| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fxpval | Structured version Visualization version GIF version | ||
| Description: Value of the set of fixed points. (Contributed by Thierry Arnoux, 18-Nov-2025.) |
| Ref | Expression |
|---|---|
| fxpval.1 | ⊢ (𝜑 → 𝐵 ∈ 𝑉) |
| fxpval.2 | ⊢ (𝜑 → 𝐴 ∈ 𝑊) |
| Ref | Expression |
|---|---|
| fxpval | ⊢ (𝜑 → (𝐵FixPts𝐴) = {𝑥 ∈ 𝐵 ∣ ∀𝑝 ∈ dom dom 𝐴(𝑝𝐴𝑥) = 𝑥}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-fxp 33140 | . . 3 ⊢ FixPts = (𝑏 ∈ V, 𝑎 ∈ V ↦ {𝑥 ∈ 𝑏 ∣ ∀𝑝 ∈ dom dom 𝑎(𝑝𝑎𝑥) = 𝑥}) | |
| 2 | 1 | a1i 11 | . 2 ⊢ (𝜑 → FixPts = (𝑏 ∈ V, 𝑎 ∈ V ↦ {𝑥 ∈ 𝑏 ∣ ∀𝑝 ∈ dom dom 𝑎(𝑝𝑎𝑥) = 𝑥})) |
| 3 | simpl 482 | . . . 4 ⊢ ((𝑏 = 𝐵 ∧ 𝑎 = 𝐴) → 𝑏 = 𝐵) | |
| 4 | dmeq 5847 | . . . . . . 7 ⊢ (𝑎 = 𝐴 → dom 𝑎 = dom 𝐴) | |
| 5 | 4 | dmeqd 5849 | . . . . . 6 ⊢ (𝑎 = 𝐴 → dom dom 𝑎 = dom dom 𝐴) |
| 6 | oveq 7358 | . . . . . . 7 ⊢ (𝑎 = 𝐴 → (𝑝𝑎𝑥) = (𝑝𝐴𝑥)) | |
| 7 | 6 | eqeq1d 2735 | . . . . . 6 ⊢ (𝑎 = 𝐴 → ((𝑝𝑎𝑥) = 𝑥 ↔ (𝑝𝐴𝑥) = 𝑥)) |
| 8 | 5, 7 | raleqbidv 3313 | . . . . 5 ⊢ (𝑎 = 𝐴 → (∀𝑝 ∈ dom dom 𝑎(𝑝𝑎𝑥) = 𝑥 ↔ ∀𝑝 ∈ dom dom 𝐴(𝑝𝐴𝑥) = 𝑥)) |
| 9 | 8 | adantl 481 | . . . 4 ⊢ ((𝑏 = 𝐵 ∧ 𝑎 = 𝐴) → (∀𝑝 ∈ dom dom 𝑎(𝑝𝑎𝑥) = 𝑥 ↔ ∀𝑝 ∈ dom dom 𝐴(𝑝𝐴𝑥) = 𝑥)) |
| 10 | 3, 9 | rabeqbidv 3414 | . . 3 ⊢ ((𝑏 = 𝐵 ∧ 𝑎 = 𝐴) → {𝑥 ∈ 𝑏 ∣ ∀𝑝 ∈ dom dom 𝑎(𝑝𝑎𝑥) = 𝑥} = {𝑥 ∈ 𝐵 ∣ ∀𝑝 ∈ dom dom 𝐴(𝑝𝐴𝑥) = 𝑥}) |
| 11 | 10 | adantl 481 | . 2 ⊢ ((𝜑 ∧ (𝑏 = 𝐵 ∧ 𝑎 = 𝐴)) → {𝑥 ∈ 𝑏 ∣ ∀𝑝 ∈ dom dom 𝑎(𝑝𝑎𝑥) = 𝑥} = {𝑥 ∈ 𝐵 ∣ ∀𝑝 ∈ dom dom 𝐴(𝑝𝐴𝑥) = 𝑥}) |
| 12 | fxpval.1 | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑉) | |
| 13 | 12 | elexd 3461 | . 2 ⊢ (𝜑 → 𝐵 ∈ V) |
| 14 | fxpval.2 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑊) | |
| 15 | 14 | elexd 3461 | . 2 ⊢ (𝜑 → 𝐴 ∈ V) |
| 16 | eqid 2733 | . . 3 ⊢ {𝑥 ∈ 𝐵 ∣ ∀𝑝 ∈ dom dom 𝐴(𝑝𝐴𝑥) = 𝑥} = {𝑥 ∈ 𝐵 ∣ ∀𝑝 ∈ dom dom 𝐴(𝑝𝐴𝑥) = 𝑥} | |
| 17 | 16, 12 | rabexd 5280 | . 2 ⊢ (𝜑 → {𝑥 ∈ 𝐵 ∣ ∀𝑝 ∈ dom dom 𝐴(𝑝𝐴𝑥) = 𝑥} ∈ V) |
| 18 | 2, 11, 13, 15, 17 | ovmpod 7504 | 1 ⊢ (𝜑 → (𝐵FixPts𝐴) = {𝑥 ∈ 𝐵 ∣ ∀𝑝 ∈ dom dom 𝐴(𝑝𝐴𝑥) = 𝑥}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ∀wral 3048 {crab 3396 Vcvv 3437 dom cdm 5619 (class class class)co 7352 ∈ cmpo 7354 FixPtscfxp 33139 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-iota 6442 df-fun 6488 df-fv 6494 df-ov 7355 df-oprab 7356 df-mpo 7357 df-fxp 33140 |
| This theorem is referenced by: fxpss 33142 fxpgaval 33143 |
| Copyright terms: Public domain | W3C validator |