MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fzval Structured version   Visualization version   GIF version

Theorem fzval 13518
Description: The value of a finite set of sequential integers. E.g., 2...5 means the set {2, 3, 4, 5}. A special case of this definition (starting at 1) appears as Definition 11-2.1 of [Gleason] p. 141, where k means our 1...𝑘; he calls these sets segments of the integers. (Contributed by NM, 6-Sep-2005.) (Revised by Mario Carneiro, 3-Nov-2013.)
Assertion
Ref Expression
fzval ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀...𝑁) = {𝑘 ∈ ℤ ∣ (𝑀𝑘𝑘𝑁)})
Distinct variable groups:   𝑘,𝑀   𝑘,𝑁

Proof of Theorem fzval
Dummy variables 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq1 5151 . . . 4 (𝑚 = 𝑀 → (𝑚𝑘𝑀𝑘))
21anbi1d 630 . . 3 (𝑚 = 𝑀 → ((𝑚𝑘𝑘𝑛) ↔ (𝑀𝑘𝑘𝑛)))
32rabbidv 3437 . 2 (𝑚 = 𝑀 → {𝑘 ∈ ℤ ∣ (𝑚𝑘𝑘𝑛)} = {𝑘 ∈ ℤ ∣ (𝑀𝑘𝑘𝑛)})
4 breq2 5152 . . . 4 (𝑛 = 𝑁 → (𝑘𝑛𝑘𝑁))
54anbi2d 629 . . 3 (𝑛 = 𝑁 → ((𝑀𝑘𝑘𝑛) ↔ (𝑀𝑘𝑘𝑁)))
65rabbidv 3437 . 2 (𝑛 = 𝑁 → {𝑘 ∈ ℤ ∣ (𝑀𝑘𝑘𝑛)} = {𝑘 ∈ ℤ ∣ (𝑀𝑘𝑘𝑁)})
7 df-fz 13517 . 2 ... = (𝑚 ∈ ℤ, 𝑛 ∈ ℤ ↦ {𝑘 ∈ ℤ ∣ (𝑚𝑘𝑘𝑛)})
8 zex 12597 . . 3 ℤ ∈ V
98rabex 5334 . 2 {𝑘 ∈ ℤ ∣ (𝑀𝑘𝑘𝑁)} ∈ V
103, 6, 7, 9ovmpo 7581 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀...𝑁) = {𝑘 ∈ ℤ ∣ (𝑀𝑘𝑘𝑁)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1534  wcel 2099  {crab 3429   class class class wbr 5148  (class class class)co 7420  cle 11279  cz 12588  ...cfz 13516
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5299  ax-nul 5306  ax-pr 5429  ax-cnex 11194  ax-resscn 11195
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ral 3059  df-rex 3068  df-rab 3430  df-v 3473  df-sbc 3777  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-br 5149  df-opab 5211  df-id 5576  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-iota 6500  df-fun 6550  df-fv 6556  df-ov 7423  df-oprab 7424  df-mpo 7425  df-neg 11477  df-z 12589  df-fz 13517
This theorem is referenced by:  fzval2  13519  elfz1  13521
  Copyright terms: Public domain W3C validator