Detailed syntax breakdown of Definition df-fwddif
Step | Hyp | Ref
| Expression |
1 | | cfwddif 34460 |
. 2
class
△ |
2 | | vf |
. . 3
setvar 𝑓 |
3 | | cc 10869 |
. . . 4
class
ℂ |
4 | | cpm 8616 |
. . . 4
class
↑pm |
5 | 3, 3, 4 | co 7275 |
. . 3
class (ℂ
↑pm ℂ) |
6 | | vx |
. . . 4
setvar 𝑥 |
7 | | vy |
. . . . . . . 8
setvar 𝑦 |
8 | 7 | cv 1538 |
. . . . . . 7
class 𝑦 |
9 | | c1 10872 |
. . . . . . 7
class
1 |
10 | | caddc 10874 |
. . . . . . 7
class
+ |
11 | 8, 9, 10 | co 7275 |
. . . . . 6
class (𝑦 + 1) |
12 | 2 | cv 1538 |
. . . . . . 7
class 𝑓 |
13 | 12 | cdm 5589 |
. . . . . 6
class dom 𝑓 |
14 | 11, 13 | wcel 2106 |
. . . . 5
wff (𝑦 + 1) ∈ dom 𝑓 |
15 | 14, 7, 13 | crab 3068 |
. . . 4
class {𝑦 ∈ dom 𝑓 ∣ (𝑦 + 1) ∈ dom 𝑓} |
16 | 6 | cv 1538 |
. . . . . . 7
class 𝑥 |
17 | 16, 9, 10 | co 7275 |
. . . . . 6
class (𝑥 + 1) |
18 | 17, 12 | cfv 6433 |
. . . . 5
class (𝑓‘(𝑥 + 1)) |
19 | 16, 12 | cfv 6433 |
. . . . 5
class (𝑓‘𝑥) |
20 | | cmin 11205 |
. . . . 5
class
− |
21 | 18, 19, 20 | co 7275 |
. . . 4
class ((𝑓‘(𝑥 + 1)) − (𝑓‘𝑥)) |
22 | 6, 15, 21 | cmpt 5157 |
. . 3
class (𝑥 ∈ {𝑦 ∈ dom 𝑓 ∣ (𝑦 + 1) ∈ dom 𝑓} ↦ ((𝑓‘(𝑥 + 1)) − (𝑓‘𝑥))) |
23 | 2, 5, 22 | cmpt 5157 |
. 2
class (𝑓 ∈ (ℂ
↑pm ℂ) ↦ (𝑥 ∈ {𝑦 ∈ dom 𝑓 ∣ (𝑦 + 1) ∈ dom 𝑓} ↦ ((𝑓‘(𝑥 + 1)) − (𝑓‘𝑥)))) |
24 | 1, 23 | wceq 1539 |
1
wff △ =
(𝑓 ∈ (ℂ
↑pm ℂ) ↦ (𝑥 ∈ {𝑦 ∈ dom 𝑓 ∣ (𝑦 + 1) ∈ dom 𝑓} ↦ ((𝑓‘(𝑥 + 1)) − (𝑓‘𝑥)))) |