Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fwddifval Structured version   Visualization version   GIF version

Theorem fwddifval 35435
Description: Calculate the value of the forward difference operator at a point. (Contributed by Scott Fenton, 18-May-2020.)
Hypotheses
Ref Expression
fwddifval.1 (πœ‘ β†’ 𝐴 βŠ† β„‚)
fwddifval.2 (πœ‘ β†’ 𝐹:π΄βŸΆβ„‚)
fwddifval.3 (πœ‘ β†’ 𝑋 ∈ 𝐴)
fwddifval.4 (πœ‘ β†’ (𝑋 + 1) ∈ 𝐴)
Assertion
Ref Expression
fwddifval (πœ‘ β†’ (( β–³ β€˜πΉ)β€˜π‘‹) = ((πΉβ€˜(𝑋 + 1)) βˆ’ (πΉβ€˜π‘‹)))

Proof of Theorem fwddifval
Dummy variables π‘₯ 𝑦 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-fwddif 35432 . . . 4 β–³ = (𝑓 ∈ (β„‚ ↑pm β„‚) ↦ (π‘₯ ∈ {𝑦 ∈ dom 𝑓 ∣ (𝑦 + 1) ∈ dom 𝑓} ↦ ((π‘“β€˜(π‘₯ + 1)) βˆ’ (π‘“β€˜π‘₯))))
2 dmeq 5904 . . . . . 6 (𝑓 = 𝐹 β†’ dom 𝑓 = dom 𝐹)
32eleq2d 2818 . . . . . 6 (𝑓 = 𝐹 β†’ ((𝑦 + 1) ∈ dom 𝑓 ↔ (𝑦 + 1) ∈ dom 𝐹))
42, 3rabeqbidv 3448 . . . . 5 (𝑓 = 𝐹 β†’ {𝑦 ∈ dom 𝑓 ∣ (𝑦 + 1) ∈ dom 𝑓} = {𝑦 ∈ dom 𝐹 ∣ (𝑦 + 1) ∈ dom 𝐹})
5 fveq1 6891 . . . . . 6 (𝑓 = 𝐹 β†’ (π‘“β€˜(π‘₯ + 1)) = (πΉβ€˜(π‘₯ + 1)))
6 fveq1 6891 . . . . . 6 (𝑓 = 𝐹 β†’ (π‘“β€˜π‘₯) = (πΉβ€˜π‘₯))
75, 6oveq12d 7430 . . . . 5 (𝑓 = 𝐹 β†’ ((π‘“β€˜(π‘₯ + 1)) βˆ’ (π‘“β€˜π‘₯)) = ((πΉβ€˜(π‘₯ + 1)) βˆ’ (πΉβ€˜π‘₯)))
84, 7mpteq12dv 5240 . . . 4 (𝑓 = 𝐹 β†’ (π‘₯ ∈ {𝑦 ∈ dom 𝑓 ∣ (𝑦 + 1) ∈ dom 𝑓} ↦ ((π‘“β€˜(π‘₯ + 1)) βˆ’ (π‘“β€˜π‘₯))) = (π‘₯ ∈ {𝑦 ∈ dom 𝐹 ∣ (𝑦 + 1) ∈ dom 𝐹} ↦ ((πΉβ€˜(π‘₯ + 1)) βˆ’ (πΉβ€˜π‘₯))))
9 fwddifval.2 . . . . 5 (πœ‘ β†’ 𝐹:π΄βŸΆβ„‚)
10 fwddifval.1 . . . . 5 (πœ‘ β†’ 𝐴 βŠ† β„‚)
11 cnex 11194 . . . . . 6 β„‚ ∈ V
12 elpm2r 8842 . . . . . 6 (((β„‚ ∈ V ∧ β„‚ ∈ V) ∧ (𝐹:π΄βŸΆβ„‚ ∧ 𝐴 βŠ† β„‚)) β†’ 𝐹 ∈ (β„‚ ↑pm β„‚))
1311, 11, 12mpanl12 699 . . . . 5 ((𝐹:π΄βŸΆβ„‚ ∧ 𝐴 βŠ† β„‚) β†’ 𝐹 ∈ (β„‚ ↑pm β„‚))
149, 10, 13syl2anc 583 . . . 4 (πœ‘ β†’ 𝐹 ∈ (β„‚ ↑pm β„‚))
159fdmd 6729 . . . . . 6 (πœ‘ β†’ dom 𝐹 = 𝐴)
1611a1i 11 . . . . . . 7 (πœ‘ β†’ β„‚ ∈ V)
1716, 10ssexd 5325 . . . . . 6 (πœ‘ β†’ 𝐴 ∈ V)
1815, 17eqeltrd 2832 . . . . 5 (πœ‘ β†’ dom 𝐹 ∈ V)
19 rabexg 5332 . . . . 5 (dom 𝐹 ∈ V β†’ {𝑦 ∈ dom 𝐹 ∣ (𝑦 + 1) ∈ dom 𝐹} ∈ V)
20 mptexg 7226 . . . . 5 ({𝑦 ∈ dom 𝐹 ∣ (𝑦 + 1) ∈ dom 𝐹} ∈ V β†’ (π‘₯ ∈ {𝑦 ∈ dom 𝐹 ∣ (𝑦 + 1) ∈ dom 𝐹} ↦ ((πΉβ€˜(π‘₯ + 1)) βˆ’ (πΉβ€˜π‘₯))) ∈ V)
2118, 19, 203syl 18 . . . 4 (πœ‘ β†’ (π‘₯ ∈ {𝑦 ∈ dom 𝐹 ∣ (𝑦 + 1) ∈ dom 𝐹} ↦ ((πΉβ€˜(π‘₯ + 1)) βˆ’ (πΉβ€˜π‘₯))) ∈ V)
221, 8, 14, 21fvmptd3 7022 . . 3 (πœ‘ β†’ ( β–³ β€˜πΉ) = (π‘₯ ∈ {𝑦 ∈ dom 𝐹 ∣ (𝑦 + 1) ∈ dom 𝐹} ↦ ((πΉβ€˜(π‘₯ + 1)) βˆ’ (πΉβ€˜π‘₯))))
2315eleq2d 2818 . . . . 5 (πœ‘ β†’ ((𝑦 + 1) ∈ dom 𝐹 ↔ (𝑦 + 1) ∈ 𝐴))
2415, 23rabeqbidv 3448 . . . 4 (πœ‘ β†’ {𝑦 ∈ dom 𝐹 ∣ (𝑦 + 1) ∈ dom 𝐹} = {𝑦 ∈ 𝐴 ∣ (𝑦 + 1) ∈ 𝐴})
2524mpteq1d 5244 . . 3 (πœ‘ β†’ (π‘₯ ∈ {𝑦 ∈ dom 𝐹 ∣ (𝑦 + 1) ∈ dom 𝐹} ↦ ((πΉβ€˜(π‘₯ + 1)) βˆ’ (πΉβ€˜π‘₯))) = (π‘₯ ∈ {𝑦 ∈ 𝐴 ∣ (𝑦 + 1) ∈ 𝐴} ↦ ((πΉβ€˜(π‘₯ + 1)) βˆ’ (πΉβ€˜π‘₯))))
2622, 25eqtrd 2771 . 2 (πœ‘ β†’ ( β–³ β€˜πΉ) = (π‘₯ ∈ {𝑦 ∈ 𝐴 ∣ (𝑦 + 1) ∈ 𝐴} ↦ ((πΉβ€˜(π‘₯ + 1)) βˆ’ (πΉβ€˜π‘₯))))
27 fvoveq1 7435 . . . 4 (π‘₯ = 𝑋 β†’ (πΉβ€˜(π‘₯ + 1)) = (πΉβ€˜(𝑋 + 1)))
28 fveq2 6892 . . . 4 (π‘₯ = 𝑋 β†’ (πΉβ€˜π‘₯) = (πΉβ€˜π‘‹))
2927, 28oveq12d 7430 . . 3 (π‘₯ = 𝑋 β†’ ((πΉβ€˜(π‘₯ + 1)) βˆ’ (πΉβ€˜π‘₯)) = ((πΉβ€˜(𝑋 + 1)) βˆ’ (πΉβ€˜π‘‹)))
3029adantl 481 . 2 ((πœ‘ ∧ π‘₯ = 𝑋) β†’ ((πΉβ€˜(π‘₯ + 1)) βˆ’ (πΉβ€˜π‘₯)) = ((πΉβ€˜(𝑋 + 1)) βˆ’ (πΉβ€˜π‘‹)))
31 fwddifval.3 . . 3 (πœ‘ β†’ 𝑋 ∈ 𝐴)
32 fwddifval.4 . . 3 (πœ‘ β†’ (𝑋 + 1) ∈ 𝐴)
33 oveq1 7419 . . . . 5 (𝑦 = 𝑋 β†’ (𝑦 + 1) = (𝑋 + 1))
3433eleq1d 2817 . . . 4 (𝑦 = 𝑋 β†’ ((𝑦 + 1) ∈ 𝐴 ↔ (𝑋 + 1) ∈ 𝐴))
3534elrab 3684 . . 3 (𝑋 ∈ {𝑦 ∈ 𝐴 ∣ (𝑦 + 1) ∈ 𝐴} ↔ (𝑋 ∈ 𝐴 ∧ (𝑋 + 1) ∈ 𝐴))
3631, 32, 35sylanbrc 582 . 2 (πœ‘ β†’ 𝑋 ∈ {𝑦 ∈ 𝐴 ∣ (𝑦 + 1) ∈ 𝐴})
37 ovexd 7447 . 2 (πœ‘ β†’ ((πΉβ€˜(𝑋 + 1)) βˆ’ (πΉβ€˜π‘‹)) ∈ V)
3826, 30, 36, 37fvmptd 7006 1 (πœ‘ β†’ (( β–³ β€˜πΉ)β€˜π‘‹) = ((πΉβ€˜(𝑋 + 1)) βˆ’ (πΉβ€˜π‘‹)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 395   = wceq 1540   ∈ wcel 2105  {crab 3431  Vcvv 3473   βŠ† wss 3949   ↦ cmpt 5232  dom cdm 5677  βŸΆwf 6540  β€˜cfv 6544  (class class class)co 7412   ↑pm cpm 8824  β„‚cc 11111  1c1 11114   + caddc 11116   βˆ’ cmin 11449   β–³ cfwddif 35431
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7728  ax-cnex 11169
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-ov 7415  df-oprab 7416  df-mpo 7417  df-pm 8826  df-fwddif 35432
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator