Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fxpval Structured version   Visualization version   GIF version

Theorem fxpval 33122
Description: Value of the set of fixed points. (Contributed by Thierry Arnoux, 18-Nov-2025.)
Hypotheses
Ref Expression
fxpval.1 (𝜑𝐵𝑉)
fxpval.2 (𝜑𝐴𝑊)
Assertion
Ref Expression
fxpval (𝜑 → (𝐵FixPts𝐴) = {𝑥𝐵 ∣ ∀𝑝 ∈ dom dom 𝐴(𝑝𝐴𝑥) = 𝑥})
Distinct variable groups:   𝐴,𝑝,𝑥   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑥,𝑝)   𝐵(𝑝)   𝑉(𝑥,𝑝)   𝑊(𝑥,𝑝)

Proof of Theorem fxpval
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-fxp 33121 . . 3 FixPts = (𝑏 ∈ V, 𝑎 ∈ V ↦ {𝑥𝑏 ∣ ∀𝑝 ∈ dom dom 𝑎(𝑝𝑎𝑥) = 𝑥})
21a1i 11 . 2 (𝜑 → FixPts = (𝑏 ∈ V, 𝑎 ∈ V ↦ {𝑥𝑏 ∣ ∀𝑝 ∈ dom dom 𝑎(𝑝𝑎𝑥) = 𝑥}))
3 simpl 482 . . . 4 ((𝑏 = 𝐵𝑎 = 𝐴) → 𝑏 = 𝐵)
4 dmeq 5867 . . . . . . 7 (𝑎 = 𝐴 → dom 𝑎 = dom 𝐴)
54dmeqd 5869 . . . . . 6 (𝑎 = 𝐴 → dom dom 𝑎 = dom dom 𝐴)
6 oveq 7393 . . . . . . 7 (𝑎 = 𝐴 → (𝑝𝑎𝑥) = (𝑝𝐴𝑥))
76eqeq1d 2731 . . . . . 6 (𝑎 = 𝐴 → ((𝑝𝑎𝑥) = 𝑥 ↔ (𝑝𝐴𝑥) = 𝑥))
85, 7raleqbidv 3319 . . . . 5 (𝑎 = 𝐴 → (∀𝑝 ∈ dom dom 𝑎(𝑝𝑎𝑥) = 𝑥 ↔ ∀𝑝 ∈ dom dom 𝐴(𝑝𝐴𝑥) = 𝑥))
98adantl 481 . . . 4 ((𝑏 = 𝐵𝑎 = 𝐴) → (∀𝑝 ∈ dom dom 𝑎(𝑝𝑎𝑥) = 𝑥 ↔ ∀𝑝 ∈ dom dom 𝐴(𝑝𝐴𝑥) = 𝑥))
103, 9rabeqbidv 3424 . . 3 ((𝑏 = 𝐵𝑎 = 𝐴) → {𝑥𝑏 ∣ ∀𝑝 ∈ dom dom 𝑎(𝑝𝑎𝑥) = 𝑥} = {𝑥𝐵 ∣ ∀𝑝 ∈ dom dom 𝐴(𝑝𝐴𝑥) = 𝑥})
1110adantl 481 . 2 ((𝜑 ∧ (𝑏 = 𝐵𝑎 = 𝐴)) → {𝑥𝑏 ∣ ∀𝑝 ∈ dom dom 𝑎(𝑝𝑎𝑥) = 𝑥} = {𝑥𝐵 ∣ ∀𝑝 ∈ dom dom 𝐴(𝑝𝐴𝑥) = 𝑥})
12 fxpval.1 . . 3 (𝜑𝐵𝑉)
1312elexd 3471 . 2 (𝜑𝐵 ∈ V)
14 fxpval.2 . . 3 (𝜑𝐴𝑊)
1514elexd 3471 . 2 (𝜑𝐴 ∈ V)
16 eqid 2729 . . 3 {𝑥𝐵 ∣ ∀𝑝 ∈ dom dom 𝐴(𝑝𝐴𝑥) = 𝑥} = {𝑥𝐵 ∣ ∀𝑝 ∈ dom dom 𝐴(𝑝𝐴𝑥) = 𝑥}
1716, 12rabexd 5295 . 2 (𝜑 → {𝑥𝐵 ∣ ∀𝑝 ∈ dom dom 𝐴(𝑝𝐴𝑥) = 𝑥} ∈ V)
182, 11, 13, 15, 17ovmpod 7541 1 (𝜑 → (𝐵FixPts𝐴) = {𝑥𝐵 ∣ ∀𝑝 ∈ dom dom 𝐴(𝑝𝐴𝑥) = 𝑥})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  {crab 3405  Vcvv 3447  dom cdm 5638  (class class class)co 7387  cmpo 7389  FixPtscfxp 33120
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-iota 6464  df-fun 6513  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-fxp 33121
This theorem is referenced by:  fxpss  33123  fxpgaval  33124
  Copyright terms: Public domain W3C validator