Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fzval | Structured version Visualization version GIF version |
Description: The value of a finite set of sequential integers. E.g., 2...5 means the set {2, 3, 4, 5}. A special case of this definition (starting at 1) appears as Definition 11-2.1 of [Gleason] p. 141, where ℕk means our 1...𝑘; he calls these sets segments of the integers. (Contributed by NM, 6-Sep-2005.) (Revised by Mario Carneiro, 3-Nov-2013.) |
Ref | Expression |
---|---|
fzval | ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀...𝑁) = {𝑘 ∈ ℤ ∣ (𝑀 ≤ 𝑘 ∧ 𝑘 ≤ 𝑁)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq1 5077 | . . . 4 ⊢ (𝑚 = 𝑀 → (𝑚 ≤ 𝑘 ↔ 𝑀 ≤ 𝑘)) | |
2 | 1 | anbi1d 630 | . . 3 ⊢ (𝑚 = 𝑀 → ((𝑚 ≤ 𝑘 ∧ 𝑘 ≤ 𝑛) ↔ (𝑀 ≤ 𝑘 ∧ 𝑘 ≤ 𝑛))) |
3 | 2 | rabbidv 3414 | . 2 ⊢ (𝑚 = 𝑀 → {𝑘 ∈ ℤ ∣ (𝑚 ≤ 𝑘 ∧ 𝑘 ≤ 𝑛)} = {𝑘 ∈ ℤ ∣ (𝑀 ≤ 𝑘 ∧ 𝑘 ≤ 𝑛)}) |
4 | breq2 5078 | . . . 4 ⊢ (𝑛 = 𝑁 → (𝑘 ≤ 𝑛 ↔ 𝑘 ≤ 𝑁)) | |
5 | 4 | anbi2d 629 | . . 3 ⊢ (𝑛 = 𝑁 → ((𝑀 ≤ 𝑘 ∧ 𝑘 ≤ 𝑛) ↔ (𝑀 ≤ 𝑘 ∧ 𝑘 ≤ 𝑁))) |
6 | 5 | rabbidv 3414 | . 2 ⊢ (𝑛 = 𝑁 → {𝑘 ∈ ℤ ∣ (𝑀 ≤ 𝑘 ∧ 𝑘 ≤ 𝑛)} = {𝑘 ∈ ℤ ∣ (𝑀 ≤ 𝑘 ∧ 𝑘 ≤ 𝑁)}) |
7 | df-fz 13240 | . 2 ⊢ ... = (𝑚 ∈ ℤ, 𝑛 ∈ ℤ ↦ {𝑘 ∈ ℤ ∣ (𝑚 ≤ 𝑘 ∧ 𝑘 ≤ 𝑛)}) | |
8 | zex 12328 | . . 3 ⊢ ℤ ∈ V | |
9 | 8 | rabex 5256 | . 2 ⊢ {𝑘 ∈ ℤ ∣ (𝑀 ≤ 𝑘 ∧ 𝑘 ≤ 𝑁)} ∈ V |
10 | 3, 6, 7, 9 | ovmpo 7433 | 1 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀...𝑁) = {𝑘 ∈ ℤ ∣ (𝑀 ≤ 𝑘 ∧ 𝑘 ≤ 𝑁)}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 {crab 3068 class class class wbr 5074 (class class class)co 7275 ≤ cle 11010 ℤcz 12319 ...cfz 13239 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-cnex 10927 ax-resscn 10928 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-iota 6391 df-fun 6435 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-neg 11208 df-z 12320 df-fz 13240 |
This theorem is referenced by: fzval2 13242 elfz1 13244 |
Copyright terms: Public domain | W3C validator |