![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-fz | Structured version Visualization version GIF version |
Description: Define an operation that produces a finite set of sequential integers. Read "𝑀...𝑁 " as "the set of integers from 𝑀 to 𝑁 inclusive". See fzval 13492 for its value and additional comments. (Contributed by NM, 6-Sep-2005.) |
Ref | Expression |
---|---|
df-fz | ⊢ ... = (𝑚 ∈ ℤ, 𝑛 ∈ ℤ ↦ {𝑘 ∈ ℤ ∣ (𝑚 ≤ 𝑘 ∧ 𝑘 ≤ 𝑛)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cfz 13490 | . 2 class ... | |
2 | vm | . . 3 setvar 𝑚 | |
3 | vn | . . 3 setvar 𝑛 | |
4 | cz 12564 | . . 3 class ℤ | |
5 | 2 | cv 1538 | . . . . . 6 class 𝑚 |
6 | vk | . . . . . . 7 setvar 𝑘 | |
7 | 6 | cv 1538 | . . . . . 6 class 𝑘 |
8 | cle 11255 | . . . . . 6 class ≤ | |
9 | 5, 7, 8 | wbr 5149 | . . . . 5 wff 𝑚 ≤ 𝑘 |
10 | 3 | cv 1538 | . . . . . 6 class 𝑛 |
11 | 7, 10, 8 | wbr 5149 | . . . . 5 wff 𝑘 ≤ 𝑛 |
12 | 9, 11 | wa 394 | . . . 4 wff (𝑚 ≤ 𝑘 ∧ 𝑘 ≤ 𝑛) |
13 | 12, 6, 4 | crab 3430 | . . 3 class {𝑘 ∈ ℤ ∣ (𝑚 ≤ 𝑘 ∧ 𝑘 ≤ 𝑛)} |
14 | 2, 3, 4, 4, 13 | cmpo 7415 | . 2 class (𝑚 ∈ ℤ, 𝑛 ∈ ℤ ↦ {𝑘 ∈ ℤ ∣ (𝑚 ≤ 𝑘 ∧ 𝑘 ≤ 𝑛)}) |
15 | 1, 14 | wceq 1539 | 1 wff ... = (𝑚 ∈ ℤ, 𝑛 ∈ ℤ ↦ {𝑘 ∈ ℤ ∣ (𝑚 ≤ 𝑘 ∧ 𝑘 ≤ 𝑛)}) |
Colors of variables: wff setvar class |
This definition is referenced by: fzval 13492 fzf 13494 |
Copyright terms: Public domain | W3C validator |