| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fzval | Structured version Visualization version GIF version | ||
| Description: The value of a finite set of sequential integers. E.g., 2...5 means the set {2, 3, 4, 5}. A special case of this definition (starting at 1) appears as Definition 11-2.1 of [Gleason] p. 141, where ℕk means our 1...𝑘; he calls these sets segments of the integers. (Contributed by NM, 6-Sep-2005.) (Revised by Mario Carneiro, 3-Nov-2013.) |
| Ref | Expression |
|---|---|
| fzval | ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀...𝑁) = {𝑘 ∈ ℤ ∣ (𝑀 ≤ 𝑘 ∧ 𝑘 ≤ 𝑁)}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq1 5127 | . . . 4 ⊢ (𝑚 = 𝑀 → (𝑚 ≤ 𝑘 ↔ 𝑀 ≤ 𝑘)) | |
| 2 | 1 | anbi1d 631 | . . 3 ⊢ (𝑚 = 𝑀 → ((𝑚 ≤ 𝑘 ∧ 𝑘 ≤ 𝑛) ↔ (𝑀 ≤ 𝑘 ∧ 𝑘 ≤ 𝑛))) |
| 3 | 2 | rabbidv 3428 | . 2 ⊢ (𝑚 = 𝑀 → {𝑘 ∈ ℤ ∣ (𝑚 ≤ 𝑘 ∧ 𝑘 ≤ 𝑛)} = {𝑘 ∈ ℤ ∣ (𝑀 ≤ 𝑘 ∧ 𝑘 ≤ 𝑛)}) |
| 4 | breq2 5128 | . . . 4 ⊢ (𝑛 = 𝑁 → (𝑘 ≤ 𝑛 ↔ 𝑘 ≤ 𝑁)) | |
| 5 | 4 | anbi2d 630 | . . 3 ⊢ (𝑛 = 𝑁 → ((𝑀 ≤ 𝑘 ∧ 𝑘 ≤ 𝑛) ↔ (𝑀 ≤ 𝑘 ∧ 𝑘 ≤ 𝑁))) |
| 6 | 5 | rabbidv 3428 | . 2 ⊢ (𝑛 = 𝑁 → {𝑘 ∈ ℤ ∣ (𝑀 ≤ 𝑘 ∧ 𝑘 ≤ 𝑛)} = {𝑘 ∈ ℤ ∣ (𝑀 ≤ 𝑘 ∧ 𝑘 ≤ 𝑁)}) |
| 7 | df-fz 13530 | . 2 ⊢ ... = (𝑚 ∈ ℤ, 𝑛 ∈ ℤ ↦ {𝑘 ∈ ℤ ∣ (𝑚 ≤ 𝑘 ∧ 𝑘 ≤ 𝑛)}) | |
| 8 | zex 12602 | . . 3 ⊢ ℤ ∈ V | |
| 9 | 8 | rabex 5314 | . 2 ⊢ {𝑘 ∈ ℤ ∣ (𝑀 ≤ 𝑘 ∧ 𝑘 ≤ 𝑁)} ∈ V |
| 10 | 3, 6, 7, 9 | ovmpo 7572 | 1 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀...𝑁) = {𝑘 ∈ ℤ ∣ (𝑀 ≤ 𝑘 ∧ 𝑘 ≤ 𝑁)}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {crab 3420 class class class wbr 5124 (class class class)co 7410 ≤ cle 11275 ℤcz 12593 ...cfz 13529 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 ax-cnex 11190 ax-resscn 11191 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-sbc 3771 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-iota 6489 df-fun 6538 df-fv 6544 df-ov 7413 df-oprab 7414 df-mpo 7415 df-neg 11474 df-z 12594 df-fz 13530 |
| This theorem is referenced by: fzval2 13532 elfz1 13534 |
| Copyright terms: Public domain | W3C validator |