Home | Metamath
Proof Explorer Theorem List (p. 294 of 466) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-29289) |
Hilbert Space Explorer
(29290-30812) |
Users' Mathboxes
(30813-46532) |
Type | Label | Description |
---|---|---|
Statement | ||
Syntax | cort 29301 | Extend class notation with orthogonal complement in Cℋ. |
class ⊥ | ||
Syntax | cph 29302 | Extend class notation with subspace sum in Cℋ. |
class +ℋ | ||
Syntax | cspn 29303 | Extend class notation with subspace span in Cℋ. |
class span | ||
Syntax | chj 29304 | Extend class notation with join in Cℋ. |
class ∨ℋ | ||
Syntax | chsup 29305 | Extend class notation with supremum of a collection in Cℋ. |
class ∨ℋ | ||
Syntax | c0h 29306 | Extend class notation with zero of Cℋ. |
class 0ℋ | ||
Syntax | ccm 29307 | Extend class notation with the commutes relation on a Hilbert lattice. |
class 𝐶ℋ | ||
Syntax | cpjh 29308 | Extend class notation with set of projections on a Hilbert space. |
class projℎ | ||
Syntax | chos 29309 | Extend class notation with sum of Hilbert space operators. |
class +op | ||
Syntax | chot 29310 | Extend class notation with scalar product of a Hilbert space operator. |
class ·op | ||
Syntax | chod 29311 | Extend class notation with difference of Hilbert space operators. |
class −op | ||
Syntax | chfs 29312 | Extend class notation with sum of Hilbert space functionals. |
class +fn | ||
Syntax | chft 29313 | Extend class notation with scalar product of Hilbert space functional. |
class ·fn | ||
Syntax | ch0o 29314 | Extend class notation with the Hilbert space zero operator. |
class 0hop | ||
Syntax | chio 29315 | Extend class notation with Hilbert space identity operator. |
class Iop | ||
Syntax | cnop 29316 | Extend class notation with the operator norm function. |
class normop | ||
Syntax | ccop 29317 | Extend class notation with set of continuous Hilbert space operators. |
class ContOp | ||
Syntax | clo 29318 | Extend class notation with set of linear Hilbert space operators. |
class LinOp | ||
Syntax | cbo 29319 | Extend class notation with set of bounded linear operators. |
class BndLinOp | ||
Syntax | cuo 29320 | Extend class notation with set of unitary Hilbert space operators. |
class UniOp | ||
Syntax | cho 29321 | Extend class notation with set of Hermitian Hilbert space operators. |
class HrmOp | ||
Syntax | cnmf 29322 | Extend class notation with the functional norm function. |
class normfn | ||
Syntax | cnl 29323 | Extend class notation with the functional nullspace function. |
class null | ||
Syntax | ccnfn 29324 | Extend class notation with set of continuous Hilbert space functionals. |
class ContFn | ||
Syntax | clf 29325 | Extend class notation with set of linear Hilbert space functionals. |
class LinFn | ||
Syntax | cado 29326 | Extend class notation with Hilbert space adjoint function. |
class adjℎ | ||
Syntax | cbr 29327 | Extend class notation with the bra of a vector in Dirac bra-ket notation. |
class bra | ||
Syntax | ck 29328 | Extend class notation with the outer product of two vectors in Dirac bra-ket notation. |
class ketbra | ||
Syntax | cleo 29329 | Extend class notation with positive operator ordering. |
class ≤op | ||
Syntax | cei 29330 | Extend class notation with Hilbert space eigenvector function. |
class eigvec | ||
Syntax | cel 29331 | Extend class notation with Hilbert space eigenvalue function. |
class eigval | ||
Syntax | cspc 29332 | Extend class notation with the spectrum of an operator. |
class Lambda | ||
Syntax | cst 29333 | Extend class notation with set of states on a Hilbert lattice. |
class States | ||
Syntax | chst 29334 | Extend class notation with set of Hilbert-space-valued states on a Hilbert lattice. |
class CHStates | ||
Syntax | ccv 29335 | Extend class notation with the covers relation on a Hilbert lattice. |
class ⋖ℋ | ||
Syntax | cat 29336 | Extend class notation with set of atoms on a Hilbert lattice. |
class HAtoms | ||
Syntax | cmd 29337 | Extend class notation with the modular pair relation on a Hilbert lattice. |
class 𝑀ℋ | ||
Syntax | cdmd 29338 | Extend class notation with the dual modular pair relation on a Hilbert lattice. |
class 𝑀ℋ* | ||
Definition | df-hnorm 29339 | Define the function for the norm of a vector of Hilbert space. See normval 29495 for its value and normcl 29496 for its closure. Theorems norm-i-i 29504, norm-ii-i 29508, and norm-iii-i 29510 show it has the expected properties of a norm. In the literature, the norm of 𝐴 is usually written "|| 𝐴 ||", but we use function notation to take advantage of our existing theorems about functions. Definition of norm in [Beran] p. 96. (Contributed by NM, 6-Jun-2008.) (New usage is discouraged.) |
⊢ normℎ = (𝑥 ∈ dom dom ·ih ↦ (√‘(𝑥 ·ih 𝑥))) | ||
Definition | df-hba 29340 | Define base set of Hilbert space, for use if we want to develop Hilbert space independently from the axioms (see comments in ax-hilex 29370). Note that ℋ is considered a primitive in the Hilbert space axioms below, and we don't use this definition outside of this section. This definition can be proved independently from those axioms as Theorem hhba 29538. (Contributed by NM, 31-May-2008.) (New usage is discouraged.) |
⊢ ℋ = (BaseSet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) | ||
Definition | df-h0v 29341 | Define the zero vector of Hilbert space. Note that 0vec is considered a primitive in the Hilbert space axioms below, and we don't use this definition outside of this section. It is proved from the axioms as Theorem hh0v 29539. (Contributed by NM, 31-May-2008.) (New usage is discouraged.) |
⊢ 0ℎ = (0vec‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) | ||
Definition | df-hvsub 29342* | Define vector subtraction. See hvsubvali 29391 for its value and hvsubcli 29392 for its closure. (Contributed by NM, 6-Jun-2008.) (New usage is discouraged.) |
⊢ −ℎ = (𝑥 ∈ ℋ, 𝑦 ∈ ℋ ↦ (𝑥 +ℎ (-1 ·ℎ 𝑦))) | ||
Definition | df-hlim 29343* | Define the limit relation for Hilbert space. See hlimi 29559 for its relational expression. Note that 𝑓:ℕ⟶ ℋ is an infinite sequence of vectors, i.e. a mapping from integers to vectors. Definition of converge in [Beran] p. 96. (Contributed by NM, 6-Jun-2008.) (New usage is discouraged.) |
⊢ ⇝𝑣 = {〈𝑓, 𝑤〉 ∣ ((𝑓:ℕ⟶ ℋ ∧ 𝑤 ∈ ℋ) ∧ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ≥‘𝑦)(normℎ‘((𝑓‘𝑧) −ℎ 𝑤)) < 𝑥)} | ||
Definition | df-hcau 29344* | Define the set of Cauchy sequences on a Hilbert space. See hcau 29555 for its membership relation. Note that 𝑓:ℕ⟶ ℋ is an infinite sequence of vectors, i.e. a mapping from integers to vectors. Definition of Cauchy sequence in [Beran] p. 96. (Contributed by NM, 6-Jun-2008.) (New usage is discouraged.) |
⊢ Cauchy = {𝑓 ∈ ( ℋ ↑m ℕ) ∣ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ≥‘𝑦)(normℎ‘((𝑓‘𝑦) −ℎ (𝑓‘𝑧))) < 𝑥} | ||
Theorem | h2hva 29345 | The group (addition) operation of Hilbert space. (Contributed by NM, 31-May-2008.) (New usage is discouraged.) |
⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 & ⊢ 𝑈 ∈ NrmCVec ⇒ ⊢ +ℎ = ( +𝑣 ‘𝑈) | ||
Theorem | h2hsm 29346 | The scalar product operation of Hilbert space. (Contributed by NM, 31-May-2008.) (New usage is discouraged.) |
⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 & ⊢ 𝑈 ∈ NrmCVec ⇒ ⊢ ·ℎ = ( ·𝑠OLD ‘𝑈) | ||
Theorem | h2hnm 29347 | The norm function of Hilbert space. (Contributed by NM, 5-Jun-2008.) (New usage is discouraged.) |
⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 & ⊢ 𝑈 ∈ NrmCVec ⇒ ⊢ normℎ = (normCV‘𝑈) | ||
Theorem | h2hvs 29348 | The vector subtraction operation of Hilbert space. (Contributed by NM, 6-Jun-2008.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.) |
⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 & ⊢ 𝑈 ∈ NrmCVec & ⊢ ℋ = (BaseSet‘𝑈) ⇒ ⊢ −ℎ = ( −𝑣 ‘𝑈) | ||
Theorem | h2hmetdval 29349 | Value of the distance function of the metric space of Hilbert space. (Contributed by NM, 6-Jun-2008.) (New usage is discouraged.) |
⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 & ⊢ 𝑈 ∈ NrmCVec & ⊢ ℋ = (BaseSet‘𝑈) & ⊢ 𝐷 = (IndMet‘𝑈) ⇒ ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴𝐷𝐵) = (normℎ‘(𝐴 −ℎ 𝐵))) | ||
Theorem | h2hcau 29350 | The Cauchy sequences of Hilbert space. (Contributed by NM, 6-Jun-2008.) (Revised by Mario Carneiro, 13-May-2014.) (New usage is discouraged.) |
⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 & ⊢ 𝑈 ∈ NrmCVec & ⊢ ℋ = (BaseSet‘𝑈) & ⊢ 𝐷 = (IndMet‘𝑈) ⇒ ⊢ Cauchy = ((Cau‘𝐷) ∩ ( ℋ ↑m ℕ)) | ||
Theorem | h2hlm 29351 | The limit sequences of Hilbert space. (Contributed by NM, 6-Jun-2008.) (Revised by Mario Carneiro, 13-May-2014.) (Proof shortened by Peter Mazsa, 2-Oct-2022.) (New usage is discouraged.) |
⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 & ⊢ 𝑈 ∈ NrmCVec & ⊢ ℋ = (BaseSet‘𝑈) & ⊢ 𝐷 = (IndMet‘𝑈) & ⊢ 𝐽 = (MetOpen‘𝐷) ⇒ ⊢ ⇝𝑣 = ((⇝𝑡‘𝐽) ↾ ( ℋ ↑m ℕ)) | ||
Before introducing the 18 axioms for Hilbert space, we first prove them as the conclusions of Theorems axhilex-zf 29352 through axhcompl-zf 29369, using ZFC set theory only. These show that if we are given a known, fixed Hilbert space 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 that satisfies their hypotheses, then we can derive the Hilbert space axioms as theorems of ZFC set theory. In practice, in order to use these theorems to convert the Hilbert Space explorer to a ZFC-only subtheory, we would also have to provide definitions for the 3 (otherwise primitive) class constants +ℎ, ·ℎ, and ·ih before df-hnorm 29339 above. See also the comment in ax-hilex 29370. | ||
Theorem | axhilex-zf 29352 | Derive Axiom ax-hilex 29370 from Hilbert space under ZF set theory. (Contributed by NM, 31-May-2008.) (New usage is discouraged.) |
⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 & ⊢ 𝑈 ∈ CHilOLD ⇒ ⊢ ℋ ∈ V | ||
Theorem | axhfvadd-zf 29353 | Derive Axiom ax-hfvadd 29371 from Hilbert space under ZF set theory. (Contributed by NM, 31-May-2008.) (New usage is discouraged.) |
⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 & ⊢ 𝑈 ∈ CHilOLD ⇒ ⊢ +ℎ :( ℋ × ℋ)⟶ ℋ | ||
Theorem | axhvcom-zf 29354 | Derive Axiom ax-hvcom 29372 from Hilbert space under ZF set theory. (Contributed by NM, 27-May-2008.) (New usage is discouraged.) |
⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 & ⊢ 𝑈 ∈ CHilOLD ⇒ ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 +ℎ 𝐵) = (𝐵 +ℎ 𝐴)) | ||
Theorem | axhvass-zf 29355 | Derive Axiom ax-hvass 29373 from Hilbert space under ZF set theory. (Contributed by NM, 31-May-2008.) (New usage is discouraged.) |
⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 & ⊢ 𝑈 ∈ CHilOLD ⇒ ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 +ℎ 𝐵) +ℎ 𝐶) = (𝐴 +ℎ (𝐵 +ℎ 𝐶))) | ||
Theorem | axhv0cl-zf 29356 | Derive Axiom ax-hv0cl 29374 from Hilbert space under ZF set theory. (Contributed by NM, 31-May-2008.) (New usage is discouraged.) |
⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 & ⊢ 𝑈 ∈ CHilOLD ⇒ ⊢ 0ℎ ∈ ℋ | ||
Theorem | axhvaddid-zf 29357 | Derive Axiom ax-hvaddid 29375 from Hilbert space under ZF set theory. (Contributed by NM, 31-May-2008.) (New usage is discouraged.) |
⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 & ⊢ 𝑈 ∈ CHilOLD ⇒ ⊢ (𝐴 ∈ ℋ → (𝐴 +ℎ 0ℎ) = 𝐴) | ||
Theorem | axhfvmul-zf 29358 | Derive Axiom ax-hfvmul 29376 from Hilbert space under ZF set theory. (Contributed by NM, 31-May-2008.) (New usage is discouraged.) |
⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 & ⊢ 𝑈 ∈ CHilOLD ⇒ ⊢ ·ℎ :(ℂ × ℋ)⟶ ℋ | ||
Theorem | axhvmulid-zf 29359 | Derive Axiom ax-hvmulid 29377 from Hilbert space under ZF set theory. (Contributed by NM, 31-May-2008.) (New usage is discouraged.) |
⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 & ⊢ 𝑈 ∈ CHilOLD ⇒ ⊢ (𝐴 ∈ ℋ → (1 ·ℎ 𝐴) = 𝐴) | ||
Theorem | axhvmulass-zf 29360 | Derive Axiom ax-hvmulass 29378 from Hilbert space under ZF set theory. (Contributed by NM, 31-May-2008.) (New usage is discouraged.) |
⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 & ⊢ 𝑈 ∈ CHilOLD ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → ((𝐴 · 𝐵) ·ℎ 𝐶) = (𝐴 ·ℎ (𝐵 ·ℎ 𝐶))) | ||
Theorem | axhvdistr1-zf 29361 | Derive Axiom ax-hvdistr1 29379 from Hilbert space under ZF set theory. (Contributed by NM, 31-May-2008.) (New usage is discouraged.) |
⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 & ⊢ 𝑈 ∈ CHilOLD ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐴 ·ℎ (𝐵 +ℎ 𝐶)) = ((𝐴 ·ℎ 𝐵) +ℎ (𝐴 ·ℎ 𝐶))) | ||
Theorem | axhvdistr2-zf 29362 | Derive Axiom ax-hvdistr2 29380 from Hilbert space under ZF set theory. (Contributed by NM, 31-May-2008.) (New usage is discouraged.) |
⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 & ⊢ 𝑈 ∈ CHilOLD ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → ((𝐴 + 𝐵) ·ℎ 𝐶) = ((𝐴 ·ℎ 𝐶) +ℎ (𝐵 ·ℎ 𝐶))) | ||
Theorem | axhvmul0-zf 29363 | Derive Axiom ax-hvmul0 29381 from Hilbert space under ZF set theory. (Contributed by NM, 31-May-2008.) (New usage is discouraged.) |
⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 & ⊢ 𝑈 ∈ CHilOLD ⇒ ⊢ (𝐴 ∈ ℋ → (0 ·ℎ 𝐴) = 0ℎ) | ||
Theorem | axhfi-zf 29364 | Derive Axiom ax-hfi 29450 from Hilbert space under ZF set theory. (Contributed by NM, 31-May-2008.) (New usage is discouraged.) |
⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 & ⊢ 𝑈 ∈ CHilOLD & ⊢ ·ih = (·𝑖OLD‘𝑈) ⇒ ⊢ ·ih :( ℋ × ℋ)⟶ℂ | ||
Theorem | axhis1-zf 29365 | Derive Axiom ax-his1 29453 from Hilbert space under ZF set theory. (Contributed by NM, 31-May-2008.) (New usage is discouraged.) |
⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 & ⊢ 𝑈 ∈ CHilOLD & ⊢ ·ih = (·𝑖OLD‘𝑈) ⇒ ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 ·ih 𝐵) = (∗‘(𝐵 ·ih 𝐴))) | ||
Theorem | axhis2-zf 29366 | Derive Axiom ax-his2 29454 from Hilbert space under ZF set theory. (Contributed by NM, 31-May-2008.) (New usage is discouraged.) |
⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 & ⊢ 𝑈 ∈ CHilOLD & ⊢ ·ih = (·𝑖OLD‘𝑈) ⇒ ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 +ℎ 𝐵) ·ih 𝐶) = ((𝐴 ·ih 𝐶) + (𝐵 ·ih 𝐶))) | ||
Theorem | axhis3-zf 29367 | Derive Axiom ax-his3 29455 from Hilbert space under ZF set theory. (Contributed by NM, 31-May-2008.) (New usage is discouraged.) |
⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 & ⊢ 𝑈 ∈ CHilOLD & ⊢ ·ih = (·𝑖OLD‘𝑈) ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 ·ℎ 𝐵) ·ih 𝐶) = (𝐴 · (𝐵 ·ih 𝐶))) | ||
Theorem | axhis4-zf 29368 | Derive Axiom ax-his4 29456 from Hilbert space under ZF set theory. (Contributed by NM, 31-May-2008.) (New usage is discouraged.) |
⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 & ⊢ 𝑈 ∈ CHilOLD & ⊢ ·ih = (·𝑖OLD‘𝑈) ⇒ ⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ) → 0 < (𝐴 ·ih 𝐴)) | ||
Theorem | axhcompl-zf 29369* | Derive Axiom ax-hcompl 29573 from Hilbert space under ZF set theory. (Contributed by NM, 6-Jun-2008.) (Revised by Mario Carneiro, 13-May-2014.) (Proof shortened by Peter Mazsa, 2-Oct-2022.) (New usage is discouraged.) |
⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 & ⊢ 𝑈 ∈ CHilOLD ⇒ ⊢ (𝐹 ∈ Cauchy → ∃𝑥 ∈ ℋ 𝐹 ⇝𝑣 𝑥) | ||
Here we introduce the axioms a complex Hilbert space, which is the foundation for quantum mechanics and quantum field theory. The 18 axioms for a complex Hilbert space consist of ax-hilex 29370, ax-hfvadd 29371, ax-hvcom 29372, ax-hvass 29373, ax-hv0cl 29374, ax-hvaddid 29375, ax-hfvmul 29376, ax-hvmulid 29377, ax-hvmulass 29378, ax-hvdistr1 29379, ax-hvdistr2 29380, ax-hvmul0 29381, ax-hfi 29450, ax-his1 29453, ax-his2 29454, ax-his3 29455, ax-his4 29456, and ax-hcompl 29573. The axioms specify the properties of 5 primitive symbols, ℋ, +ℎ, ·ℎ, 0ℎ, and ·ih. If we can prove in ZFC set theory that a class 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 is a complex Hilbert space, i.e. that 𝑈 ∈ CHilOLD, then these axioms can be proved as Theorems axhilex-zf 29352, axhfvadd-zf 29353, axhvcom-zf 29354, axhvass-zf 29355, axhv0cl-zf 29356, axhvaddid-zf 29357, axhfvmul-zf 29358, axhvmulid-zf 29359, axhvmulass-zf 29360, axhvdistr1-zf 29361, axhvdistr2-zf 29362, axhvmul0-zf 29363, axhfi-zf 29364, axhis1-zf 29365, axhis2-zf 29366, axhis3-zf 29367, axhis4-zf 29368, and axhcompl-zf 29369 respectively. In that case, the theorems of the Hilbert Space Explorer will become theorems of ZFC set theory. See also the comments in axhilex-zf 29352. | ||
Axiom | ax-hilex 29370 | This is our first axiom for a complex Hilbert space, which is the foundation for quantum mechanics and quantum field theory. We assume that there exists a primitive class, ℋ, which contains objects called vectors. (Contributed by NM, 16-Aug-1999.) (New usage is discouraged.) |
⊢ ℋ ∈ V | ||
Axiom | ax-hfvadd 29371 | Vector addition is an operation on ℋ. (Contributed by NM, 16-Aug-1999.) (New usage is discouraged.) |
⊢ +ℎ :( ℋ × ℋ)⟶ ℋ | ||
Axiom | ax-hvcom 29372 | Vector addition is commutative. (Contributed by NM, 3-Sep-1999.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 +ℎ 𝐵) = (𝐵 +ℎ 𝐴)) | ||
Axiom | ax-hvass 29373 | Vector addition is associative. (Contributed by NM, 3-Sep-1999.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 +ℎ 𝐵) +ℎ 𝐶) = (𝐴 +ℎ (𝐵 +ℎ 𝐶))) | ||
Axiom | ax-hv0cl 29374 | The zero vector is in the vector space. (Contributed by NM, 29-May-1999.) (New usage is discouraged.) |
⊢ 0ℎ ∈ ℋ | ||
Axiom | ax-hvaddid 29375 | Addition with the zero vector. (Contributed by NM, 16-Aug-1999.) (New usage is discouraged.) |
⊢ (𝐴 ∈ ℋ → (𝐴 +ℎ 0ℎ) = 𝐴) | ||
Axiom | ax-hfvmul 29376 | Scalar multiplication is an operation on ℂ and ℋ. (Contributed by NM, 16-Aug-1999.) (New usage is discouraged.) |
⊢ ·ℎ :(ℂ × ℋ)⟶ ℋ | ||
Axiom | ax-hvmulid 29377 | Scalar multiplication by one. (Contributed by NM, 30-May-1999.) (New usage is discouraged.) |
⊢ (𝐴 ∈ ℋ → (1 ·ℎ 𝐴) = 𝐴) | ||
Axiom | ax-hvmulass 29378 | Scalar multiplication associative law. (Contributed by NM, 30-May-1999.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → ((𝐴 · 𝐵) ·ℎ 𝐶) = (𝐴 ·ℎ (𝐵 ·ℎ 𝐶))) | ||
Axiom | ax-hvdistr1 29379 | Scalar multiplication distributive law. (Contributed by NM, 3-Sep-1999.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐴 ·ℎ (𝐵 +ℎ 𝐶)) = ((𝐴 ·ℎ 𝐵) +ℎ (𝐴 ·ℎ 𝐶))) | ||
Axiom | ax-hvdistr2 29380 | Scalar multiplication distributive law. (Contributed by NM, 30-May-1999.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → ((𝐴 + 𝐵) ·ℎ 𝐶) = ((𝐴 ·ℎ 𝐶) +ℎ (𝐵 ·ℎ 𝐶))) | ||
Axiom | ax-hvmul0 29381 | Scalar multiplication by zero. We can derive the existence of the negative of a vector from this axiom (see hvsubid 29397 and hvsubval 29387). (Contributed by NM, 29-May-1999.) (New usage is discouraged.) |
⊢ (𝐴 ∈ ℋ → (0 ·ℎ 𝐴) = 0ℎ) | ||
Theorem | hvmulex 29382 | The Hilbert space scalar product operation is a set. (Contributed by NM, 17-Apr-2007.) (New usage is discouraged.) |
⊢ ·ℎ ∈ V | ||
Theorem | hvaddcl 29383 | Closure of vector addition. (Contributed by NM, 18-Apr-2007.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 +ℎ 𝐵) ∈ ℋ) | ||
Theorem | hvmulcl 29384 | Closure of scalar multiplication. (Contributed by NM, 19-Apr-2007.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (𝐴 ·ℎ 𝐵) ∈ ℋ) | ||
Theorem | hvmulcli 29385 | Closure inference for scalar multiplication. (Contributed by NM, 1-Aug-1999.) (New usage is discouraged.) |
⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℋ ⇒ ⊢ (𝐴 ·ℎ 𝐵) ∈ ℋ | ||
Theorem | hvsubf 29386 | Mapping domain and codomain of vector subtraction. (Contributed by NM, 6-Sep-2007.) (New usage is discouraged.) |
⊢ −ℎ :( ℋ × ℋ)⟶ ℋ | ||
Theorem | hvsubval 29387 | Value of vector subtraction. (Contributed by NM, 5-Sep-1999.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 −ℎ 𝐵) = (𝐴 +ℎ (-1 ·ℎ 𝐵))) | ||
Theorem | hvsubcl 29388 | Closure of vector subtraction. (Contributed by NM, 17-Aug-1999.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 −ℎ 𝐵) ∈ ℋ) | ||
Theorem | hvaddcli 29389 | Closure of vector addition. (Contributed by NM, 1-Aug-1999.) (New usage is discouraged.) |
⊢ 𝐴 ∈ ℋ & ⊢ 𝐵 ∈ ℋ ⇒ ⊢ (𝐴 +ℎ 𝐵) ∈ ℋ | ||
Theorem | hvcomi 29390 | Commutation of vector addition. (Contributed by NM, 3-Sep-1999.) (New usage is discouraged.) |
⊢ 𝐴 ∈ ℋ & ⊢ 𝐵 ∈ ℋ ⇒ ⊢ (𝐴 +ℎ 𝐵) = (𝐵 +ℎ 𝐴) | ||
Theorem | hvsubvali 29391 | Value of vector subtraction definition. (Contributed by NM, 3-Sep-1999.) (New usage is discouraged.) |
⊢ 𝐴 ∈ ℋ & ⊢ 𝐵 ∈ ℋ ⇒ ⊢ (𝐴 −ℎ 𝐵) = (𝐴 +ℎ (-1 ·ℎ 𝐵)) | ||
Theorem | hvsubcli 29392 | Closure of vector subtraction. (Contributed by NM, 2-Aug-1999.) (New usage is discouraged.) |
⊢ 𝐴 ∈ ℋ & ⊢ 𝐵 ∈ ℋ ⇒ ⊢ (𝐴 −ℎ 𝐵) ∈ ℋ | ||
Theorem | ifhvhv0 29393 | Prove if(𝐴 ∈ ℋ, 𝐴, 0ℎ) ∈ ℋ. (Contributed by David A. Wheeler, 7-Dec-2018.) (New usage is discouraged.) |
⊢ if(𝐴 ∈ ℋ, 𝐴, 0ℎ) ∈ ℋ | ||
Theorem | hvaddid2 29394 | Addition with the zero vector. (Contributed by NM, 18-Oct-1999.) (New usage is discouraged.) |
⊢ (𝐴 ∈ ℋ → (0ℎ +ℎ 𝐴) = 𝐴) | ||
Theorem | hvmul0 29395 | Scalar multiplication with the zero vector. (Contributed by NM, 30-May-1999.) (New usage is discouraged.) |
⊢ (𝐴 ∈ ℂ → (𝐴 ·ℎ 0ℎ) = 0ℎ) | ||
Theorem | hvmul0or 29396 | If a scalar product is zero, one of its factors must be zero. (Contributed by NM, 19-May-2005.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → ((𝐴 ·ℎ 𝐵) = 0ℎ ↔ (𝐴 = 0 ∨ 𝐵 = 0ℎ))) | ||
Theorem | hvsubid 29397 | Subtraction of a vector from itself. (Contributed by NM, 30-May-1999.) (New usage is discouraged.) |
⊢ (𝐴 ∈ ℋ → (𝐴 −ℎ 𝐴) = 0ℎ) | ||
Theorem | hvnegid 29398 | Addition of negative of a vector to itself. (Contributed by NM, 4-Jun-2004.) (New usage is discouraged.) |
⊢ (𝐴 ∈ ℋ → (𝐴 +ℎ (-1 ·ℎ 𝐴)) = 0ℎ) | ||
Theorem | hv2neg 29399 | Two ways to express the negative of a vector. (Contributed by NM, 23-May-2005.) (New usage is discouraged.) |
⊢ (𝐴 ∈ ℋ → (0ℎ −ℎ 𝐴) = (-1 ·ℎ 𝐴)) | ||
Theorem | hvaddid2i 29400 | Addition with the zero vector. (Contributed by NM, 18-Aug-1999.) (New usage is discouraged.) |
⊢ 𝐴 ∈ ℋ ⇒ ⊢ (0ℎ +ℎ 𝐴) = 𝐴 |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |