Detailed syntax breakdown of Definition df-fz
| Step | Hyp | Ref
| Expression |
| 1 | | cfz 13547 |
. 2
class
... |
| 2 | | vm |
. . 3
setvar 𝑚 |
| 3 | | vn |
. . 3
setvar 𝑛 |
| 4 | | cz 12613 |
. . 3
class
ℤ |
| 5 | 2 | cv 1539 |
. . . . . 6
class 𝑚 |
| 6 | | vk |
. . . . . . 7
setvar 𝑘 |
| 7 | 6 | cv 1539 |
. . . . . 6
class 𝑘 |
| 8 | | cle 11296 |
. . . . . 6
class
≤ |
| 9 | 5, 7, 8 | wbr 5143 |
. . . . 5
wff 𝑚 ≤ 𝑘 |
| 10 | 3 | cv 1539 |
. . . . . 6
class 𝑛 |
| 11 | 7, 10, 8 | wbr 5143 |
. . . . 5
wff 𝑘 ≤ 𝑛 |
| 12 | 9, 11 | wa 395 |
. . . 4
wff (𝑚 ≤ 𝑘 ∧ 𝑘 ≤ 𝑛) |
| 13 | 12, 6, 4 | crab 3436 |
. . 3
class {𝑘 ∈ ℤ ∣ (𝑚 ≤ 𝑘 ∧ 𝑘 ≤ 𝑛)} |
| 14 | 2, 3, 4, 4, 13 | cmpo 7433 |
. 2
class (𝑚 ∈ ℤ, 𝑛 ∈ ℤ ↦ {𝑘 ∈ ℤ ∣ (𝑚 ≤ 𝑘 ∧ 𝑘 ≤ 𝑛)}) |
| 15 | 1, 14 | wceq 1540 |
1
wff ... =
(𝑚 ∈ ℤ, 𝑛 ∈ ℤ ↦ {𝑘 ∈ ℤ ∣ (𝑚 ≤ 𝑘 ∧ 𝑘 ≤ 𝑛)}) |