| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fxpval | Structured version Visualization version GIF version | ||
| Description: Value of the set of fixed points. (Contributed by Thierry Arnoux, 18-Nov-2025.) |
| Ref | Expression |
|---|---|
| fxpval.1 | ⊢ (𝜑 → 𝐵 ∈ 𝑉) |
| fxpval.2 | ⊢ (𝜑 → 𝐴 ∈ 𝑊) |
| Ref | Expression |
|---|---|
| fxpval | ⊢ (𝜑 → (𝐵FixPts𝐴) = {𝑥 ∈ 𝐵 ∣ ∀𝑝 ∈ dom dom 𝐴(𝑝𝐴𝑥) = 𝑥}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-fxp 33121 | . . 3 ⊢ FixPts = (𝑏 ∈ V, 𝑎 ∈ V ↦ {𝑥 ∈ 𝑏 ∣ ∀𝑝 ∈ dom dom 𝑎(𝑝𝑎𝑥) = 𝑥}) | |
| 2 | 1 | a1i 11 | . 2 ⊢ (𝜑 → FixPts = (𝑏 ∈ V, 𝑎 ∈ V ↦ {𝑥 ∈ 𝑏 ∣ ∀𝑝 ∈ dom dom 𝑎(𝑝𝑎𝑥) = 𝑥})) |
| 3 | simpl 482 | . . . 4 ⊢ ((𝑏 = 𝐵 ∧ 𝑎 = 𝐴) → 𝑏 = 𝐵) | |
| 4 | dmeq 5867 | . . . . . . 7 ⊢ (𝑎 = 𝐴 → dom 𝑎 = dom 𝐴) | |
| 5 | 4 | dmeqd 5869 | . . . . . 6 ⊢ (𝑎 = 𝐴 → dom dom 𝑎 = dom dom 𝐴) |
| 6 | oveq 7393 | . . . . . . 7 ⊢ (𝑎 = 𝐴 → (𝑝𝑎𝑥) = (𝑝𝐴𝑥)) | |
| 7 | 6 | eqeq1d 2731 | . . . . . 6 ⊢ (𝑎 = 𝐴 → ((𝑝𝑎𝑥) = 𝑥 ↔ (𝑝𝐴𝑥) = 𝑥)) |
| 8 | 5, 7 | raleqbidv 3319 | . . . . 5 ⊢ (𝑎 = 𝐴 → (∀𝑝 ∈ dom dom 𝑎(𝑝𝑎𝑥) = 𝑥 ↔ ∀𝑝 ∈ dom dom 𝐴(𝑝𝐴𝑥) = 𝑥)) |
| 9 | 8 | adantl 481 | . . . 4 ⊢ ((𝑏 = 𝐵 ∧ 𝑎 = 𝐴) → (∀𝑝 ∈ dom dom 𝑎(𝑝𝑎𝑥) = 𝑥 ↔ ∀𝑝 ∈ dom dom 𝐴(𝑝𝐴𝑥) = 𝑥)) |
| 10 | 3, 9 | rabeqbidv 3424 | . . 3 ⊢ ((𝑏 = 𝐵 ∧ 𝑎 = 𝐴) → {𝑥 ∈ 𝑏 ∣ ∀𝑝 ∈ dom dom 𝑎(𝑝𝑎𝑥) = 𝑥} = {𝑥 ∈ 𝐵 ∣ ∀𝑝 ∈ dom dom 𝐴(𝑝𝐴𝑥) = 𝑥}) |
| 11 | 10 | adantl 481 | . 2 ⊢ ((𝜑 ∧ (𝑏 = 𝐵 ∧ 𝑎 = 𝐴)) → {𝑥 ∈ 𝑏 ∣ ∀𝑝 ∈ dom dom 𝑎(𝑝𝑎𝑥) = 𝑥} = {𝑥 ∈ 𝐵 ∣ ∀𝑝 ∈ dom dom 𝐴(𝑝𝐴𝑥) = 𝑥}) |
| 12 | fxpval.1 | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑉) | |
| 13 | 12 | elexd 3471 | . 2 ⊢ (𝜑 → 𝐵 ∈ V) |
| 14 | fxpval.2 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑊) | |
| 15 | 14 | elexd 3471 | . 2 ⊢ (𝜑 → 𝐴 ∈ V) |
| 16 | eqid 2729 | . . 3 ⊢ {𝑥 ∈ 𝐵 ∣ ∀𝑝 ∈ dom dom 𝐴(𝑝𝐴𝑥) = 𝑥} = {𝑥 ∈ 𝐵 ∣ ∀𝑝 ∈ dom dom 𝐴(𝑝𝐴𝑥) = 𝑥} | |
| 17 | 16, 12 | rabexd 5295 | . 2 ⊢ (𝜑 → {𝑥 ∈ 𝐵 ∣ ∀𝑝 ∈ dom dom 𝐴(𝑝𝐴𝑥) = 𝑥} ∈ V) |
| 18 | 2, 11, 13, 15, 17 | ovmpod 7541 | 1 ⊢ (𝜑 → (𝐵FixPts𝐴) = {𝑥 ∈ 𝐵 ∣ ∀𝑝 ∈ dom dom 𝐴(𝑝𝐴𝑥) = 𝑥}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 {crab 3405 Vcvv 3447 dom cdm 5638 (class class class)co 7387 ∈ cmpo 7389 FixPtscfxp 33120 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-iota 6464 df-fun 6513 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-fxp 33121 |
| This theorem is referenced by: fxpss 33123 fxpgaval 33124 |
| Copyright terms: Public domain | W3C validator |