Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fxpval Structured version   Visualization version   GIF version

Theorem fxpval 33129
Description: Value of the set of fixed points. (Contributed by Thierry Arnoux, 18-Nov-2025.)
Hypotheses
Ref Expression
fxpval.1 (𝜑𝐵𝑉)
fxpval.2 (𝜑𝐴𝑊)
Assertion
Ref Expression
fxpval (𝜑 → (𝐵FixPts𝐴) = {𝑥𝐵 ∣ ∀𝑝 ∈ dom dom 𝐴(𝑝𝐴𝑥) = 𝑥})
Distinct variable groups:   𝐴,𝑝,𝑥   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑥,𝑝)   𝐵(𝑝)   𝑉(𝑥,𝑝)   𝑊(𝑥,𝑝)

Proof of Theorem fxpval
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-fxp 33128 . . 3 FixPts = (𝑏 ∈ V, 𝑎 ∈ V ↦ {𝑥𝑏 ∣ ∀𝑝 ∈ dom dom 𝑎(𝑝𝑎𝑥) = 𝑥})
21a1i 11 . 2 (𝜑 → FixPts = (𝑏 ∈ V, 𝑎 ∈ V ↦ {𝑥𝑏 ∣ ∀𝑝 ∈ dom dom 𝑎(𝑝𝑎𝑥) = 𝑥}))
3 simpl 482 . . . 4 ((𝑏 = 𝐵𝑎 = 𝐴) → 𝑏 = 𝐵)
4 dmeq 5843 . . . . . . 7 (𝑎 = 𝐴 → dom 𝑎 = dom 𝐴)
54dmeqd 5845 . . . . . 6 (𝑎 = 𝐴 → dom dom 𝑎 = dom dom 𝐴)
6 oveq 7352 . . . . . . 7 (𝑎 = 𝐴 → (𝑝𝑎𝑥) = (𝑝𝐴𝑥))
76eqeq1d 2733 . . . . . 6 (𝑎 = 𝐴 → ((𝑝𝑎𝑥) = 𝑥 ↔ (𝑝𝐴𝑥) = 𝑥))
85, 7raleqbidv 3312 . . . . 5 (𝑎 = 𝐴 → (∀𝑝 ∈ dom dom 𝑎(𝑝𝑎𝑥) = 𝑥 ↔ ∀𝑝 ∈ dom dom 𝐴(𝑝𝐴𝑥) = 𝑥))
98adantl 481 . . . 4 ((𝑏 = 𝐵𝑎 = 𝐴) → (∀𝑝 ∈ dom dom 𝑎(𝑝𝑎𝑥) = 𝑥 ↔ ∀𝑝 ∈ dom dom 𝐴(𝑝𝐴𝑥) = 𝑥))
103, 9rabeqbidv 3413 . . 3 ((𝑏 = 𝐵𝑎 = 𝐴) → {𝑥𝑏 ∣ ∀𝑝 ∈ dom dom 𝑎(𝑝𝑎𝑥) = 𝑥} = {𝑥𝐵 ∣ ∀𝑝 ∈ dom dom 𝐴(𝑝𝐴𝑥) = 𝑥})
1110adantl 481 . 2 ((𝜑 ∧ (𝑏 = 𝐵𝑎 = 𝐴)) → {𝑥𝑏 ∣ ∀𝑝 ∈ dom dom 𝑎(𝑝𝑎𝑥) = 𝑥} = {𝑥𝐵 ∣ ∀𝑝 ∈ dom dom 𝐴(𝑝𝐴𝑥) = 𝑥})
12 fxpval.1 . . 3 (𝜑𝐵𝑉)
1312elexd 3460 . 2 (𝜑𝐵 ∈ V)
14 fxpval.2 . . 3 (𝜑𝐴𝑊)
1514elexd 3460 . 2 (𝜑𝐴 ∈ V)
16 eqid 2731 . . 3 {𝑥𝐵 ∣ ∀𝑝 ∈ dom dom 𝐴(𝑝𝐴𝑥) = 𝑥} = {𝑥𝐵 ∣ ∀𝑝 ∈ dom dom 𝐴(𝑝𝐴𝑥) = 𝑥}
1716, 12rabexd 5278 . 2 (𝜑 → {𝑥𝐵 ∣ ∀𝑝 ∈ dom dom 𝐴(𝑝𝐴𝑥) = 𝑥} ∈ V)
182, 11, 13, 15, 17ovmpod 7498 1 (𝜑 → (𝐵FixPts𝐴) = {𝑥𝐵 ∣ ∀𝑝 ∈ dom dom 𝐴(𝑝𝐴𝑥) = 𝑥})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wral 3047  {crab 3395  Vcvv 3436  dom cdm 5616  (class class class)co 7346  cmpo 7348  FixPtscfxp 33127
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3742  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-iota 6437  df-fun 6483  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-fxp 33128
This theorem is referenced by:  fxpss  33130  fxpgaval  33131
  Copyright terms: Public domain W3C validator