| Metamath
Proof Explorer Theorem List (p. 135 of 499) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30888) |
(30889-32411) |
(32412-49816) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | fzval 13401* | The value of a finite set of sequential integers. E.g., 2...5 means the set {2, 3, 4, 5}. A special case of this definition (starting at 1) appears as Definition 11-2.1 of [Gleason] p. 141, where ℕk means our 1...𝑘; he calls these sets segments of the integers. (Contributed by NM, 6-Sep-2005.) (Revised by Mario Carneiro, 3-Nov-2013.) |
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀...𝑁) = {𝑘 ∈ ℤ ∣ (𝑀 ≤ 𝑘 ∧ 𝑘 ≤ 𝑁)}) | ||
| Theorem | fzval2 13402 | An alternative way of expressing a finite set of sequential integers. (Contributed by Mario Carneiro, 3-Nov-2013.) |
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀...𝑁) = ((𝑀[,]𝑁) ∩ ℤ)) | ||
| Theorem | fzf 13403 | Establish the domain and codomain of the finite integer sequence function. (Contributed by Scott Fenton, 8-Aug-2013.) (Revised by Mario Carneiro, 16-Nov-2013.) |
| ⊢ ...:(ℤ × ℤ)⟶𝒫 ℤ | ||
| Theorem | elfz1 13404 | Membership in a finite set of sequential integers. (Contributed by NM, 21-Jul-2005.) |
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (𝑀...𝑁) ↔ (𝐾 ∈ ℤ ∧ 𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁))) | ||
| Theorem | elfz 13405 | Membership in a finite set of sequential integers. (Contributed by NM, 29-Sep-2005.) |
| ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (𝑀...𝑁) ↔ (𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁))) | ||
| Theorem | elfz2 13406 | Membership in a finite set of sequential integers. We use the fact that an operation's value is empty outside of its domain to show 𝑀 ∈ ℤ and 𝑁 ∈ ℤ. (Contributed by NM, 6-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) |
| ⊢ (𝐾 ∈ (𝑀...𝑁) ↔ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁))) | ||
| Theorem | elfzd 13407 | Membership in a finite set of sequential integers. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ ℤ) & ⊢ (𝜑 → 𝐾 ∈ ℤ) & ⊢ (𝜑 → 𝑀 ≤ 𝐾) & ⊢ (𝜑 → 𝐾 ≤ 𝑁) ⇒ ⊢ (𝜑 → 𝐾 ∈ (𝑀...𝑁)) | ||
| Theorem | elfz5 13408 | Membership in a finite set of sequential integers. (Contributed by NM, 26-Dec-2005.) |
| ⊢ ((𝐾 ∈ (ℤ≥‘𝑀) ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (𝑀...𝑁) ↔ 𝐾 ≤ 𝑁)) | ||
| Theorem | elfz4 13409 | Membership in a finite set of sequential integers. (Contributed by NM, 21-Jul-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) |
| ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁)) → 𝐾 ∈ (𝑀...𝑁)) | ||
| Theorem | elfzuzb 13410 | Membership in a finite set of sequential integers in terms of sets of upper integers. (Contributed by NM, 18-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) |
| ⊢ (𝐾 ∈ (𝑀...𝑁) ↔ (𝐾 ∈ (ℤ≥‘𝑀) ∧ 𝑁 ∈ (ℤ≥‘𝐾))) | ||
| Theorem | eluzfz 13411 | Membership in a finite set of sequential integers. (Contributed by NM, 4-Oct-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) |
| ⊢ ((𝐾 ∈ (ℤ≥‘𝑀) ∧ 𝑁 ∈ (ℤ≥‘𝐾)) → 𝐾 ∈ (𝑀...𝑁)) | ||
| Theorem | elfzuz 13412 | A member of a finite set of sequential integers belongs to an upper set of integers. (Contributed by NM, 17-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) |
| ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝐾 ∈ (ℤ≥‘𝑀)) | ||
| Theorem | elfzuz3 13413 | Membership in a finite set of sequential integers implies membership in an upper set of integers. (Contributed by NM, 28-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) |
| ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ (ℤ≥‘𝐾)) | ||
| Theorem | elfzel2 13414 | Membership in a finite set of sequential integer implies the upper bound is an integer. (Contributed by NM, 6-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) |
| ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ ℤ) | ||
| Theorem | elfzel1 13415 | Membership in a finite set of sequential integer implies the lower bound is an integer. (Contributed by NM, 6-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) |
| ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝑀 ∈ ℤ) | ||
| Theorem | elfzelz 13416 | A member of a finite set of sequential integers is an integer. (Contributed by NM, 6-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) |
| ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝐾 ∈ ℤ) | ||
| Theorem | elfzelzd 13417 | A member of a finite set of sequential integers is an integer. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
| ⊢ (𝜑 → 𝐾 ∈ (𝑀...𝑁)) ⇒ ⊢ (𝜑 → 𝐾 ∈ ℤ) | ||
| Theorem | fzssz 13418 | A finite sequence of integers is a set of integers. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (𝑀...𝑁) ⊆ ℤ | ||
| Theorem | elfzle1 13419 | A member of a finite set of sequential integer is greater than or equal to the lower bound. (Contributed by NM, 6-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) |
| ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝑀 ≤ 𝐾) | ||
| Theorem | elfzle2 13420 | A member of a finite set of sequential integer is less than or equal to the upper bound. (Contributed by NM, 6-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) |
| ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝐾 ≤ 𝑁) | ||
| Theorem | elfzuz2 13421 | Implication of membership in a finite set of sequential integers. (Contributed by NM, 20-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) |
| ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ (ℤ≥‘𝑀)) | ||
| Theorem | elfzle3 13422 | Membership in a finite set of sequential integer implies the bounds are comparable. (Contributed by NM, 18-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) |
| ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝑀 ≤ 𝑁) | ||
| Theorem | eluzfz1 13423 | Membership in a finite set of sequential integers - special case. (Contributed by NM, 21-Jul-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) |
| ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ (𝑀...𝑁)) | ||
| Theorem | eluzfz2 13424 | Membership in a finite set of sequential integers - special case. (Contributed by NM, 13-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) |
| ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ (𝑀...𝑁)) | ||
| Theorem | eluzfz2b 13425 | Membership in a finite set of sequential integers - special case. (Contributed by NM, 14-Sep-2005.) |
| ⊢ (𝑁 ∈ (ℤ≥‘𝑀) ↔ 𝑁 ∈ (𝑀...𝑁)) | ||
| Theorem | elfz3 13426 | Membership in a finite set of sequential integers containing one integer. (Contributed by NM, 21-Jul-2005.) |
| ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ (𝑁...𝑁)) | ||
| Theorem | elfz1eq 13427 | Membership in a finite set of sequential integers containing one integer. (Contributed by NM, 19-Sep-2005.) |
| ⊢ (𝐾 ∈ (𝑁...𝑁) → 𝐾 = 𝑁) | ||
| Theorem | elfzubelfz 13428 | If there is a member in a finite set of sequential integers, the upper bound is also a member of this finite set of sequential integers. (Contributed by Alexander van der Vekens, 31-May-2018.) |
| ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ (𝑀...𝑁)) | ||
| Theorem | peano2fzr 13429 | A Peano-postulate-like theorem for downward closure of a finite set of sequential integers. (Contributed by Mario Carneiro, 27-May-2014.) |
| ⊢ ((𝐾 ∈ (ℤ≥‘𝑀) ∧ (𝐾 + 1) ∈ (𝑀...𝑁)) → 𝐾 ∈ (𝑀...𝑁)) | ||
| Theorem | fzn0 13430 | Properties of a finite interval of integers which is nonempty. (Contributed by Jeff Madsen, 17-Jun-2010.) (Revised by Mario Carneiro, 28-Apr-2015.) |
| ⊢ ((𝑀...𝑁) ≠ ∅ ↔ 𝑁 ∈ (ℤ≥‘𝑀)) | ||
| Theorem | fz0 13431 | A finite set of sequential integers is empty if its bounds are not integers. (Contributed by AV, 13-Oct-2018.) |
| ⊢ ((𝑀 ∉ ℤ ∨ 𝑁 ∉ ℤ) → (𝑀...𝑁) = ∅) | ||
| Theorem | fzn 13432 | A finite set of sequential integers is empty if the bounds are reversed. (Contributed by NM, 22-Aug-2005.) |
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 < 𝑀 ↔ (𝑀...𝑁) = ∅)) | ||
| Theorem | fzen 13433 | A shifted finite set of sequential integers is equinumerous to the original set. (Contributed by Paul Chapman, 11-Apr-2009.) |
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑀...𝑁) ≈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))) | ||
| Theorem | fz1n 13434 | A 1-based finite set of sequential integers is empty iff it ends at index 0. (Contributed by Paul Chapman, 22-Jun-2011.) |
| ⊢ (𝑁 ∈ ℕ0 → ((1...𝑁) = ∅ ↔ 𝑁 = 0)) | ||
| Theorem | 0nelfz1 13435 | 0 is not an element of a finite interval of integers starting at 1. (Contributed by AV, 27-Aug-2020.) |
| ⊢ 0 ∉ (1...𝑁) | ||
| Theorem | 0fz1 13436 | Two ways to say a finite 1-based sequence is empty. (Contributed by Paul Chapman, 26-Oct-2012.) |
| ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐹 Fn (1...𝑁)) → (𝐹 = ∅ ↔ 𝑁 = 0)) | ||
| Theorem | fz10 13437 | There are no integers between 1 and 0. (Contributed by Jeff Madsen, 16-Jun-2010.) (Proof shortened by Mario Carneiro, 28-Apr-2015.) |
| ⊢ (1...0) = ∅ | ||
| Theorem | uzsubsubfz 13438 | Membership of an integer greater than L decreased by ( L - M ) in an M-based finite set of sequential integers. (Contributed by Alexander van der Vekens, 14-Sep-2018.) |
| ⊢ ((𝐿 ∈ (ℤ≥‘𝑀) ∧ 𝑁 ∈ (ℤ≥‘𝐿)) → (𝑁 − (𝐿 − 𝑀)) ∈ (𝑀...𝑁)) | ||
| Theorem | uzsubsubfz1 13439 | Membership of an integer greater than L decreased by ( L - 1 ) in a 1-based finite set of sequential integers. (Contributed by Alexander van der Vekens, 14-Sep-2018.) |
| ⊢ ((𝐿 ∈ ℕ ∧ 𝑁 ∈ (ℤ≥‘𝐿)) → (𝑁 − (𝐿 − 1)) ∈ (1...𝑁)) | ||
| Theorem | ige3m2fz 13440 | Membership of an integer greater than 2 decreased by 2 in a 1-based finite set of sequential integers. (Contributed by Alexander van der Vekens, 14-Sep-2018.) |
| ⊢ (𝑁 ∈ (ℤ≥‘3) → (𝑁 − 2) ∈ (1...𝑁)) | ||
| Theorem | fzsplit2 13441 | Split a finite interval of integers into two parts. (Contributed by Mario Carneiro, 13-Apr-2016.) |
| ⊢ (((𝐾 + 1) ∈ (ℤ≥‘𝑀) ∧ 𝑁 ∈ (ℤ≥‘𝐾)) → (𝑀...𝑁) = ((𝑀...𝐾) ∪ ((𝐾 + 1)...𝑁))) | ||
| Theorem | fzsplit 13442 | Split a finite interval of integers into two parts. (Contributed by Jeff Madsen, 17-Jun-2010.) (Revised by Mario Carneiro, 13-Apr-2016.) |
| ⊢ (𝐾 ∈ (𝑀...𝑁) → (𝑀...𝑁) = ((𝑀...𝐾) ∪ ((𝐾 + 1)...𝑁))) | ||
| Theorem | fzdisj 13443 | Condition for two finite intervals of integers to be disjoint. (Contributed by Jeff Madsen, 17-Jun-2010.) |
| ⊢ (𝐾 < 𝑀 → ((𝐽...𝐾) ∩ (𝑀...𝑁)) = ∅) | ||
| Theorem | fz01en 13444 | 0-based and 1-based finite sets of sequential integers are equinumerous. (Contributed by Paul Chapman, 11-Apr-2009.) |
| ⊢ (𝑁 ∈ ℤ → (0...(𝑁 − 1)) ≈ (1...𝑁)) | ||
| Theorem | elfznn 13445 | A member of a finite set of sequential integers starting at 1 is a positive integer. (Contributed by NM, 24-Aug-2005.) |
| ⊢ (𝐾 ∈ (1...𝑁) → 𝐾 ∈ ℕ) | ||
| Theorem | elfz1end 13446 | A nonempty finite range of integers contains its end point. (Contributed by Stefan O'Rear, 10-Oct-2014.) |
| ⊢ (𝐴 ∈ ℕ ↔ 𝐴 ∈ (1...𝐴)) | ||
| Theorem | fz1ssnn 13447 | A finite set of positive integers is a set of positive integers. (Contributed by Stefan O'Rear, 16-Oct-2014.) |
| ⊢ (1...𝐴) ⊆ ℕ | ||
| Theorem | fznn0sub 13448 | Subtraction closure for a member of a finite set of sequential integers. (Contributed by NM, 16-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) |
| ⊢ (𝐾 ∈ (𝑀...𝑁) → (𝑁 − 𝐾) ∈ ℕ0) | ||
| Theorem | fzmmmeqm 13449 | Subtracting the difference of a member of a finite range of integers and the lower bound of the range from the difference of the upper bound and the lower bound of the range results in the difference of the upper bound of the range and the member. (Contributed by Alexander van der Vekens, 27-May-2018.) |
| ⊢ (𝑀 ∈ (𝐿...𝑁) → ((𝑁 − 𝐿) − (𝑀 − 𝐿)) = (𝑁 − 𝑀)) | ||
| Theorem | fzaddel 13450 | Membership of a sum in a finite set of sequential integers. (Contributed by NM, 30-Jul-2005.) |
| ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → (𝐽 ∈ (𝑀...𝑁) ↔ (𝐽 + 𝐾) ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)))) | ||
| Theorem | fzadd2 13451 | Membership of a sum in a finite interval of integers. (Contributed by Jeff Madsen, 17-Jun-2010.) |
| ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑂 ∈ ℤ ∧ 𝑃 ∈ ℤ)) → ((𝐽 ∈ (𝑀...𝑁) ∧ 𝐾 ∈ (𝑂...𝑃)) → (𝐽 + 𝐾) ∈ ((𝑀 + 𝑂)...(𝑁 + 𝑃)))) | ||
| Theorem | fzsubel 13452 | Membership of a difference in a finite set of sequential integers. (Contributed by NM, 30-Jul-2005.) |
| ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → (𝐽 ∈ (𝑀...𝑁) ↔ (𝐽 − 𝐾) ∈ ((𝑀 − 𝐾)...(𝑁 − 𝐾)))) | ||
| Theorem | fzopth 13453 | A finite set of sequential integers has the ordered pair property (compare opth 5414) under certain conditions. (Contributed by NM, 31-Oct-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) |
| ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → ((𝑀...𝑁) = (𝐽...𝐾) ↔ (𝑀 = 𝐽 ∧ 𝑁 = 𝐾))) | ||
| Theorem | fzass4 13454 | Two ways to express a nondecreasing sequence of four integers. (Contributed by Stefan O'Rear, 15-Aug-2015.) |
| ⊢ ((𝐵 ∈ (𝐴...𝐷) ∧ 𝐶 ∈ (𝐵...𝐷)) ↔ (𝐵 ∈ (𝐴...𝐶) ∧ 𝐶 ∈ (𝐴...𝐷))) | ||
| Theorem | fzss1 13455 | Subset relationship for finite sets of sequential integers. (Contributed by NM, 28-Sep-2005.) (Proof shortened by Mario Carneiro, 28-Apr-2015.) |
| ⊢ (𝐾 ∈ (ℤ≥‘𝑀) → (𝐾...𝑁) ⊆ (𝑀...𝑁)) | ||
| Theorem | fzss2 13456 | Subset relationship for finite sets of sequential integers. (Contributed by NM, 4-Oct-2005.) (Revised by Mario Carneiro, 30-Apr-2015.) |
| ⊢ (𝑁 ∈ (ℤ≥‘𝐾) → (𝑀...𝐾) ⊆ (𝑀...𝑁)) | ||
| Theorem | fzssuz 13457 | A finite set of sequential integers is a subset of an upper set of integers. (Contributed by NM, 28-Oct-2005.) |
| ⊢ (𝑀...𝑁) ⊆ (ℤ≥‘𝑀) | ||
| Theorem | fzsn 13458 | A finite interval of integers with one element. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| ⊢ (𝑀 ∈ ℤ → (𝑀...𝑀) = {𝑀}) | ||
| Theorem | fzssp1 13459 | Subset relationship for finite sets of sequential integers. (Contributed by NM, 21-Jul-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) |
| ⊢ (𝑀...𝑁) ⊆ (𝑀...(𝑁 + 1)) | ||
| Theorem | fzssnn 13460 | Finite sets of sequential integers starting from a natural are a subset of the positive integers. (Contributed by Thierry Arnoux, 4-Aug-2017.) |
| ⊢ (𝑀 ∈ ℕ → (𝑀...𝑁) ⊆ ℕ) | ||
| Theorem | ssfzunsnext 13461 | A subset of a finite sequence of integers extended by an integer is a subset of a (possibly extended) finite sequence of integers. (Contributed by AV, 13-Nov-2021.) |
| ⊢ ((𝑆 ⊆ (𝑀...𝑁) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ)) → (𝑆 ∪ {𝐼}) ⊆ (if(𝐼 ≤ 𝑀, 𝐼, 𝑀)...if(𝐼 ≤ 𝑁, 𝑁, 𝐼))) | ||
| Theorem | ssfzunsn 13462 | A subset of a finite sequence of integers extended by an integer is a subset of a (possibly extended) finite sequence of integers. (Contributed by AV, 8-Jun-2021.) (Proof shortened by AV, 13-Nov-2021.) |
| ⊢ ((𝑆 ⊆ (𝑀...𝑁) ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ (ℤ≥‘𝑀)) → (𝑆 ∪ {𝐼}) ⊆ (𝑀...if(𝐼 ≤ 𝑁, 𝑁, 𝐼))) | ||
| Theorem | fzsuc 13463 | Join a successor to the end of a finite set of sequential integers. (Contributed by NM, 19-Jul-2008.) (Revised by Mario Carneiro, 28-Apr-2015.) |
| ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑀...(𝑁 + 1)) = ((𝑀...𝑁) ∪ {(𝑁 + 1)})) | ||
| Theorem | fzpred 13464 | Join a predecessor to the beginning of a finite set of sequential integers. (Contributed by AV, 24-Aug-2019.) |
| ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑀...𝑁) = ({𝑀} ∪ ((𝑀 + 1)...𝑁))) | ||
| Theorem | fzpreddisj 13465 | A finite set of sequential integers is disjoint with its predecessor. (Contributed by AV, 24-Aug-2019.) |
| ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → ({𝑀} ∩ ((𝑀 + 1)...𝑁)) = ∅) | ||
| Theorem | elfzp1 13466 | Append an element to a finite set of sequential integers. (Contributed by NM, 19-Sep-2005.) (Proof shortened by Mario Carneiro, 28-Apr-2015.) |
| ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝐾 ∈ (𝑀...(𝑁 + 1)) ↔ (𝐾 ∈ (𝑀...𝑁) ∨ 𝐾 = (𝑁 + 1)))) | ||
| Theorem | fzp1ss 13467 | Subset relationship for finite sets of sequential integers. (Contributed by NM, 26-Jul-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) |
| ⊢ (𝑀 ∈ ℤ → ((𝑀 + 1)...𝑁) ⊆ (𝑀...𝑁)) | ||
| Theorem | fzelp1 13468 | Membership in a set of sequential integers with an appended element. (Contributed by NM, 7-Dec-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) |
| ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝐾 ∈ (𝑀...(𝑁 + 1))) | ||
| Theorem | fzp1elp1 13469 | Add one to an element of a finite set of integers. (Contributed by Jeff Madsen, 6-Jun-2010.) (Revised by Mario Carneiro, 28-Apr-2015.) |
| ⊢ (𝐾 ∈ (𝑀...𝑁) → (𝐾 + 1) ∈ (𝑀...(𝑁 + 1))) | ||
| Theorem | fznatpl1 13470 | Shift membership in a finite sequence of naturals. (Contributed by Scott Fenton, 17-Jul-2013.) |
| ⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → (𝐼 + 1) ∈ (1...𝑁)) | ||
| Theorem | fzpr 13471 | A finite interval of integers with two elements. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| ⊢ (𝑀 ∈ ℤ → (𝑀...(𝑀 + 1)) = {𝑀, (𝑀 + 1)}) | ||
| Theorem | fztp 13472 | A finite interval of integers with three elements. (Contributed by NM, 13-Sep-2011.) (Revised by Mario Carneiro, 7-Mar-2014.) |
| ⊢ (𝑀 ∈ ℤ → (𝑀...(𝑀 + 2)) = {𝑀, (𝑀 + 1), (𝑀 + 2)}) | ||
| Theorem | fz12pr 13473 | An integer range between 1 and 2 is a pair. (Contributed by AV, 11-Jan-2023.) |
| ⊢ (1...2) = {1, 2} | ||
| Theorem | fzsuc2 13474 | Join a successor to the end of a finite set of sequential integers. (Contributed by Mario Carneiro, 7-Mar-2014.) |
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ (ℤ≥‘(𝑀 − 1))) → (𝑀...(𝑁 + 1)) = ((𝑀...𝑁) ∪ {(𝑁 + 1)})) | ||
| Theorem | fzp1disj 13475 | (𝑀...(𝑁 + 1)) is the disjoint union of (𝑀...𝑁) with {(𝑁 + 1)}. (Contributed by Mario Carneiro, 7-Mar-2014.) |
| ⊢ ((𝑀...𝑁) ∩ {(𝑁 + 1)}) = ∅ | ||
| Theorem | fzdifsuc 13476 | Remove a successor from the end of a finite set of sequential integers. (Contributed by AV, 4-Sep-2019.) |
| ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑀...𝑁) = ((𝑀...(𝑁 + 1)) ∖ {(𝑁 + 1)})) | ||
| Theorem | fzprval 13477* | Two ways of defining the first two values of a sequence on ℕ. (Contributed by NM, 5-Sep-2011.) |
| ⊢ (∀𝑥 ∈ (1...2)(𝐹‘𝑥) = if(𝑥 = 1, 𝐴, 𝐵) ↔ ((𝐹‘1) = 𝐴 ∧ (𝐹‘2) = 𝐵)) | ||
| Theorem | fztpval 13478* | Two ways of defining the first three values of a sequence on ℕ. (Contributed by NM, 13-Sep-2011.) |
| ⊢ (∀𝑥 ∈ (1...3)(𝐹‘𝑥) = if(𝑥 = 1, 𝐴, if(𝑥 = 2, 𝐵, 𝐶)) ↔ ((𝐹‘1) = 𝐴 ∧ (𝐹‘2) = 𝐵 ∧ (𝐹‘3) = 𝐶)) | ||
| Theorem | fzrev 13479 | Reversal of start and end of a finite set of sequential integers. (Contributed by NM, 25-Nov-2005.) |
| ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → (𝐾 ∈ ((𝐽 − 𝑁)...(𝐽 − 𝑀)) ↔ (𝐽 − 𝐾) ∈ (𝑀...𝑁))) | ||
| Theorem | fzrev2 13480 | Reversal of start and end of a finite set of sequential integers. (Contributed by NM, 25-Nov-2005.) |
| ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → (𝐾 ∈ (𝑀...𝑁) ↔ (𝐽 − 𝐾) ∈ ((𝐽 − 𝑁)...(𝐽 − 𝑀)))) | ||
| Theorem | fzrev2i 13481 | Reversal of start and end of a finite set of sequential integers. (Contributed by NM, 25-Nov-2005.) |
| ⊢ ((𝐽 ∈ ℤ ∧ 𝐾 ∈ (𝑀...𝑁)) → (𝐽 − 𝐾) ∈ ((𝐽 − 𝑁)...(𝐽 − 𝑀))) | ||
| Theorem | fzrev3 13482 | The "complement" of a member of a finite set of sequential integers. (Contributed by NM, 20-Nov-2005.) |
| ⊢ (𝐾 ∈ ℤ → (𝐾 ∈ (𝑀...𝑁) ↔ ((𝑀 + 𝑁) − 𝐾) ∈ (𝑀...𝑁))) | ||
| Theorem | fzrev3i 13483 | The "complement" of a member of a finite set of sequential integers. (Contributed by NM, 20-Nov-2005.) |
| ⊢ (𝐾 ∈ (𝑀...𝑁) → ((𝑀 + 𝑁) − 𝐾) ∈ (𝑀...𝑁)) | ||
| Theorem | fznn 13484 | Finite set of sequential integers starting at 1. (Contributed by NM, 31-Aug-2011.) (Revised by Mario Carneiro, 18-Jun-2015.) |
| ⊢ (𝑁 ∈ ℤ → (𝐾 ∈ (1...𝑁) ↔ (𝐾 ∈ ℕ ∧ 𝐾 ≤ 𝑁))) | ||
| Theorem | elfz1b 13485 | Membership in a 1-based finite set of sequential integers. (Contributed by AV, 30-Oct-2018.) (Proof shortened by AV, 23-Jan-2022.) |
| ⊢ (𝑁 ∈ (1...𝑀) ↔ (𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ≤ 𝑀)) | ||
| Theorem | elfz1uz 13486 | Membership in a 1-based finite set of sequential integers with an upper integer. (Contributed by AV, 23-Jan-2022.) |
| ⊢ ((𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ≥‘𝑁)) → 𝑁 ∈ (1...𝑀)) | ||
| Theorem | elfzm11 13487 | Membership in a finite set of sequential integers. (Contributed by Paul Chapman, 21-Mar-2011.) |
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (𝑀...(𝑁 − 1)) ↔ (𝐾 ∈ ℤ ∧ 𝑀 ≤ 𝐾 ∧ 𝐾 < 𝑁))) | ||
| Theorem | uzsplit 13488 | Express an upper integer set as the disjoint (see uzdisj 13489) union of the first 𝑁 values and the rest. (Contributed by Mario Carneiro, 24-Apr-2014.) |
| ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (ℤ≥‘𝑀) = ((𝑀...(𝑁 − 1)) ∪ (ℤ≥‘𝑁))) | ||
| Theorem | uzdisj 13489 | The first 𝑁 elements of an upper integer set are distinct from any later members. (Contributed by Mario Carneiro, 24-Apr-2014.) |
| ⊢ ((𝑀...(𝑁 − 1)) ∩ (ℤ≥‘𝑁)) = ∅ | ||
| Theorem | fseq1p1m1 13490 | Add/remove an item to/from the end of a finite sequence. (Contributed by Paul Chapman, 17-Nov-2012.) (Revised by Mario Carneiro, 7-Mar-2014.) |
| ⊢ 𝐻 = {〈(𝑁 + 1), 𝐵〉} ⇒ ⊢ (𝑁 ∈ ℕ0 → ((𝐹:(1...𝑁)⟶𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐺 = (𝐹 ∪ 𝐻)) ↔ (𝐺:(1...(𝑁 + 1))⟶𝐴 ∧ (𝐺‘(𝑁 + 1)) = 𝐵 ∧ 𝐹 = (𝐺 ↾ (1...𝑁))))) | ||
| Theorem | fseq1m1p1 13491 | Add/remove an item to/from the end of a finite sequence. (Contributed by Paul Chapman, 17-Nov-2012.) |
| ⊢ 𝐻 = {〈𝑁, 𝐵〉} ⇒ ⊢ (𝑁 ∈ ℕ → ((𝐹:(1...(𝑁 − 1))⟶𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐺 = (𝐹 ∪ 𝐻)) ↔ (𝐺:(1...𝑁)⟶𝐴 ∧ (𝐺‘𝑁) = 𝐵 ∧ 𝐹 = (𝐺 ↾ (1...(𝑁 − 1)))))) | ||
| Theorem | fz1sbc 13492* | Quantification over a one-member finite set of sequential integers in terms of substitution. (Contributed by NM, 28-Nov-2005.) |
| ⊢ (𝑁 ∈ ℤ → (∀𝑘 ∈ (𝑁...𝑁)𝜑 ↔ [𝑁 / 𝑘]𝜑)) | ||
| Theorem | elfzp1b 13493 | An integer is a member of a 0-based finite set of sequential integers iff its successor is a member of the corresponding 1-based set. (Contributed by Paul Chapman, 22-Jun-2011.) |
| ⊢ ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (0...(𝑁 − 1)) ↔ (𝐾 + 1) ∈ (1...𝑁))) | ||
| Theorem | elfzm1b 13494 | An integer is a member of a 1-based finite set of sequential integers iff its predecessor is a member of the corresponding 0-based set. (Contributed by Paul Chapman, 22-Jun-2011.) |
| ⊢ ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (1...𝑁) ↔ (𝐾 − 1) ∈ (0...(𝑁 − 1)))) | ||
| Theorem | elfzp12 13495 | Options for membership in a finite interval of integers. (Contributed by Jeff Madsen, 18-Jun-2010.) |
| ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝐾 ∈ (𝑀...𝑁) ↔ (𝐾 = 𝑀 ∨ 𝐾 ∈ ((𝑀 + 1)...𝑁)))) | ||
| Theorem | fzne1 13496 | Elementhood in a finite set of sequential integers, except its lower bound. (Contributed by Thierry Arnoux, 1-Jan-2024.) |
| ⊢ ((𝐾 ∈ (𝑀...𝑁) ∧ 𝐾 ≠ 𝑀) → 𝐾 ∈ ((𝑀 + 1)...𝑁)) | ||
| Theorem | fzdif1 13497 | Split the first element of a finite set of sequential integers. More generic than fzpred 13464. Analogous to fzdif2 32763. (Contributed by AV, 12-Sep-2025.) |
| ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → ((𝑀...𝑁) ∖ {𝑀}) = ((𝑀 + 1)...𝑁)) | ||
| Theorem | fz0dif1 13498 | Split the first element of a finite set of sequential nonnegative integers. (Contributed by AV, 12-Sep-2025.) |
| ⊢ (𝑁 ∈ ℕ0 → ((0...𝑁) ∖ {0}) = (1...𝑁)) | ||
| Theorem | fzm1 13499 | Choices for an element of a finite interval of integers. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝐾 ∈ (𝑀...𝑁) ↔ (𝐾 ∈ (𝑀...(𝑁 − 1)) ∨ 𝐾 = 𝑁))) | ||
| Theorem | fzneuz 13500 | No finite set of sequential integers equals an upper set of integers. (Contributed by NM, 11-Dec-2005.) |
| ⊢ ((𝑁 ∈ (ℤ≥‘𝑀) ∧ 𝐾 ∈ ℤ) → ¬ (𝑀...𝑁) = (ℤ≥‘𝐾)) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |