Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fwddifval Structured version   Visualization version   GIF version

Theorem fwddifval 36185
Description: Calculate the value of the forward difference operator at a point. (Contributed by Scott Fenton, 18-May-2020.)
Hypotheses
Ref Expression
fwddifval.1 (𝜑𝐴 ⊆ ℂ)
fwddifval.2 (𝜑𝐹:𝐴⟶ℂ)
fwddifval.3 (𝜑𝑋𝐴)
fwddifval.4 (𝜑 → (𝑋 + 1) ∈ 𝐴)
Assertion
Ref Expression
fwddifval (𝜑 → (( △ ‘𝐹)‘𝑋) = ((𝐹‘(𝑋 + 1)) − (𝐹𝑋)))

Proof of Theorem fwddifval
Dummy variables 𝑥 𝑦 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-fwddif 36182 . . . 4 △ = (𝑓 ∈ (ℂ ↑pm ℂ) ↦ (𝑥 ∈ {𝑦 ∈ dom 𝑓 ∣ (𝑦 + 1) ∈ dom 𝑓} ↦ ((𝑓‘(𝑥 + 1)) − (𝑓𝑥))))
2 dmeq 5888 . . . . . 6 (𝑓 = 𝐹 → dom 𝑓 = dom 𝐹)
32eleq2d 2821 . . . . . 6 (𝑓 = 𝐹 → ((𝑦 + 1) ∈ dom 𝑓 ↔ (𝑦 + 1) ∈ dom 𝐹))
42, 3rabeqbidv 3439 . . . . 5 (𝑓 = 𝐹 → {𝑦 ∈ dom 𝑓 ∣ (𝑦 + 1) ∈ dom 𝑓} = {𝑦 ∈ dom 𝐹 ∣ (𝑦 + 1) ∈ dom 𝐹})
5 fveq1 6880 . . . . . 6 (𝑓 = 𝐹 → (𝑓‘(𝑥 + 1)) = (𝐹‘(𝑥 + 1)))
6 fveq1 6880 . . . . . 6 (𝑓 = 𝐹 → (𝑓𝑥) = (𝐹𝑥))
75, 6oveq12d 7428 . . . . 5 (𝑓 = 𝐹 → ((𝑓‘(𝑥 + 1)) − (𝑓𝑥)) = ((𝐹‘(𝑥 + 1)) − (𝐹𝑥)))
84, 7mpteq12dv 5212 . . . 4 (𝑓 = 𝐹 → (𝑥 ∈ {𝑦 ∈ dom 𝑓 ∣ (𝑦 + 1) ∈ dom 𝑓} ↦ ((𝑓‘(𝑥 + 1)) − (𝑓𝑥))) = (𝑥 ∈ {𝑦 ∈ dom 𝐹 ∣ (𝑦 + 1) ∈ dom 𝐹} ↦ ((𝐹‘(𝑥 + 1)) − (𝐹𝑥))))
9 fwddifval.2 . . . . 5 (𝜑𝐹:𝐴⟶ℂ)
10 fwddifval.1 . . . . 5 (𝜑𝐴 ⊆ ℂ)
11 cnex 11215 . . . . . 6 ℂ ∈ V
12 elpm2r 8864 . . . . . 6 (((ℂ ∈ V ∧ ℂ ∈ V) ∧ (𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℂ)) → 𝐹 ∈ (ℂ ↑pm ℂ))
1311, 11, 12mpanl12 702 . . . . 5 ((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℂ) → 𝐹 ∈ (ℂ ↑pm ℂ))
149, 10, 13syl2anc 584 . . . 4 (𝜑𝐹 ∈ (ℂ ↑pm ℂ))
159fdmd 6721 . . . . . 6 (𝜑 → dom 𝐹 = 𝐴)
1611a1i 11 . . . . . . 7 (𝜑 → ℂ ∈ V)
1716, 10ssexd 5299 . . . . . 6 (𝜑𝐴 ∈ V)
1815, 17eqeltrd 2835 . . . . 5 (𝜑 → dom 𝐹 ∈ V)
19 rabexg 5312 . . . . 5 (dom 𝐹 ∈ V → {𝑦 ∈ dom 𝐹 ∣ (𝑦 + 1) ∈ dom 𝐹} ∈ V)
20 mptexg 7218 . . . . 5 ({𝑦 ∈ dom 𝐹 ∣ (𝑦 + 1) ∈ dom 𝐹} ∈ V → (𝑥 ∈ {𝑦 ∈ dom 𝐹 ∣ (𝑦 + 1) ∈ dom 𝐹} ↦ ((𝐹‘(𝑥 + 1)) − (𝐹𝑥))) ∈ V)
2118, 19, 203syl 18 . . . 4 (𝜑 → (𝑥 ∈ {𝑦 ∈ dom 𝐹 ∣ (𝑦 + 1) ∈ dom 𝐹} ↦ ((𝐹‘(𝑥 + 1)) − (𝐹𝑥))) ∈ V)
221, 8, 14, 21fvmptd3 7014 . . 3 (𝜑 → ( △ ‘𝐹) = (𝑥 ∈ {𝑦 ∈ dom 𝐹 ∣ (𝑦 + 1) ∈ dom 𝐹} ↦ ((𝐹‘(𝑥 + 1)) − (𝐹𝑥))))
2315eleq2d 2821 . . . . 5 (𝜑 → ((𝑦 + 1) ∈ dom 𝐹 ↔ (𝑦 + 1) ∈ 𝐴))
2415, 23rabeqbidv 3439 . . . 4 (𝜑 → {𝑦 ∈ dom 𝐹 ∣ (𝑦 + 1) ∈ dom 𝐹} = {𝑦𝐴 ∣ (𝑦 + 1) ∈ 𝐴})
2524mpteq1d 5215 . . 3 (𝜑 → (𝑥 ∈ {𝑦 ∈ dom 𝐹 ∣ (𝑦 + 1) ∈ dom 𝐹} ↦ ((𝐹‘(𝑥 + 1)) − (𝐹𝑥))) = (𝑥 ∈ {𝑦𝐴 ∣ (𝑦 + 1) ∈ 𝐴} ↦ ((𝐹‘(𝑥 + 1)) − (𝐹𝑥))))
2622, 25eqtrd 2771 . 2 (𝜑 → ( △ ‘𝐹) = (𝑥 ∈ {𝑦𝐴 ∣ (𝑦 + 1) ∈ 𝐴} ↦ ((𝐹‘(𝑥 + 1)) − (𝐹𝑥))))
27 fvoveq1 7433 . . . 4 (𝑥 = 𝑋 → (𝐹‘(𝑥 + 1)) = (𝐹‘(𝑋 + 1)))
28 fveq2 6881 . . . 4 (𝑥 = 𝑋 → (𝐹𝑥) = (𝐹𝑋))
2927, 28oveq12d 7428 . . 3 (𝑥 = 𝑋 → ((𝐹‘(𝑥 + 1)) − (𝐹𝑥)) = ((𝐹‘(𝑋 + 1)) − (𝐹𝑋)))
3029adantl 481 . 2 ((𝜑𝑥 = 𝑋) → ((𝐹‘(𝑥 + 1)) − (𝐹𝑥)) = ((𝐹‘(𝑋 + 1)) − (𝐹𝑋)))
31 fwddifval.3 . . 3 (𝜑𝑋𝐴)
32 fwddifval.4 . . 3 (𝜑 → (𝑋 + 1) ∈ 𝐴)
33 oveq1 7417 . . . . 5 (𝑦 = 𝑋 → (𝑦 + 1) = (𝑋 + 1))
3433eleq1d 2820 . . . 4 (𝑦 = 𝑋 → ((𝑦 + 1) ∈ 𝐴 ↔ (𝑋 + 1) ∈ 𝐴))
3534elrab 3676 . . 3 (𝑋 ∈ {𝑦𝐴 ∣ (𝑦 + 1) ∈ 𝐴} ↔ (𝑋𝐴 ∧ (𝑋 + 1) ∈ 𝐴))
3631, 32, 35sylanbrc 583 . 2 (𝜑𝑋 ∈ {𝑦𝐴 ∣ (𝑦 + 1) ∈ 𝐴})
37 ovexd 7445 . 2 (𝜑 → ((𝐹‘(𝑋 + 1)) − (𝐹𝑋)) ∈ V)
3826, 30, 36, 37fvmptd 6998 1 (𝜑 → (( △ ‘𝐹)‘𝑋) = ((𝐹‘(𝑋 + 1)) − (𝐹𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {crab 3420  Vcvv 3464  wss 3931  cmpt 5206  dom cdm 5659  wf 6532  cfv 6536  (class class class)co 7410  pm cpm 8846  cc 11132  1c1 11135   + caddc 11137  cmin 11471  cfwddif 36181
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-ov 7413  df-oprab 7414  df-mpo 7415  df-pm 8848  df-fwddif 36182
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator