![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fzval | Structured version Visualization version GIF version |
Description: The value of a finite set of sequential integers. E.g., 2...5 means the set {2, 3, 4, 5}. A special case of this definition (starting at 1) appears as Definition 11-2.1 of [Gleason] p. 141, where ℕk means our 1...𝑘; he calls these sets segments of the integers. (Contributed by NM, 6-Sep-2005.) (Revised by Mario Carneiro, 3-Nov-2013.) |
Ref | Expression |
---|---|
fzval | ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀...𝑁) = {𝑘 ∈ ℤ ∣ (𝑀 ≤ 𝑘 ∧ 𝑘 ≤ 𝑁)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq1 5150 | . . . 4 ⊢ (𝑚 = 𝑀 → (𝑚 ≤ 𝑘 ↔ 𝑀 ≤ 𝑘)) | |
2 | 1 | anbi1d 630 | . . 3 ⊢ (𝑚 = 𝑀 → ((𝑚 ≤ 𝑘 ∧ 𝑘 ≤ 𝑛) ↔ (𝑀 ≤ 𝑘 ∧ 𝑘 ≤ 𝑛))) |
3 | 2 | rabbidv 3440 | . 2 ⊢ (𝑚 = 𝑀 → {𝑘 ∈ ℤ ∣ (𝑚 ≤ 𝑘 ∧ 𝑘 ≤ 𝑛)} = {𝑘 ∈ ℤ ∣ (𝑀 ≤ 𝑘 ∧ 𝑘 ≤ 𝑛)}) |
4 | breq2 5151 | . . . 4 ⊢ (𝑛 = 𝑁 → (𝑘 ≤ 𝑛 ↔ 𝑘 ≤ 𝑁)) | |
5 | 4 | anbi2d 629 | . . 3 ⊢ (𝑛 = 𝑁 → ((𝑀 ≤ 𝑘 ∧ 𝑘 ≤ 𝑛) ↔ (𝑀 ≤ 𝑘 ∧ 𝑘 ≤ 𝑁))) |
6 | 5 | rabbidv 3440 | . 2 ⊢ (𝑛 = 𝑁 → {𝑘 ∈ ℤ ∣ (𝑀 ≤ 𝑘 ∧ 𝑘 ≤ 𝑛)} = {𝑘 ∈ ℤ ∣ (𝑀 ≤ 𝑘 ∧ 𝑘 ≤ 𝑁)}) |
7 | df-fz 13481 | . 2 ⊢ ... = (𝑚 ∈ ℤ, 𝑛 ∈ ℤ ↦ {𝑘 ∈ ℤ ∣ (𝑚 ≤ 𝑘 ∧ 𝑘 ≤ 𝑛)}) | |
8 | zex 12563 | . . 3 ⊢ ℤ ∈ V | |
9 | 8 | rabex 5331 | . 2 ⊢ {𝑘 ∈ ℤ ∣ (𝑀 ≤ 𝑘 ∧ 𝑘 ≤ 𝑁)} ∈ V |
10 | 3, 6, 7, 9 | ovmpo 7564 | 1 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀...𝑁) = {𝑘 ∈ ℤ ∣ (𝑀 ≤ 𝑘 ∧ 𝑘 ≤ 𝑁)}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 {crab 3432 class class class wbr 5147 (class class class)co 7405 ≤ cle 11245 ℤcz 12554 ...cfz 13480 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pr 5426 ax-cnex 11162 ax-resscn 11163 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-sbc 3777 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-iota 6492 df-fun 6542 df-fv 6548 df-ov 7408 df-oprab 7409 df-mpo 7410 df-neg 11443 df-z 12555 df-fz 13481 |
This theorem is referenced by: fzval2 13483 elfz1 13485 |
Copyright terms: Public domain | W3C validator |