Detailed syntax breakdown of Definition df-fxp
| Step | Hyp | Ref
| Expression |
| 1 | | cfxp 33128 |
. 2
class
FixPts |
| 2 | | vb |
. . 3
setvar 𝑏 |
| 3 | | va |
. . 3
setvar 𝑎 |
| 4 | | cvv 3455 |
. . 3
class
V |
| 5 | | vp |
. . . . . . . 8
setvar 𝑝 |
| 6 | 5 | cv 1539 |
. . . . . . 7
class 𝑝 |
| 7 | | vx |
. . . . . . . 8
setvar 𝑥 |
| 8 | 7 | cv 1539 |
. . . . . . 7
class 𝑥 |
| 9 | 3 | cv 1539 |
. . . . . . 7
class 𝑎 |
| 10 | 6, 8, 9 | co 7394 |
. . . . . 6
class (𝑝𝑎𝑥) |
| 11 | 10, 8 | wceq 1540 |
. . . . 5
wff (𝑝𝑎𝑥) = 𝑥 |
| 12 | 9 | cdm 5646 |
. . . . . 6
class dom 𝑎 |
| 13 | 12 | cdm 5646 |
. . . . 5
class dom dom
𝑎 |
| 14 | 11, 5, 13 | wral 3046 |
. . . 4
wff
∀𝑝 ∈ dom
dom 𝑎(𝑝𝑎𝑥) = 𝑥 |
| 15 | 2 | cv 1539 |
. . . 4
class 𝑏 |
| 16 | 14, 7, 15 | crab 3411 |
. . 3
class {𝑥 ∈ 𝑏 ∣ ∀𝑝 ∈ dom dom 𝑎(𝑝𝑎𝑥) = 𝑥} |
| 17 | 2, 3, 4, 4, 16 | cmpo 7396 |
. 2
class (𝑏 ∈ V, 𝑎 ∈ V ↦ {𝑥 ∈ 𝑏 ∣ ∀𝑝 ∈ dom dom 𝑎(𝑝𝑎𝑥) = 𝑥}) |
| 18 | 1, 17 | wceq 1540 |
1
wff FixPts =
(𝑏 ∈ V, 𝑎 ∈ V ↦ {𝑥 ∈ 𝑏 ∣ ∀𝑝 ∈ dom dom 𝑎(𝑝𝑎𝑥) = 𝑥}) |