| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | df-fwddif 36161 | . . . 4
⊢  △
= (𝑓 ∈ (ℂ
↑pm ℂ) ↦ (𝑥 ∈ {𝑦 ∈ dom 𝑓 ∣ (𝑦 + 1) ∈ dom 𝑓} ↦ ((𝑓‘(𝑥 + 1)) − (𝑓‘𝑥)))) | 
| 2 |  | dmeq 5913 | . . . . . 6
⊢ (𝑓 = 𝐹 → dom 𝑓 = dom 𝐹) | 
| 3 | 2 | eleq2d 2826 | . . . . . 6
⊢ (𝑓 = 𝐹 → ((𝑦 + 1) ∈ dom 𝑓 ↔ (𝑦 + 1) ∈ dom 𝐹)) | 
| 4 | 2, 3 | rabeqbidv 3454 | . . . . 5
⊢ (𝑓 = 𝐹 → {𝑦 ∈ dom 𝑓 ∣ (𝑦 + 1) ∈ dom 𝑓} = {𝑦 ∈ dom 𝐹 ∣ (𝑦 + 1) ∈ dom 𝐹}) | 
| 5 |  | fveq1 6904 | . . . . . 6
⊢ (𝑓 = 𝐹 → (𝑓‘(𝑥 + 1)) = (𝐹‘(𝑥 + 1))) | 
| 6 |  | fveq1 6904 | . . . . . 6
⊢ (𝑓 = 𝐹 → (𝑓‘𝑥) = (𝐹‘𝑥)) | 
| 7 | 5, 6 | oveq12d 7450 | . . . . 5
⊢ (𝑓 = 𝐹 → ((𝑓‘(𝑥 + 1)) − (𝑓‘𝑥)) = ((𝐹‘(𝑥 + 1)) − (𝐹‘𝑥))) | 
| 8 | 4, 7 | mpteq12dv 5232 | . . . 4
⊢ (𝑓 = 𝐹 → (𝑥 ∈ {𝑦 ∈ dom 𝑓 ∣ (𝑦 + 1) ∈ dom 𝑓} ↦ ((𝑓‘(𝑥 + 1)) − (𝑓‘𝑥))) = (𝑥 ∈ {𝑦 ∈ dom 𝐹 ∣ (𝑦 + 1) ∈ dom 𝐹} ↦ ((𝐹‘(𝑥 + 1)) − (𝐹‘𝑥)))) | 
| 9 |  | fwddifval.2 | . . . . 5
⊢ (𝜑 → 𝐹:𝐴⟶ℂ) | 
| 10 |  | fwddifval.1 | . . . . 5
⊢ (𝜑 → 𝐴 ⊆ ℂ) | 
| 11 |  | cnex 11237 | . . . . . 6
⊢ ℂ
∈ V | 
| 12 |  | elpm2r 8886 | . . . . . 6
⊢
(((ℂ ∈ V ∧ ℂ ∈ V) ∧ (𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℂ)) → 𝐹 ∈ (ℂ ↑pm
ℂ)) | 
| 13 | 11, 11, 12 | mpanl12 702 | . . . . 5
⊢ ((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℂ) → 𝐹 ∈ (ℂ ↑pm
ℂ)) | 
| 14 | 9, 10, 13 | syl2anc 584 | . . . 4
⊢ (𝜑 → 𝐹 ∈ (ℂ ↑pm
ℂ)) | 
| 15 | 9 | fdmd 6745 | . . . . . 6
⊢ (𝜑 → dom 𝐹 = 𝐴) | 
| 16 | 11 | a1i 11 | . . . . . . 7
⊢ (𝜑 → ℂ ∈
V) | 
| 17 | 16, 10 | ssexd 5323 | . . . . . 6
⊢ (𝜑 → 𝐴 ∈ V) | 
| 18 | 15, 17 | eqeltrd 2840 | . . . . 5
⊢ (𝜑 → dom 𝐹 ∈ V) | 
| 19 |  | rabexg 5336 | . . . . 5
⊢ (dom
𝐹 ∈ V → {𝑦 ∈ dom 𝐹 ∣ (𝑦 + 1) ∈ dom 𝐹} ∈ V) | 
| 20 |  | mptexg 7242 | . . . . 5
⊢ ({𝑦 ∈ dom 𝐹 ∣ (𝑦 + 1) ∈ dom 𝐹} ∈ V → (𝑥 ∈ {𝑦 ∈ dom 𝐹 ∣ (𝑦 + 1) ∈ dom 𝐹} ↦ ((𝐹‘(𝑥 + 1)) − (𝐹‘𝑥))) ∈ V) | 
| 21 | 18, 19, 20 | 3syl 18 | . . . 4
⊢ (𝜑 → (𝑥 ∈ {𝑦 ∈ dom 𝐹 ∣ (𝑦 + 1) ∈ dom 𝐹} ↦ ((𝐹‘(𝑥 + 1)) − (𝐹‘𝑥))) ∈ V) | 
| 22 | 1, 8, 14, 21 | fvmptd3 7038 | . . 3
⊢ (𝜑 → ( △ ‘𝐹) = (𝑥 ∈ {𝑦 ∈ dom 𝐹 ∣ (𝑦 + 1) ∈ dom 𝐹} ↦ ((𝐹‘(𝑥 + 1)) − (𝐹‘𝑥)))) | 
| 23 | 15 | eleq2d 2826 | . . . . 5
⊢ (𝜑 → ((𝑦 + 1) ∈ dom 𝐹 ↔ (𝑦 + 1) ∈ 𝐴)) | 
| 24 | 15, 23 | rabeqbidv 3454 | . . . 4
⊢ (𝜑 → {𝑦 ∈ dom 𝐹 ∣ (𝑦 + 1) ∈ dom 𝐹} = {𝑦 ∈ 𝐴 ∣ (𝑦 + 1) ∈ 𝐴}) | 
| 25 | 24 | mpteq1d 5236 | . . 3
⊢ (𝜑 → (𝑥 ∈ {𝑦 ∈ dom 𝐹 ∣ (𝑦 + 1) ∈ dom 𝐹} ↦ ((𝐹‘(𝑥 + 1)) − (𝐹‘𝑥))) = (𝑥 ∈ {𝑦 ∈ 𝐴 ∣ (𝑦 + 1) ∈ 𝐴} ↦ ((𝐹‘(𝑥 + 1)) − (𝐹‘𝑥)))) | 
| 26 | 22, 25 | eqtrd 2776 | . 2
⊢ (𝜑 → ( △ ‘𝐹) = (𝑥 ∈ {𝑦 ∈ 𝐴 ∣ (𝑦 + 1) ∈ 𝐴} ↦ ((𝐹‘(𝑥 + 1)) − (𝐹‘𝑥)))) | 
| 27 |  | fvoveq1 7455 | . . . 4
⊢ (𝑥 = 𝑋 → (𝐹‘(𝑥 + 1)) = (𝐹‘(𝑋 + 1))) | 
| 28 |  | fveq2 6905 | . . . 4
⊢ (𝑥 = 𝑋 → (𝐹‘𝑥) = (𝐹‘𝑋)) | 
| 29 | 27, 28 | oveq12d 7450 | . . 3
⊢ (𝑥 = 𝑋 → ((𝐹‘(𝑥 + 1)) − (𝐹‘𝑥)) = ((𝐹‘(𝑋 + 1)) − (𝐹‘𝑋))) | 
| 30 | 29 | adantl 481 | . 2
⊢ ((𝜑 ∧ 𝑥 = 𝑋) → ((𝐹‘(𝑥 + 1)) − (𝐹‘𝑥)) = ((𝐹‘(𝑋 + 1)) − (𝐹‘𝑋))) | 
| 31 |  | fwddifval.3 | . . 3
⊢ (𝜑 → 𝑋 ∈ 𝐴) | 
| 32 |  | fwddifval.4 | . . 3
⊢ (𝜑 → (𝑋 + 1) ∈ 𝐴) | 
| 33 |  | oveq1 7439 | . . . . 5
⊢ (𝑦 = 𝑋 → (𝑦 + 1) = (𝑋 + 1)) | 
| 34 | 33 | eleq1d 2825 | . . . 4
⊢ (𝑦 = 𝑋 → ((𝑦 + 1) ∈ 𝐴 ↔ (𝑋 + 1) ∈ 𝐴)) | 
| 35 | 34 | elrab 3691 | . . 3
⊢ (𝑋 ∈ {𝑦 ∈ 𝐴 ∣ (𝑦 + 1) ∈ 𝐴} ↔ (𝑋 ∈ 𝐴 ∧ (𝑋 + 1) ∈ 𝐴)) | 
| 36 | 31, 32, 35 | sylanbrc 583 | . 2
⊢ (𝜑 → 𝑋 ∈ {𝑦 ∈ 𝐴 ∣ (𝑦 + 1) ∈ 𝐴}) | 
| 37 |  | ovexd 7467 | . 2
⊢ (𝜑 → ((𝐹‘(𝑋 + 1)) − (𝐹‘𝑋)) ∈ V) | 
| 38 | 26, 30, 36, 37 | fvmptd 7022 | 1
⊢ (𝜑 → (( △ ‘𝐹)‘𝑋) = ((𝐹‘(𝑋 + 1)) − (𝐹‘𝑋))) |