| Metamath
Proof Explorer Theorem List (p. 294 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30854) |
(30855-32377) |
(32378-49798) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | edgnbusgreu 29301* | For each edge incident to a vertex there is exactly one neighbor of the vertex also incident to this edge in a simple graph. (Contributed by AV, 28-Oct-2020.) (Revised by AV, 6-Jul-2022.) |
| ⊢ 𝐸 = (Edg‘𝐺) & ⊢ 𝑁 = (𝐺 NeighbVtx 𝑀) ⇒ ⊢ (((𝐺 ∈ USGraph ∧ 𝑀 ∈ 𝑉) ∧ (𝐶 ∈ 𝐸 ∧ 𝑀 ∈ 𝐶)) → ∃!𝑛 ∈ 𝑁 𝐶 = {𝑀, 𝑛}) | ||
| Theorem | nbusgredgeu0 29302* | For each neighbor of a vertex there is exactly one edge between the vertex and its neighbor in a simple graph. (Contributed by Alexander van der Vekens, 17-Dec-2017.) (Revised by AV, 27-Oct-2020.) (Proof shortened by AV, 13-Feb-2022.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) & ⊢ 𝑁 = (𝐺 NeighbVtx 𝑈) & ⊢ 𝐼 = {𝑒 ∈ 𝐸 ∣ 𝑈 ∈ 𝑒} ⇒ ⊢ (((𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉) ∧ 𝑀 ∈ 𝑁) → ∃!𝑖 ∈ 𝐼 𝑖 = {𝑈, 𝑀}) | ||
| Theorem | nbusgrf1o0 29303* | The mapping of neighbors of a vertex to edges incident to the vertex is a bijection ( 1-1 onto function) in a simple graph. (Contributed by Alexander van der Vekens, 17-Dec-2017.) (Revised by AV, 28-Oct-2020.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) & ⊢ 𝑁 = (𝐺 NeighbVtx 𝑈) & ⊢ 𝐼 = {𝑒 ∈ 𝐸 ∣ 𝑈 ∈ 𝑒} & ⊢ 𝐹 = (𝑛 ∈ 𝑁 ↦ {𝑈, 𝑛}) ⇒ ⊢ ((𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉) → 𝐹:𝑁–1-1-onto→𝐼) | ||
| Theorem | nbusgrf1o1 29304* | The set of neighbors of a vertex is isomorphic to the set of edges containing the vertex in a simple graph. (Contributed by Alexander van der Vekens, 19-Dec-2017.) (Revised by AV, 28-Oct-2020.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) & ⊢ 𝑁 = (𝐺 NeighbVtx 𝑈) & ⊢ 𝐼 = {𝑒 ∈ 𝐸 ∣ 𝑈 ∈ 𝑒} ⇒ ⊢ ((𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉) → ∃𝑓 𝑓:𝑁–1-1-onto→𝐼) | ||
| Theorem | nbusgrf1o 29305* | The set of neighbors of a vertex is isomorphic to the set of edges containing the vertex in a simple graph. (Contributed by Alexander van der Vekens, 19-Dec-2017.) (Revised by AV, 28-Oct-2020.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ ((𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉) → ∃𝑓 𝑓:(𝐺 NeighbVtx 𝑈)–1-1-onto→{𝑒 ∈ 𝐸 ∣ 𝑈 ∈ 𝑒}) | ||
| Theorem | nbedgusgr 29306* | The number of neighbors of a vertex is the number of edges at the vertex in a simple graph. (Contributed by AV, 27-Dec-2020.) (Proof shortened by AV, 5-May-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ ((𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉) → (♯‘(𝐺 NeighbVtx 𝑈)) = (♯‘{𝑒 ∈ 𝐸 ∣ 𝑈 ∈ 𝑒})) | ||
| Theorem | edgusgrnbfin 29307* | The number of neighbors of a vertex in a simple graph is finite iff the number of edges having this vertex as endpoint is finite. (Contributed by Alexander van der Vekens, 20-Dec-2017.) (Revised by AV, 28-Oct-2020.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ ((𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉) → ((𝐺 NeighbVtx 𝑈) ∈ Fin ↔ {𝑒 ∈ 𝐸 ∣ 𝑈 ∈ 𝑒} ∈ Fin)) | ||
| Theorem | nbusgrfi 29308 | The class of neighbors of a vertex in a simple graph with a finite number of edges is a finite set. (Contributed by Alexander van der Vekens, 19-Dec-2017.) (Revised by AV, 28-Oct-2020.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ ((𝐺 ∈ USGraph ∧ 𝐸 ∈ Fin ∧ 𝑈 ∈ 𝑉) → (𝐺 NeighbVtx 𝑈) ∈ Fin) | ||
| Theorem | nbfiusgrfi 29309 | The class of neighbors of a vertex in a finite simple graph is a finite set. (Contributed by Alexander van der Vekens, 7-Mar-2018.) (Revised by AV, 28-Oct-2020.) |
| ⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ (Vtx‘𝐺)) → (𝐺 NeighbVtx 𝑁) ∈ Fin) | ||
| Theorem | hashnbusgrnn0 29310 | The number of neighbors of a vertex in a finite simple graph is a nonnegative integer. (Contributed by Alexander van der Vekens, 14-Jul-2018.) (Revised by AV, 15-Dec-2020.) |
| ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑈 ∈ 𝑉) → (♯‘(𝐺 NeighbVtx 𝑈)) ∈ ℕ0) | ||
| Theorem | nbfusgrlevtxm1 29311 | The number of neighbors of a vertex is at most the number of vertices of the graph minus 1 in a finite simple graph. (Contributed by AV, 16-Dec-2020.) (Proof shortened by AV, 13-Feb-2022.) |
| ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑈 ∈ 𝑉) → (♯‘(𝐺 NeighbVtx 𝑈)) ≤ ((♯‘𝑉) − 1)) | ||
| Theorem | nbfusgrlevtxm2 29312 | If there is a vertex which is not a neighbor of another vertex, the number of neighbors of the other vertex is at most the number of vertices of the graph minus 2 in a finite simple graph. (Contributed by AV, 16-Dec-2020.) (Proof shortened by AV, 13-Feb-2022.) |
| ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ (((𝐺 ∈ FinUSGraph ∧ 𝑈 ∈ 𝑉) ∧ (𝑀 ∈ 𝑉 ∧ 𝑀 ≠ 𝑈 ∧ 𝑀 ∉ (𝐺 NeighbVtx 𝑈))) → (♯‘(𝐺 NeighbVtx 𝑈)) ≤ ((♯‘𝑉) − 2)) | ||
| Theorem | nbusgrvtxm1 29313 | If the number of neighbors of a vertex in a finite simple graph is the number of vertices of the graph minus 1, each vertex except the first mentioned vertex is a neighbor of this vertex. (Contributed by Alexander van der Vekens, 14-Jul-2018.) (Revised by AV, 16-Dec-2020.) |
| ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑈 ∈ 𝑉) → ((♯‘(𝐺 NeighbVtx 𝑈)) = ((♯‘𝑉) − 1) → ((𝑀 ∈ 𝑉 ∧ 𝑀 ≠ 𝑈) → 𝑀 ∈ (𝐺 NeighbVtx 𝑈)))) | ||
| Theorem | nb3grprlem1 29314 | Lemma 1 for nb3grpr 29316. (Contributed by Alexander van der Vekens, 15-Oct-2017.) (Revised by AV, 28-Oct-2020.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ USGraph) & ⊢ (𝜑 → 𝑉 = {𝐴, 𝐵, 𝐶}) & ⊢ (𝜑 → (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍)) ⇒ ⊢ (𝜑 → ((𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶} ↔ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸))) | ||
| Theorem | nb3grprlem2 29315* | Lemma 2 for nb3grpr 29316. (Contributed by Alexander van der Vekens, 17-Oct-2017.) (Revised by AV, 28-Oct-2020.) (Proof shortened by AV, 13-Feb-2022.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ USGraph) & ⊢ (𝜑 → 𝑉 = {𝐴, 𝐵, 𝐶}) & ⊢ (𝜑 → (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍)) & ⊢ (𝜑 → (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) ⇒ ⊢ (𝜑 → ((𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶} ↔ ∃𝑣 ∈ 𝑉 ∃𝑤 ∈ (𝑉 ∖ {𝑣})(𝐺 NeighbVtx 𝐴) = {𝑣, 𝑤})) | ||
| Theorem | nb3grpr 29316* | The neighbors of a vertex in a simple graph with three elements are an unordered pair of the other vertices iff all vertices are connected with each other. (Contributed by Alexander van der Vekens, 18-Oct-2017.) (Revised by AV, 28-Oct-2020.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ USGraph) & ⊢ (𝜑 → 𝑉 = {𝐴, 𝐵, 𝐶}) & ⊢ (𝜑 → (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍)) & ⊢ (𝜑 → (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) ⇒ ⊢ (𝜑 → (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸) ↔ ∀𝑥 ∈ 𝑉 ∃𝑦 ∈ 𝑉 ∃𝑧 ∈ (𝑉 ∖ {𝑦})(𝐺 NeighbVtx 𝑥) = {𝑦, 𝑧})) | ||
| Theorem | nb3grpr2 29317 | The neighbors of a vertex in a simple graph with three elements are an unordered pair of the other vertices iff all vertices are connected with each other. (Contributed by Alexander van der Vekens, 18-Oct-2017.) (Revised by AV, 28-Oct-2020.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ USGraph) & ⊢ (𝜑 → 𝑉 = {𝐴, 𝐵, 𝐶}) & ⊢ (𝜑 → (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍)) & ⊢ (𝜑 → (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) ⇒ ⊢ (𝜑 → (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸) ↔ ((𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶} ∧ (𝐺 NeighbVtx 𝐵) = {𝐴, 𝐶} ∧ (𝐺 NeighbVtx 𝐶) = {𝐴, 𝐵}))) | ||
| Theorem | nb3gr2nb 29318 | If the neighbors of two vertices in a graph with three elements are an unordered pair of the other vertices, the neighbors of all three vertices are an unordered pair of the other vertices. (Contributed by Alexander van der Vekens, 18-Oct-2017.) (Revised by AV, 28-Oct-2020.) |
| ⊢ (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ ((Vtx‘𝐺) = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → (((𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶} ∧ (𝐺 NeighbVtx 𝐵) = {𝐴, 𝐶}) ↔ ((𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶} ∧ (𝐺 NeighbVtx 𝐵) = {𝐴, 𝐶} ∧ (𝐺 NeighbVtx 𝐶) = {𝐴, 𝐵}))) | ||
| Syntax | cuvtx 29319 | Extend class notation with the universal vertices (in a graph). |
| class UnivVtx | ||
| Definition | df-uvtx 29320* | Define the class of all universal vertices (in graphs). A vertex is called universal if it is adjacent, i.e. connected by an edge, to all other vertices (of the graph), or equivalently, if all other vertices are its neighbors. (Contributed by Alexander van der Vekens, 12-Oct-2017.) (Revised by AV, 24-Oct-2020.) |
| ⊢ UnivVtx = (𝑔 ∈ V ↦ {𝑣 ∈ (Vtx‘𝑔) ∣ ∀𝑛 ∈ ((Vtx‘𝑔) ∖ {𝑣})𝑛 ∈ (𝑔 NeighbVtx 𝑣)}) | ||
| Theorem | uvtxval 29321* | The set of all universal vertices. (Contributed by Alexander van der Vekens, 12-Oct-2017.) (Revised by AV, 29-Oct-2020.) (Revised by AV, 14-Feb-2022.) |
| ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ (UnivVtx‘𝐺) = {𝑣 ∈ 𝑉 ∣ ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣)} | ||
| Theorem | uvtxel 29322* | A universal vertex, i.e. an element of the set of all universal vertices. (Contributed by Alexander van der Vekens, 12-Oct-2017.) (Revised by AV, 29-Oct-2020.) (Revised by AV, 14-Feb-2022.) |
| ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ (𝑁 ∈ (UnivVtx‘𝐺) ↔ (𝑁 ∈ 𝑉 ∧ ∀𝑛 ∈ (𝑉 ∖ {𝑁})𝑛 ∈ (𝐺 NeighbVtx 𝑁))) | ||
| Theorem | uvtxisvtx 29323 | A universal vertex is a vertex. (Contributed by Alexander van der Vekens, 12-Oct-2017.) (Revised by AV, 30-Oct-2020.) (Proof shortened by AV, 14-Feb-2022.) |
| ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ (𝑁 ∈ (UnivVtx‘𝐺) → 𝑁 ∈ 𝑉) | ||
| Theorem | uvtxssvtx 29324 | The set of the universal vertices is a subset of the set of all vertices. (Contributed by AV, 23-Dec-2020.) |
| ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ (UnivVtx‘𝐺) ⊆ 𝑉 | ||
| Theorem | vtxnbuvtx 29325* | A universal vertex has all other vertices as neighbors. (Contributed by Alexander van der Vekens, 14-Oct-2017.) (Revised by AV, 30-Oct-2020.) (Proof shortened by AV, 14-Feb-2022.) |
| ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ (𝑁 ∈ (UnivVtx‘𝐺) → ∀𝑛 ∈ (𝑉 ∖ {𝑁})𝑛 ∈ (𝐺 NeighbVtx 𝑁)) | ||
| Theorem | uvtxnbgrss 29326 | A universal vertex has all other vertices as neighbors. (Contributed by Alexander van der Vekens, 14-Oct-2017.) (Revised by AV, 30-Oct-2020.) |
| ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ (𝑁 ∈ (UnivVtx‘𝐺) → (𝑉 ∖ {𝑁}) ⊆ (𝐺 NeighbVtx 𝑁)) | ||
| Theorem | uvtxnbgrvtx 29327* | A universal vertex is neighbor of all other vertices. (Contributed by Alexander van der Vekens, 14-Oct-2017.) (Revised by AV, 30-Oct-2020.) |
| ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ (𝑁 ∈ (UnivVtx‘𝐺) → ∀𝑣 ∈ (𝑉 ∖ {𝑁})𝑁 ∈ (𝐺 NeighbVtx 𝑣)) | ||
| Theorem | uvtx0 29328 | There is no universal vertex if there is no vertex. (Contributed by Alexander van der Vekens, 12-Oct-2017.) (Revised by AV, 30-Oct-2020.) (Proof shortened by AV, 14-Feb-2022.) |
| ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ (𝑉 = ∅ → (UnivVtx‘𝐺) = ∅) | ||
| Theorem | isuvtx 29329* | The set of all universal vertices. (Contributed by Alexander van der Vekens, 12-Oct-2017.) (Revised by AV, 30-Oct-2020.) (Revised by AV, 14-Feb-2022.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ (UnivVtx‘𝐺) = {𝑣 ∈ 𝑉 ∣ ∀𝑘 ∈ (𝑉 ∖ {𝑣})∃𝑒 ∈ 𝐸 {𝑘, 𝑣} ⊆ 𝑒} | ||
| Theorem | uvtxel1 29330* | Characterization of a universal vertex. (Contributed by Alexander van der Vekens, 12-Oct-2017.) (Revised by AV, 14-Feb-2022.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ (𝑁 ∈ (UnivVtx‘𝐺) ↔ (𝑁 ∈ 𝑉 ∧ ∀𝑘 ∈ (𝑉 ∖ {𝑁})∃𝑒 ∈ 𝐸 {𝑘, 𝑁} ⊆ 𝑒)) | ||
| Theorem | uvtx01vtx 29331 | If a graph/class has no edges, it has universal vertices if and only if it has exactly one vertex. (Contributed by Alexander van der Vekens, 12-Oct-2017.) (Revised by AV, 30-Oct-2020.) (Revised by AV, 14-Feb-2022.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ (𝐸 = ∅ → ((UnivVtx‘𝐺) ≠ ∅ ↔ (♯‘𝑉) = 1)) | ||
| Theorem | uvtx2vtx1edg 29332* | If a graph has two vertices, and there is an edge between the vertices, then each vertex is universal. (Contributed by AV, 1-Nov-2020.) (Revised by AV, 25-Mar-2021.) (Proof shortened by AV, 14-Feb-2022.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ (((♯‘𝑉) = 2 ∧ 𝑉 ∈ 𝐸) → ∀𝑣 ∈ 𝑉 𝑣 ∈ (UnivVtx‘𝐺)) | ||
| Theorem | uvtx2vtx1edgb 29333* | If a hypergraph has two vertices, there is an edge between the vertices iff each vertex is universal. (Contributed by AV, 3-Nov-2020.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ ((𝐺 ∈ UHGraph ∧ (♯‘𝑉) = 2) → (𝑉 ∈ 𝐸 ↔ ∀𝑣 ∈ 𝑉 𝑣 ∈ (UnivVtx‘𝐺))) | ||
| Theorem | uvtxnbgr 29334 | A universal vertex has all other vertices as neighbors. (Contributed by Alexander van der Vekens, 14-Oct-2017.) (Revised by AV, 3-Nov-2020.) (Revised by AV, 23-Mar-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ (𝑁 ∈ (UnivVtx‘𝐺) → (𝐺 NeighbVtx 𝑁) = (𝑉 ∖ {𝑁})) | ||
| Theorem | uvtxnbgrb 29335 | A vertex is universal iff all the other vertices are its neighbors. (Contributed by Alexander van der Vekens, 13-Jul-2018.) (Revised by AV, 3-Nov-2020.) (Revised by AV, 23-Mar-2021.) (Proof shortened by AV, 14-Feb-2022.) |
| ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ (𝑁 ∈ 𝑉 → (𝑁 ∈ (UnivVtx‘𝐺) ↔ (𝐺 NeighbVtx 𝑁) = (𝑉 ∖ {𝑁}))) | ||
| Theorem | uvtxusgr 29336* | The set of all universal vertices of a simple graph. (Contributed by Alexander van der Vekens, 12-Oct-2017.) (Revised by AV, 31-Oct-2020.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ (𝐺 ∈ USGraph → (UnivVtx‘𝐺) = {𝑛 ∈ 𝑉 ∣ ∀𝑘 ∈ (𝑉 ∖ {𝑛}){𝑘, 𝑛} ∈ 𝐸}) | ||
| Theorem | uvtxusgrel 29337* | A universal vertex, i.e. an element of the set of all universal vertices, of a simple graph. (Contributed by Alexander van der Vekens, 12-Oct-2017.) (Revised by AV, 31-Oct-2020.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ (𝐺 ∈ USGraph → (𝑁 ∈ (UnivVtx‘𝐺) ↔ (𝑁 ∈ 𝑉 ∧ ∀𝑘 ∈ (𝑉 ∖ {𝑁}){𝑘, 𝑁} ∈ 𝐸))) | ||
| Theorem | uvtxnm1nbgr 29338 | A universal vertex has 𝑛 − 1 neighbors in a finite graph with 𝑛 vertices. (Contributed by Alexander van der Vekens, 14-Oct-2017.) (Revised by AV, 3-Nov-2020.) |
| ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ (UnivVtx‘𝐺)) → (♯‘(𝐺 NeighbVtx 𝑁)) = ((♯‘𝑉) − 1)) | ||
| Theorem | nbusgrvtxm1uvtx 29339 | If the number of neighbors of a vertex in a finite simple graph is the number of vertices of the graph minus 1, the vertex is universal. (Contributed by Alexander van der Vekens, 14-Jul-2018.) (Revised by AV, 16-Dec-2020.) (Proof shortened by AV, 13-Feb-2022.) |
| ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑈 ∈ 𝑉) → ((♯‘(𝐺 NeighbVtx 𝑈)) = ((♯‘𝑉) − 1) → 𝑈 ∈ (UnivVtx‘𝐺))) | ||
| Theorem | uvtxnbvtxm1 29340 | A universal vertex has 𝑛 − 1 neighbors in a finite simple graph with 𝑛 vertices. A biconditional version of nbusgrvtxm1uvtx 29339 resp. uvtxnm1nbgr 29338. (Contributed by Alexander van der Vekens, 14-Jul-2018.) (Revised by AV, 16-Dec-2020.) |
| ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑈 ∈ 𝑉) → (𝑈 ∈ (UnivVtx‘𝐺) ↔ (♯‘(𝐺 NeighbVtx 𝑈)) = ((♯‘𝑉) − 1))) | ||
| Theorem | nbupgruvtxres 29341* | The neighborhood of a universal vertex in a restricted pseudograph. (Contributed by Alexander van der Vekens, 2-Jan-2018.) (Revised by AV, 8-Nov-2020.) (Proof shortened by AV, 13-Feb-2022.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) & ⊢ 𝐹 = {𝑒 ∈ 𝐸 ∣ 𝑁 ∉ 𝑒} & ⊢ 𝑆 = 〈(𝑉 ∖ {𝑁}), ( I ↾ 𝐹)〉 ⇒ ⊢ (((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ 𝐾 ∈ (𝑉 ∖ {𝑁})) → ((𝐺 NeighbVtx 𝐾) = (𝑉 ∖ {𝐾}) → (𝑆 NeighbVtx 𝐾) = (𝑉 ∖ {𝑁, 𝐾}))) | ||
| Theorem | uvtxupgrres 29342* | A universal vertex is universal in a restricted pseudograph. (Contributed by Alexander van der Vekens, 2-Jan-2018.) (Revised by AV, 8-Nov-2020.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) & ⊢ 𝐹 = {𝑒 ∈ 𝐸 ∣ 𝑁 ∉ 𝑒} & ⊢ 𝑆 = 〈(𝑉 ∖ {𝑁}), ( I ↾ 𝐹)〉 ⇒ ⊢ (((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ 𝐾 ∈ (𝑉 ∖ {𝑁})) → (𝐾 ∈ (UnivVtx‘𝐺) → 𝐾 ∈ (UnivVtx‘𝑆))) | ||
| Syntax | ccplgr 29343 | Extend class notation with (arbitrary) complete graphs. |
| class ComplGraph | ||
| Syntax | ccusgr 29344 | Extend class notation with complete simple graphs. |
| class ComplUSGraph | ||
| Definition | df-cplgr 29345 | Define the class of all complete "graphs". A class/graph is called complete if every pair of distinct vertices is connected by an edge, i.e., each vertex has all other vertices as neighbors or, in other words, each vertex is a universal vertex. (Contributed by AV, 24-Oct-2020.) (Revised by TA, 15-Feb-2022.) |
| ⊢ ComplGraph = {𝑔 ∣ (UnivVtx‘𝑔) = (Vtx‘𝑔)} | ||
| Definition | df-cusgr 29346 | Define the class of all complete simple graphs. A simple graph is called complete if every pair of distinct vertices is connected by a (unique) edge, see definition in section 1.1 of [Diestel] p. 3. In contrast, the definition in section I.1 of [Bollobas] p. 3 is based on the size of (finite) complete graphs, see cusgrsize 29389. (Contributed by Alexander van der Vekens, 12-Oct-2017.) (Revised by AV, 24-Oct-2020.) (Revised by BJ, 14-Feb-2022.) |
| ⊢ ComplUSGraph = (USGraph ∩ ComplGraph) | ||
| Theorem | cplgruvtxb 29347 | A graph 𝐺 is complete iff each vertex is a universal vertex. (Contributed by Alexander van der Vekens, 14-Oct-2017.) (Revised by AV, 15-Feb-2022.) |
| ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ (𝐺 ∈ 𝑊 → (𝐺 ∈ ComplGraph ↔ (UnivVtx‘𝐺) = 𝑉)) | ||
| Theorem | prcliscplgr 29348* | A proper class (representing a null graph, see vtxvalprc 28979) has the property of a complete graph (see also cplgr0v 29361), but cannot be an element of ComplGraph, of course. Because of this, a sethood antecedent like 𝐺 ∈ 𝑊 is necessary in the following theorems like iscplgr 29349. (Contributed by AV, 14-Feb-2022.) |
| ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ (¬ 𝐺 ∈ V → ∀𝑣 ∈ 𝑉 𝑣 ∈ (UnivVtx‘𝐺)) | ||
| Theorem | iscplgr 29349* | The property of being a complete graph. (Contributed by AV, 1-Nov-2020.) |
| ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ (𝐺 ∈ 𝑊 → (𝐺 ∈ ComplGraph ↔ ∀𝑣 ∈ 𝑉 𝑣 ∈ (UnivVtx‘𝐺))) | ||
| Theorem | iscplgrnb 29350* | A graph is complete iff all vertices are neighbors of all vertices. (Contributed by AV, 1-Nov-2020.) |
| ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ (𝐺 ∈ 𝑊 → (𝐺 ∈ ComplGraph ↔ ∀𝑣 ∈ 𝑉 ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣))) | ||
| Theorem | iscplgredg 29351* | A graph 𝐺 is complete iff all vertices are connected with each other by (at least) one edge. (Contributed by AV, 10-Nov-2020.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ (𝐺 ∈ 𝑊 → (𝐺 ∈ ComplGraph ↔ ∀𝑣 ∈ 𝑉 ∀𝑛 ∈ (𝑉 ∖ {𝑣})∃𝑒 ∈ 𝐸 {𝑣, 𝑛} ⊆ 𝑒)) | ||
| Theorem | iscusgr 29352 | The property of being a complete simple graph. (Contributed by AV, 1-Nov-2020.) |
| ⊢ (𝐺 ∈ ComplUSGraph ↔ (𝐺 ∈ USGraph ∧ 𝐺 ∈ ComplGraph)) | ||
| Theorem | cusgrusgr 29353 | A complete simple graph is a simple graph. (Contributed by Alexander van der Vekens, 13-Oct-2017.) (Revised by AV, 1-Nov-2020.) |
| ⊢ (𝐺 ∈ ComplUSGraph → 𝐺 ∈ USGraph) | ||
| Theorem | cusgrcplgr 29354 | A complete simple graph is a complete graph. (Contributed by AV, 1-Nov-2020.) |
| ⊢ (𝐺 ∈ ComplUSGraph → 𝐺 ∈ ComplGraph) | ||
| Theorem | iscusgrvtx 29355* | A simple graph is complete iff all vertices are uniuversal. (Contributed by AV, 1-Nov-2020.) |
| ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ (𝐺 ∈ ComplUSGraph ↔ (𝐺 ∈ USGraph ∧ ∀𝑣 ∈ 𝑉 𝑣 ∈ (UnivVtx‘𝐺))) | ||
| Theorem | cusgruvtxb 29356 | A simple graph is complete iff the set of vertices is the set of universal vertices. (Contributed by Alexander van der Vekens, 14-Oct-2017.) (Revised by Alexander van der Vekens, 18-Jan-2018.) (Revised by AV, 1-Nov-2020.) |
| ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ (𝐺 ∈ USGraph → (𝐺 ∈ ComplUSGraph ↔ (UnivVtx‘𝐺) = 𝑉)) | ||
| Theorem | iscusgredg 29357* | A simple graph is complete iff all vertices are connected by an edge. (Contributed by Alexander van der Vekens, 12-Oct-2017.) (Revised by AV, 1-Nov-2020.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ (𝐺 ∈ ComplUSGraph ↔ (𝐺 ∈ USGraph ∧ ∀𝑘 ∈ 𝑉 ∀𝑛 ∈ (𝑉 ∖ {𝑘}){𝑛, 𝑘} ∈ 𝐸)) | ||
| Theorem | cusgredg 29358* | In a complete simple graph, the edges are all the pairs of different vertices. (Contributed by Alexander van der Vekens, 12-Jan-2018.) (Revised by AV, 1-Nov-2020.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ (𝐺 ∈ ComplUSGraph → 𝐸 = {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2}) | ||
| Theorem | cplgr0 29359 | The null graph (with no vertices and no edges) represented by the empty set is a complete graph. (Contributed by AV, 1-Nov-2020.) |
| ⊢ ∅ ∈ ComplGraph | ||
| Theorem | cusgr0 29360 | The null graph (with no vertices and no edges) represented by the empty set is a complete simple graph. (Contributed by AV, 1-Nov-2020.) |
| ⊢ ∅ ∈ ComplUSGraph | ||
| Theorem | cplgr0v 29361 | A null graph (with no vertices) is a complete graph. (Contributed by Alexander van der Vekens, 13-Oct-2017.) (Revised by AV, 1-Nov-2020.) |
| ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ ((𝐺 ∈ 𝑊 ∧ 𝑉 = ∅) → 𝐺 ∈ ComplGraph) | ||
| Theorem | cusgr0v 29362 | A graph with no vertices and no edges is a complete simple graph. (Contributed by Alexander van der Vekens, 13-Oct-2017.) (Revised by AV, 1-Nov-2020.) |
| ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ ((𝐺 ∈ 𝑊 ∧ 𝑉 = ∅ ∧ (iEdg‘𝐺) = ∅) → 𝐺 ∈ ComplUSGraph) | ||
| Theorem | cplgr1vlem 29363 | Lemma for cplgr1v 29364 and cusgr1v 29365. (Contributed by AV, 23-Mar-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ ((♯‘𝑉) = 1 → 𝐺 ∈ V) | ||
| Theorem | cplgr1v 29364 | A graph with one vertex is complete. (Contributed by Alexander van der Vekens, 13-Oct-2017.) (Revised by AV, 1-Nov-2020.) (Revised by AV, 23-Mar-2021.) (Proof shortened by AV, 14-Feb-2022.) |
| ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ ((♯‘𝑉) = 1 → 𝐺 ∈ ComplGraph) | ||
| Theorem | cusgr1v 29365 | A graph with one vertex and no edges is a complete simple graph. (Contributed by AV, 1-Nov-2020.) (Revised by AV, 23-Mar-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ (((♯‘𝑉) = 1 ∧ (iEdg‘𝐺) = ∅) → 𝐺 ∈ ComplUSGraph) | ||
| Theorem | cplgr2v 29366 | An undirected hypergraph with two (different) vertices is complete iff there is an edge between these two vertices. (Contributed by AV, 3-Nov-2020.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ ((𝐺 ∈ UHGraph ∧ (♯‘𝑉) = 2) → (𝐺 ∈ ComplGraph ↔ 𝑉 ∈ 𝐸)) | ||
| Theorem | cplgr2vpr 29367 | An undirected hypergraph with two (different) vertices is complete iff there is an edge between these two vertices. (Contributed by Alexander van der Vekens, 12-Oct-2017.) (Proof shortened by Alexander van der Vekens, 16-Dec-2017.) (Revised by AV, 3-Nov-2020.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵) ∧ (𝐺 ∈ UHGraph ∧ 𝑉 = {𝐴, 𝐵})) → (𝐺 ∈ ComplGraph ↔ {𝐴, 𝐵} ∈ 𝐸)) | ||
| Theorem | nbcplgr 29368 | In a complete graph, each vertex has all other vertices as neighbors. (Contributed by Alexander van der Vekens, 12-Oct-2017.) (Revised by AV, 3-Nov-2020.) |
| ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ ((𝐺 ∈ ComplGraph ∧ 𝑁 ∈ 𝑉) → (𝐺 NeighbVtx 𝑁) = (𝑉 ∖ {𝑁})) | ||
| Theorem | cplgr3v 29369 | A pseudograph with three (different) vertices is complete iff there is an edge between each of these three vertices. (Contributed by Alexander van der Vekens, 12-Oct-2017.) (Revised by AV, 5-Nov-2020.) (Proof shortened by AV, 13-Feb-2022.) |
| ⊢ 𝐸 = (Edg‘𝐺) & ⊢ (Vtx‘𝐺) = {𝐴, 𝐵, 𝐶} ⇒ ⊢ (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ 𝐺 ∈ UPGraph ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) → (𝐺 ∈ ComplGraph ↔ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸))) | ||
| Theorem | cusgr3vnbpr 29370* | The neighbors of a vertex in a simple graph with three elements are unordered pairs of the other vertices if and only if the graph is complete. (Contributed by Alexander van der Vekens, 18-Oct-2017.) (Revised by AV, 5-Nov-2020.) |
| ⊢ 𝐸 = (Edg‘𝐺) & ⊢ (Vtx‘𝐺) = {𝐴, 𝐵, 𝐶} & ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ 𝐺 ∈ USGraph ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) → (𝐺 ∈ ComplGraph ↔ ∀𝑥 ∈ 𝑉 ∃𝑦 ∈ 𝑉 ∃𝑧 ∈ (𝑉 ∖ {𝑦})(𝐺 NeighbVtx 𝑥) = {𝑦, 𝑧})) | ||
| Theorem | cplgrop 29371 | A complete graph represented by an ordered pair. (Contributed by AV, 10-Nov-2020.) |
| ⊢ (𝐺 ∈ ComplGraph → 〈(Vtx‘𝐺), (iEdg‘𝐺)〉 ∈ ComplGraph) | ||
| Theorem | cusgrop 29372 | A complete simple graph represented by an ordered pair. (Contributed by AV, 10-Nov-2020.) |
| ⊢ (𝐺 ∈ ComplUSGraph → 〈(Vtx‘𝐺), (iEdg‘𝐺)〉 ∈ ComplUSGraph) | ||
| Theorem | cusgrexilem1 29373* | Lemma 1 for cusgrexi 29377. (Contributed by Alexander van der Vekens, 12-Jan-2018.) |
| ⊢ 𝑃 = {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} ⇒ ⊢ (𝑉 ∈ 𝑊 → ( I ↾ 𝑃) ∈ V) | ||
| Theorem | usgrexilem 29374* | Lemma for usgrexi 29375. (Contributed by AV, 12-Jan-2018.) (Revised by AV, 10-Nov-2021.) |
| ⊢ 𝑃 = {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} ⇒ ⊢ (𝑉 ∈ 𝑊 → ( I ↾ 𝑃):dom ( I ↾ 𝑃)–1-1→{𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2}) | ||
| Theorem | usgrexi 29375* | An arbitrary set regarded as vertices together with the set of pairs of elements of this set regarded as edges is a simple graph. (Contributed by Alexander van der Vekens, 12-Jan-2018.) (Revised by AV, 5-Nov-2020.) (Proof shortened by AV, 10-Nov-2021.) |
| ⊢ 𝑃 = {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} ⇒ ⊢ (𝑉 ∈ 𝑊 → 〈𝑉, ( I ↾ 𝑃)〉 ∈ USGraph) | ||
| Theorem | cusgrexilem2 29376* | Lemma 2 for cusgrexi 29377. (Contributed by AV, 12-Jan-2018.) (Revised by AV, 10-Nov-2021.) |
| ⊢ 𝑃 = {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} ⇒ ⊢ (((𝑉 ∈ 𝑊 ∧ 𝑣 ∈ 𝑉) ∧ 𝑛 ∈ (𝑉 ∖ {𝑣})) → ∃𝑒 ∈ ran ( I ↾ 𝑃){𝑣, 𝑛} ⊆ 𝑒) | ||
| Theorem | cusgrexi 29377* | An arbitrary set 𝑉 regarded as set of vertices together with the set of pairs of elements of this set regarded as edges is a complete simple graph. (Contributed by Alexander van der Vekens, 12-Jan-2018.) (Revised by AV, 5-Nov-2020.) (Proof shortened by AV, 14-Feb-2022.) |
| ⊢ 𝑃 = {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} ⇒ ⊢ (𝑉 ∈ 𝑊 → 〈𝑉, ( I ↾ 𝑃)〉 ∈ ComplUSGraph) | ||
| Theorem | cusgrexg 29378* | For each set there is a set of edges so that the set together with these edges is a complete simple graph. (Contributed by Alexander van der Vekens, 12-Jan-2018.) (Revised by AV, 5-Nov-2020.) |
| ⊢ (𝑉 ∈ 𝑊 → ∃𝑒〈𝑉, 𝑒〉 ∈ ComplUSGraph) | ||
| Theorem | structtousgr 29379* | Any (extensible) structure with a base set can be made a simple graph with the set of pairs of elements of the base set regarded as edges. (Contributed by AV, 10-Nov-2021.) (Revised by AV, 17-Nov-2021.) |
| ⊢ 𝑃 = {𝑥 ∈ 𝒫 (Base‘𝑆) ∣ (♯‘𝑥) = 2} & ⊢ (𝜑 → 𝑆 Struct 𝑋) & ⊢ 𝐺 = (𝑆 sSet 〈(.ef‘ndx), ( I ↾ 𝑃)〉) & ⊢ (𝜑 → (Base‘ndx) ∈ dom 𝑆) ⇒ ⊢ (𝜑 → 𝐺 ∈ USGraph) | ||
| Theorem | structtocusgr 29380* | Any (extensible) structure with a base set can be made a complete simple graph with the set of pairs of elements of the base set regarded as edges. (Contributed by AV, 10-Nov-2021.) (Revised by AV, 17-Nov-2021.) (Proof shortened by AV, 14-Feb-2022.) |
| ⊢ 𝑃 = {𝑥 ∈ 𝒫 (Base‘𝑆) ∣ (♯‘𝑥) = 2} & ⊢ (𝜑 → 𝑆 Struct 𝑋) & ⊢ 𝐺 = (𝑆 sSet 〈(.ef‘ndx), ( I ↾ 𝑃)〉) & ⊢ (𝜑 → (Base‘ndx) ∈ dom 𝑆) ⇒ ⊢ (𝜑 → 𝐺 ∈ ComplUSGraph) | ||
| Theorem | cffldtocusgr 29381* | The field of complex numbers can be made a complete simple graph with the set of pairs of complex numbers regarded as edges. This theorem demonstrates the capabilities of the current definitions for graphs applied to extensible structures. (Contributed by AV, 14-Nov-2021.) (Proof shortened by AV, 17-Nov-2021.) Revise df-cnfld 21272. (Revised by GG, 31-Mar-2025.) |
| ⊢ 𝑃 = {𝑥 ∈ 𝒫 ℂ ∣ (♯‘𝑥) = 2} & ⊢ 𝐺 = (ℂfld sSet 〈(.ef‘ndx), ( I ↾ 𝑃)〉) ⇒ ⊢ 𝐺 ∈ ComplUSGraph | ||
| Theorem | cffldtocusgrOLD 29382* | Obsolete version of cffldtocusgr 29381 as of 27-Apr-2025. (Contributed by AV, 14-Nov-2021.) (Proof shortened by AV, 17-Nov-2021.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ 𝑃 = {𝑥 ∈ 𝒫 ℂ ∣ (♯‘𝑥) = 2} & ⊢ 𝐺 = (ℂfld sSet 〈(.ef‘ndx), ( I ↾ 𝑃)〉) ⇒ ⊢ 𝐺 ∈ ComplUSGraph | ||
| Theorem | cusgrres 29383* | Restricting a complete simple graph. (Contributed by Alexander van der Vekens, 2-Jan-2018.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) & ⊢ 𝐹 = {𝑒 ∈ 𝐸 ∣ 𝑁 ∉ 𝑒} & ⊢ 𝑆 = 〈(𝑉 ∖ {𝑁}), ( I ↾ 𝐹)〉 ⇒ ⊢ ((𝐺 ∈ ComplUSGraph ∧ 𝑁 ∈ 𝑉) → 𝑆 ∈ ComplUSGraph) | ||
| Theorem | cusgrsizeindb0 29384 | Base case of the induction in cusgrsize 29389. The size of a complete simple graph with 0 vertices, actually of every null graph, is 0=((0-1)*0)/2. (Contributed by Alexander van der Vekens, 2-Jan-2018.) (Revised by AV, 7-Nov-2020.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ ((𝐺 ∈ UHGraph ∧ (♯‘𝑉) = 0) → (♯‘𝐸) = ((♯‘𝑉)C2)) | ||
| Theorem | cusgrsizeindb1 29385 | Base case of the induction in cusgrsize 29389. The size of a (complete) simple graph with 1 vertex is 0=((1-1)*1)/2. (Contributed by Alexander van der Vekens, 2-Jan-2018.) (Revised by AV, 7-Nov-2020.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ ((𝐺 ∈ USGraph ∧ (♯‘𝑉) = 1) → (♯‘𝐸) = ((♯‘𝑉)C2)) | ||
| Theorem | cusgrsizeindslem 29386* | Lemma for cusgrsizeinds 29387. (Contributed by Alexander van der Vekens, 11-Jan-2018.) (Revised by AV, 9-Nov-2020.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑁 ∈ 𝑉) → (♯‘{𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒}) = ((♯‘𝑉) − 1)) | ||
| Theorem | cusgrsizeinds 29387* | Part 1 of induction step in cusgrsize 29389. The size of a complete simple graph with 𝑛 vertices is (𝑛 − 1) plus the size of the complete graph reduced by one vertex. (Contributed by Alexander van der Vekens, 11-Jan-2018.) (Revised by AV, 9-Nov-2020.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) & ⊢ 𝐹 = {𝑒 ∈ 𝐸 ∣ 𝑁 ∉ 𝑒} ⇒ ⊢ ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑁 ∈ 𝑉) → (♯‘𝐸) = (((♯‘𝑉) − 1) + (♯‘𝐹))) | ||
| Theorem | cusgrsize2inds 29388* | Induction step in cusgrsize 29389. If the size of the complete graph with 𝑛 vertices reduced by one vertex is "(𝑛 − 1) choose 2", the size of the complete graph with 𝑛 vertices is "𝑛 choose 2". (Contributed by Alexander van der Vekens, 11-Jan-2018.) (Revised by AV, 9-Nov-2020.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) & ⊢ 𝐹 = {𝑒 ∈ 𝐸 ∣ 𝑁 ∉ 𝑒} ⇒ ⊢ (𝑌 ∈ ℕ0 → ((𝐺 ∈ ComplUSGraph ∧ (♯‘𝑉) = 𝑌 ∧ 𝑁 ∈ 𝑉) → ((♯‘𝐹) = ((♯‘(𝑉 ∖ {𝑁}))C2) → (♯‘𝐸) = ((♯‘𝑉)C2)))) | ||
| Theorem | cusgrsize 29389 | The size of a finite complete simple graph with 𝑛 vertices (𝑛 ∈ ℕ0) is (𝑛C2) ("𝑛 choose 2") resp. (((𝑛 − 1)∗𝑛) / 2), see definition in section I.1 of [Bollobas] p. 3 . (Contributed by Alexander van der Vekens, 11-Jan-2018.) (Revised by AV, 10-Nov-2020.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin) → (♯‘𝐸) = ((♯‘𝑉)C2)) | ||
| Theorem | cusgrfilem1 29390* | Lemma 1 for cusgrfi 29393. (Contributed by Alexander van der Vekens, 13-Jan-2018.) (Revised by AV, 11-Nov-2020.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝑃 = {𝑥 ∈ 𝒫 𝑉 ∣ ∃𝑎 ∈ 𝑉 (𝑎 ≠ 𝑁 ∧ 𝑥 = {𝑎, 𝑁})} ⇒ ⊢ ((𝐺 ∈ ComplUSGraph ∧ 𝑁 ∈ 𝑉) → 𝑃 ⊆ (Edg‘𝐺)) | ||
| Theorem | cusgrfilem2 29391* | Lemma 2 for cusgrfi 29393. (Contributed by Alexander van der Vekens, 13-Jan-2018.) (Revised by AV, 11-Nov-2020.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝑃 = {𝑥 ∈ 𝒫 𝑉 ∣ ∃𝑎 ∈ 𝑉 (𝑎 ≠ 𝑁 ∧ 𝑥 = {𝑎, 𝑁})} & ⊢ 𝐹 = (𝑥 ∈ (𝑉 ∖ {𝑁}) ↦ {𝑥, 𝑁}) ⇒ ⊢ (𝑁 ∈ 𝑉 → 𝐹:(𝑉 ∖ {𝑁})–1-1-onto→𝑃) | ||
| Theorem | cusgrfilem3 29392* | Lemma 3 for cusgrfi 29393. (Contributed by Alexander van der Vekens, 13-Jan-2018.) (Revised by AV, 11-Nov-2020.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝑃 = {𝑥 ∈ 𝒫 𝑉 ∣ ∃𝑎 ∈ 𝑉 (𝑎 ≠ 𝑁 ∧ 𝑥 = {𝑎, 𝑁})} & ⊢ 𝐹 = (𝑥 ∈ (𝑉 ∖ {𝑁}) ↦ {𝑥, 𝑁}) ⇒ ⊢ (𝑁 ∈ 𝑉 → (𝑉 ∈ Fin ↔ 𝑃 ∈ Fin)) | ||
| Theorem | cusgrfi 29393 | If the size of a complete simple graph is finite, then its order is also finite. (Contributed by Alexander van der Vekens, 13-Jan-2018.) (Revised by AV, 11-Nov-2020.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ ((𝐺 ∈ ComplUSGraph ∧ 𝐸 ∈ Fin) → 𝑉 ∈ Fin) | ||
| Theorem | usgredgsscusgredg 29394 | A simple graph is a subgraph of a complete simple graph. (Contributed by Alexander van der Vekens, 11-Jan-2018.) (Revised by AV, 13-Nov-2020.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) & ⊢ 𝑉 = (Vtx‘𝐻) & ⊢ 𝐹 = (Edg‘𝐻) ⇒ ⊢ ((𝐺 ∈ USGraph ∧ 𝐻 ∈ ComplUSGraph) → 𝐸 ⊆ 𝐹) | ||
| Theorem | usgrsscusgr 29395* | A simple graph is a subgraph of a complete simple graph. (Contributed by Alexander van der Vekens, 11-Jan-2018.) (Revised by AV, 13-Nov-2020.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) & ⊢ 𝑉 = (Vtx‘𝐻) & ⊢ 𝐹 = (Edg‘𝐻) ⇒ ⊢ ((𝐺 ∈ USGraph ∧ 𝐻 ∈ ComplUSGraph) → ∀𝑒 ∈ 𝐸 ∃𝑓 ∈ 𝐹 𝑒 = 𝑓) | ||
| Theorem | sizusglecusglem1 29396 | Lemma 1 for sizusglecusg 29398. (Contributed by Alexander van der Vekens, 12-Jan-2018.) (Revised by AV, 13-Nov-2020.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) & ⊢ 𝑉 = (Vtx‘𝐻) & ⊢ 𝐹 = (Edg‘𝐻) ⇒ ⊢ ((𝐺 ∈ USGraph ∧ 𝐻 ∈ ComplUSGraph) → ( I ↾ 𝐸):𝐸–1-1→𝐹) | ||
| Theorem | sizusglecusglem2 29397 | Lemma 2 for sizusglecusg 29398. (Contributed by Alexander van der Vekens, 13-Jan-2018.) (Revised by AV, 13-Nov-2020.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) & ⊢ 𝑉 = (Vtx‘𝐻) & ⊢ 𝐹 = (Edg‘𝐻) ⇒ ⊢ ((𝐺 ∈ USGraph ∧ 𝐻 ∈ ComplUSGraph ∧ 𝐹 ∈ Fin) → 𝐸 ∈ Fin) | ||
| Theorem | sizusglecusg 29398 | The size of a simple graph with 𝑛 vertices is at most the size of a complete simple graph with 𝑛 vertices (𝑛 may be infinite). (Contributed by Alexander van der Vekens, 13-Jan-2018.) (Revised by AV, 13-Nov-2020.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) & ⊢ 𝑉 = (Vtx‘𝐻) & ⊢ 𝐹 = (Edg‘𝐻) ⇒ ⊢ ((𝐺 ∈ USGraph ∧ 𝐻 ∈ ComplUSGraph) → (♯‘𝐸) ≤ (♯‘𝐹)) | ||
| Theorem | fusgrmaxsize 29399 | The maximum size of a finite simple graph with 𝑛 vertices is (((𝑛 − 1)∗𝑛) / 2). See statement in section I.1 of [Bollobas] p. 3 . (Contributed by Alexander van der Vekens, 13-Jan-2018.) (Revised by AV, 14-Nov-2020.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ (𝐺 ∈ FinUSGraph → (♯‘𝐸) ≤ ((♯‘𝑉)C2)) | ||
| Syntax | cvtxdg 29400 | Extend class notation with the vertex degree function. |
| class VtxDeg | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |