![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fzf | Structured version Visualization version GIF version |
Description: Establish the domain and codomain of the finite integer sequence function. (Contributed by Scott Fenton, 8-Aug-2013.) (Revised by Mario Carneiro, 16-Nov-2013.) |
Ref | Expression |
---|---|
fzf | ⊢ ...:(ℤ × ℤ)⟶𝒫 ℤ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zex 12620 | . . . 4 ⊢ ℤ ∈ V | |
2 | ssrab2 4090 | . . . 4 ⊢ {𝑘 ∈ ℤ ∣ (𝑚 ≤ 𝑘 ∧ 𝑘 ≤ 𝑛)} ⊆ ℤ | |
3 | 1, 2 | elpwi2 5341 | . . 3 ⊢ {𝑘 ∈ ℤ ∣ (𝑚 ≤ 𝑘 ∧ 𝑘 ≤ 𝑛)} ∈ 𝒫 ℤ |
4 | 3 | rgen2w 3064 | . 2 ⊢ ∀𝑚 ∈ ℤ ∀𝑛 ∈ ℤ {𝑘 ∈ ℤ ∣ (𝑚 ≤ 𝑘 ∧ 𝑘 ≤ 𝑛)} ∈ 𝒫 ℤ |
5 | df-fz 13545 | . . 3 ⊢ ... = (𝑚 ∈ ℤ, 𝑛 ∈ ℤ ↦ {𝑘 ∈ ℤ ∣ (𝑚 ≤ 𝑘 ∧ 𝑘 ≤ 𝑛)}) | |
6 | 5 | fmpo 8092 | . 2 ⊢ (∀𝑚 ∈ ℤ ∀𝑛 ∈ ℤ {𝑘 ∈ ℤ ∣ (𝑚 ≤ 𝑘 ∧ 𝑘 ≤ 𝑛)} ∈ 𝒫 ℤ ↔ ...:(ℤ × ℤ)⟶𝒫 ℤ) |
7 | 4, 6 | mpbi 230 | 1 ⊢ ...:(ℤ × ℤ)⟶𝒫 ℤ |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 ∈ wcel 2106 ∀wral 3059 {crab 3433 Vcvv 3478 𝒫 cpw 4605 class class class wbr 5148 × cxp 5687 ⟶wf 6559 ≤ cle 11294 ℤcz 12611 ...cfz 13544 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-fv 6571 df-ov 7434 df-oprab 7435 df-mpo 7436 df-1st 8013 df-2nd 8014 df-neg 11493 df-z 12612 df-fz 13545 |
This theorem is referenced by: elfz2 13551 fz0 13576 fzoval 13697 gsumval2a 18711 gsumval3 19940 topnfbey 30498 |
Copyright terms: Public domain | W3C validator |