋ       (𝐴 + 𝐵) ∈ ℋ
 
Theoremhvcomi 29390 Commutation of vector addition. (Contributed by NM, 3-Sep-1999.) (New usage is discouraged.)
𝐴 ∈ ℋ    &   𝐵 ∈ ℋ       (𝐴 + 𝐵) = (𝐵 + 𝐴)
 
Theoremhvsubvali 29391 Value of vector subtraction definition. (Contributed by NM, 3-Sep-1999.) (New usage is discouraged.)
𝐴 ∈ ℋ    &   𝐵 ∈ ℋ       (𝐴 𝐵) = (𝐴 + (-1 · 𝐵))
 
Theoremhvsubcli 29392 Closure of vector subtraction. (Contributed by NM, 2-Aug-1999.) (New usage is discouraged.)
𝐴 ∈ ℋ    &   𝐵 ∈ ℋ       (𝐴 𝐵) ∈ ℋ
 
Theoremifhvhv0 29393 Prove if(𝐴 ∈ ℋ, 𝐴, 0) ∈ ℋ. (Contributed by David A. Wheeler, 7-Dec-2018.) (New usage is discouraged.)
if(𝐴 ∈ ℋ, 𝐴, 0) ∈ ℋ
 
Theoremhvaddid2 29394 Addition with the zero vector. (Contributed by NM, 18-Oct-1999.) (New usage is discouraged.)
(𝐴 ∈ ℋ → (0 + 𝐴) = 𝐴)
 
Theoremhvmul0 29395 Scalar multiplication with the zero vector. (Contributed by NM, 30-May-1999.) (New usage is discouraged.)
(𝐴 ∈ ℂ → (𝐴 · 0) = 0)
 
Theoremhvmul0or 29396 If a scalar product is zero, one of its factors must be zero. (Contributed by NM, 19-May-2005.) (New usage is discouraged.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → ((𝐴 · 𝐵) = 0 ↔ (𝐴 = 0 ∨ 𝐵 = 0)))
 
Theoremhvsubid 29397 Subtraction of a vector from itself. (Contributed by NM, 30-May-1999.) (New usage is discouraged.)
(𝐴 ∈ ℋ → (𝐴 𝐴) = 0)
 
Theoremhvnegid 29398 Addition of negative of a vector to itself. (Contributed by NM, 4-Jun-2004.) (New usage is discouraged.)
(𝐴 ∈ ℋ → (𝐴 + (-1 · 𝐴)) = 0)
 
Theoremhv2neg 29399 Two ways to express the negative of a vector. (Contributed by NM, 23-May-2005.) (New usage is discouraged.)
(𝐴 ∈ ℋ → (0 𝐴) = (-1 · 𝐴))
 
Theoremhvaddid2i 29400 Addition with the zero vector. (Contributed by NM, 18-Aug-1999.) (New usage is discouraged.)
𝐴 ∈ ℋ       (0 + 𝐴) = 𝐴
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42900 430 42901-43000 431 43001-43100 432 43101-43200 433 43201-43300 434 43301-43400 435 43401-43500 436 43501-43600 437 43601-43700 438 43701-43800 439 43801-43900 440 43901-44000 441 44001-44100 442 44101-44200 443 44201-44300 444 44301-44400 445 44401-44500 446 44501-44600 447 44601-44700 448 44701-44800 449 44801-44900 450 44901-45000 451 45001-45100 452 45101-45200 453 45201-45300 454 45301-45400 455 45401-45500 456 45501-45600 457 45601-45700 458 45701-45800 459 45801-45900 460 45901-46000 461 46001-46100 462 46101-46200 463 46201-46300 464 46301-46400 465 46401-46500 466 46501-46532
  Copyright terms: Public domain < Previous  Next >