MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fzval Structured version   Visualization version   GIF version

Theorem fzval 13430
Description: The value of a finite set of sequential integers. E.g., 2...5 means the set {2, 3, 4, 5}. A special case of this definition (starting at 1) appears as Definition 11-2.1 of [Gleason] p. 141, where k means our 1...𝑘; he calls these sets segments of the integers. (Contributed by NM, 6-Sep-2005.) (Revised by Mario Carneiro, 3-Nov-2013.)
Assertion
Ref Expression
fzval ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀...𝑁) = {𝑘 ∈ ℤ ∣ (𝑀𝑘𝑘𝑁)})
Distinct variable groups:   𝑘,𝑀   𝑘,𝑁

Proof of Theorem fzval
Dummy variables 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq1 5098 . . . 4 (𝑚 = 𝑀 → (𝑚𝑘𝑀𝑘))
21anbi1d 631 . . 3 (𝑚 = 𝑀 → ((𝑚𝑘𝑘𝑛) ↔ (𝑀𝑘𝑘𝑛)))
32rabbidv 3404 . 2 (𝑚 = 𝑀 → {𝑘 ∈ ℤ ∣ (𝑚𝑘𝑘𝑛)} = {𝑘 ∈ ℤ ∣ (𝑀𝑘𝑘𝑛)})
4 breq2 5099 . . . 4 (𝑛 = 𝑁 → (𝑘𝑛𝑘𝑁))
54anbi2d 630 . . 3 (𝑛 = 𝑁 → ((𝑀𝑘𝑘𝑛) ↔ (𝑀𝑘𝑘𝑁)))
65rabbidv 3404 . 2 (𝑛 = 𝑁 → {𝑘 ∈ ℤ ∣ (𝑀𝑘𝑘𝑛)} = {𝑘 ∈ ℤ ∣ (𝑀𝑘𝑘𝑁)})
7 df-fz 13429 . 2 ... = (𝑚 ∈ ℤ, 𝑛 ∈ ℤ ↦ {𝑘 ∈ ℤ ∣ (𝑚𝑘𝑘𝑛)})
8 zex 12498 . . 3 ℤ ∈ V
98rabex 5281 . 2 {𝑘 ∈ ℤ ∣ (𝑀𝑘𝑘𝑁)} ∈ V
103, 6, 7, 9ovmpo 7513 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀...𝑁) = {𝑘 ∈ ℤ ∣ (𝑀𝑘𝑘𝑁)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {crab 3396   class class class wbr 5095  (class class class)co 7353  cle 11169  cz 12489  ...cfz 13428
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374  ax-cnex 11084  ax-resscn 11085
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-sbc 3745  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-iota 6442  df-fun 6488  df-fv 6494  df-ov 7356  df-oprab 7357  df-mpo 7358  df-neg 11368  df-z 12490  df-fz 13429
This theorem is referenced by:  fzval2  13431  elfz1  13433
  Copyright terms: Public domain W3C validator