Home | Metamath
Proof Explorer Theorem List (p. 135 of 460) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-28853) |
Hilbert Space Explorer
(28854-30376) |
Users' Mathboxes
(30377-45962) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | modirr 13401 | A number modulo an irrational multiple of it is nonzero. (Contributed by NM, 11-Nov-2008.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ∧ (𝐴 / 𝐵) ∈ (ℝ ∖ ℚ)) → (𝐴 mod 𝐵) ≠ 0) | ||
Theorem | modfzo0difsn 13402* | For a number within a half-open range of nonnegative integers with one excluded integer there is a positive integer so that the number is equal to the sum of the positive integer and the excluded integer modulo the upper bound of the range. (Contributed by AV, 19-Mar-2021.) |
⊢ ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽})) → ∃𝑖 ∈ (1..^𝑁)𝐾 = ((𝑖 + 𝐽) mod 𝑁)) | ||
Theorem | modsumfzodifsn 13403 | The sum of a number within a half-open range of positive integers is an element of the corresponding open range of nonnegative integers with one excluded integer modulo the excluded integer. (Contributed by AV, 19-Mar-2021.) |
⊢ ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → ((𝐾 + 𝐽) mod 𝑁) ∈ ((0..^𝑁) ∖ {𝐽})) | ||
Theorem | modlteq 13404 | Two nonnegative integers less than the modulus are equal iff they are equal modulo the modulus. (Contributed by AV, 14-Mar-2021.) |
⊢ ((𝐼 ∈ (0..^𝑁) ∧ 𝐽 ∈ (0..^𝑁)) → ((𝐼 mod 𝑁) = (𝐽 mod 𝑁) ↔ 𝐼 = 𝐽)) | ||
Theorem | addmodlteq 13405 | Two nonnegative integers less than the modulus are equal iff the sums of these integer with another integer are equal modulo the modulus. A much shorter proof exists if the "divides" relation ∥ can be used, see addmodlteqALT 15770. (Contributed by AV, 20-Mar-2021.) |
⊢ ((𝐼 ∈ (0..^𝑁) ∧ 𝐽 ∈ (0..^𝑁) ∧ 𝑆 ∈ ℤ) → (((𝐼 + 𝑆) mod 𝑁) = ((𝐽 + 𝑆) mod 𝑁) ↔ 𝐼 = 𝐽)) | ||
Theorem | om2uz0i 13406* | The mapping 𝐺 is a one-to-one mapping from ω onto upper integers that will be used to construct a recursive definition generator. Ordinal natural number 0 maps to complex number 𝐶 (normally 0 for the upper integers ℕ0 or 1 for the upper integers ℕ), 1 maps to 𝐶 + 1, etc. This theorem shows the value of 𝐺 at ordinal natural number zero. (This series of theorems generalizes an earlier series for ℕ0 contributed by Raph Levien, 10-Apr-2004.) (Contributed by NM, 3-Oct-2004.) (Revised by Mario Carneiro, 13-Sep-2013.) |
⊢ 𝐶 ∈ ℤ & ⊢ 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω) ⇒ ⊢ (𝐺‘∅) = 𝐶 | ||
Theorem | om2uzsuci 13407* | The value of 𝐺 (see om2uz0i 13406) at a successor. (Contributed by NM, 3-Oct-2004.) (Revised by Mario Carneiro, 13-Sep-2013.) |
⊢ 𝐶 ∈ ℤ & ⊢ 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω) ⇒ ⊢ (𝐴 ∈ ω → (𝐺‘suc 𝐴) = ((𝐺‘𝐴) + 1)) | ||
Theorem | om2uzuzi 13408* | The value 𝐺 (see om2uz0i 13406) at an ordinal natural number is in the upper integers. (Contributed by NM, 3-Oct-2004.) (Revised by Mario Carneiro, 13-Sep-2013.) |
⊢ 𝐶 ∈ ℤ & ⊢ 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω) ⇒ ⊢ (𝐴 ∈ ω → (𝐺‘𝐴) ∈ (ℤ≥‘𝐶)) | ||
Theorem | om2uzlti 13409* | Less-than relation for 𝐺 (see om2uz0i 13406). (Contributed by NM, 3-Oct-2004.) (Revised by Mario Carneiro, 13-Sep-2013.) |
⊢ 𝐶 ∈ ℤ & ⊢ 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω) ⇒ ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ∈ 𝐵 → (𝐺‘𝐴) < (𝐺‘𝐵))) | ||
Theorem | om2uzlt2i 13410* | The mapping 𝐺 (see om2uz0i 13406) preserves order. (Contributed by NM, 4-May-2005.) (Revised by Mario Carneiro, 13-Sep-2013.) |
⊢ 𝐶 ∈ ℤ & ⊢ 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω) ⇒ ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ∈ 𝐵 ↔ (𝐺‘𝐴) < (𝐺‘𝐵))) | ||
Theorem | om2uzrani 13411* | Range of 𝐺 (see om2uz0i 13406). (Contributed by NM, 3-Oct-2004.) (Revised by Mario Carneiro, 13-Sep-2013.) |
⊢ 𝐶 ∈ ℤ & ⊢ 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω) ⇒ ⊢ ran 𝐺 = (ℤ≥‘𝐶) | ||
Theorem | om2uzf1oi 13412* | 𝐺 (see om2uz0i 13406) is a one-to-one onto mapping. (Contributed by NM, 3-Oct-2004.) (Revised by Mario Carneiro, 13-Sep-2013.) |
⊢ 𝐶 ∈ ℤ & ⊢ 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω) ⇒ ⊢ 𝐺:ω–1-1-onto→(ℤ≥‘𝐶) | ||
Theorem | om2uzisoi 13413* | 𝐺 (see om2uz0i 13406) is an isomorphism from natural ordinals to upper integers. (Contributed by NM, 9-Oct-2008.) (Revised by Mario Carneiro, 13-Sep-2013.) |
⊢ 𝐶 ∈ ℤ & ⊢ 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω) ⇒ ⊢ 𝐺 Isom E , < (ω, (ℤ≥‘𝐶)) | ||
Theorem | om2uzoi 13414* | An alternative definition of 𝐺 in terms of df-oi 9047. (Contributed by Mario Carneiro, 2-Jun-2015.) |
⊢ 𝐶 ∈ ℤ & ⊢ 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω) ⇒ ⊢ 𝐺 = OrdIso( < , (ℤ≥‘𝐶)) | ||
Theorem | om2uzrdg 13415* | A helper lemma for the value of a recursive definition generator on upper integers (typically either ℕ or ℕ0) with characteristic function 𝐹(𝑥, 𝑦) and initial value 𝐴. Normally 𝐹 is a function on the partition, and 𝐴 is a member of the partition. See also comment in om2uz0i 13406. (Contributed by Mario Carneiro, 26-Jun-2013.) (Revised by Mario Carneiro, 18-Nov-2014.) |
⊢ 𝐶 ∈ ℤ & ⊢ 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω) & ⊢ 𝐴 ∈ V & ⊢ 𝑅 = (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉) ↾ ω) ⇒ ⊢ (𝐵 ∈ ω → (𝑅‘𝐵) = 〈(𝐺‘𝐵), (2nd ‘(𝑅‘𝐵))〉) | ||
Theorem | uzrdglem 13416* | A helper lemma for the value of a recursive definition generator on upper integers. (Contributed by Mario Carneiro, 26-Jun-2013.) (Revised by Mario Carneiro, 18-Nov-2014.) |
⊢ 𝐶 ∈ ℤ & ⊢ 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω) & ⊢ 𝐴 ∈ V & ⊢ 𝑅 = (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉) ↾ ω) ⇒ ⊢ (𝐵 ∈ (ℤ≥‘𝐶) → 〈𝐵, (2nd ‘(𝑅‘(◡𝐺‘𝐵)))〉 ∈ ran 𝑅) | ||
Theorem | uzrdgfni 13417* | The recursive definition generator on upper integers is a function. See comment in om2uzrdg 13415. (Contributed by Mario Carneiro, 26-Jun-2013.) (Revised by Mario Carneiro, 4-May-2015.) |
⊢ 𝐶 ∈ ℤ & ⊢ 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω) & ⊢ 𝐴 ∈ V & ⊢ 𝑅 = (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉) ↾ ω) & ⊢ 𝑆 = ran 𝑅 ⇒ ⊢ 𝑆 Fn (ℤ≥‘𝐶) | ||
Theorem | uzrdg0i 13418* | Initial value of a recursive definition generator on upper integers. See comment in om2uzrdg 13415. (Contributed by Mario Carneiro, 26-Jun-2013.) (Revised by Mario Carneiro, 18-Nov-2014.) |
⊢ 𝐶 ∈ ℤ & ⊢ 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω) & ⊢ 𝐴 ∈ V & ⊢ 𝑅 = (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉) ↾ ω) & ⊢ 𝑆 = ran 𝑅 ⇒ ⊢ (𝑆‘𝐶) = 𝐴 | ||
Theorem | uzrdgsuci 13419* | Successor value of a recursive definition generator on upper integers. See comment in om2uzrdg 13415. (Contributed by Mario Carneiro, 26-Jun-2013.) (Revised by Mario Carneiro, 13-Sep-2013.) |
⊢ 𝐶 ∈ ℤ & ⊢ 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω) & ⊢ 𝐴 ∈ V & ⊢ 𝑅 = (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉) ↾ ω) & ⊢ 𝑆 = ran 𝑅 ⇒ ⊢ (𝐵 ∈ (ℤ≥‘𝐶) → (𝑆‘(𝐵 + 1)) = (𝐵𝐹(𝑆‘𝐵))) | ||
Theorem | ltweuz 13420 | < is a well-founded relation on any sequence of upper integers. (Contributed by Andrew Salmon, 13-Nov-2011.) (Revised by Mario Carneiro, 26-Jun-2015.) |
⊢ < We (ℤ≥‘𝐴) | ||
Theorem | ltwenn 13421 | Less than well-orders the naturals. (Contributed by Scott Fenton, 6-Aug-2013.) |
⊢ < We ℕ | ||
Theorem | ltwefz 13422 | Less than well-orders a set of finite integers. (Contributed by Scott Fenton, 8-Aug-2013.) |
⊢ < We (𝑀...𝑁) | ||
Theorem | uzenom 13423 | An upper integer set is denumerable. (Contributed by Mario Carneiro, 15-Oct-2015.) |
⊢ 𝑍 = (ℤ≥‘𝑀) ⇒ ⊢ (𝑀 ∈ ℤ → 𝑍 ≈ ω) | ||
Theorem | uzinf 13424 | An upper integer set is infinite. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by Mario Carneiro, 26-Jun-2015.) |
⊢ 𝑍 = (ℤ≥‘𝑀) ⇒ ⊢ (𝑀 ∈ ℤ → ¬ 𝑍 ∈ Fin) | ||
Theorem | nnnfi 13425 | The set of positive integers is infinite. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
⊢ ¬ ℕ ∈ Fin | ||
Theorem | uzrdgxfr 13426* | Transfer the value of the recursive sequence builder from one base to another. (Contributed by Mario Carneiro, 1-Apr-2014.) |
⊢ 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐴) ↾ ω) & ⊢ 𝐻 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐵) ↾ ω) & ⊢ 𝐴 ∈ ℤ & ⊢ 𝐵 ∈ ℤ ⇒ ⊢ (𝑁 ∈ ω → (𝐺‘𝑁) = ((𝐻‘𝑁) + (𝐴 − 𝐵))) | ||
Theorem | fzennn 13427 | The cardinality of a finite set of sequential integers. (See om2uz0i 13406 for a description of the hypothesis.) (Contributed by Mario Carneiro, 12-Feb-2013.) (Revised by Mario Carneiro, 7-Mar-2014.) |
⊢ 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) ⇒ ⊢ (𝑁 ∈ ℕ0 → (1...𝑁) ≈ (◡𝐺‘𝑁)) | ||
Theorem | fzen2 13428 | The cardinality of a finite set of sequential integers with arbitrary endpoints. (Contributed by Mario Carneiro, 13-Feb-2014.) |
⊢ 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) ⇒ ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑀...𝑁) ≈ (◡𝐺‘((𝑁 + 1) − 𝑀))) | ||
Theorem | cardfz 13429 | The cardinality of a finite set of sequential integers. (See om2uz0i 13406 for a description of the hypothesis.) (Contributed by NM, 7-Nov-2008.) (Revised by Mario Carneiro, 15-Sep-2013.) |
⊢ 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) ⇒ ⊢ (𝑁 ∈ ℕ0 → (card‘(1...𝑁)) = (◡𝐺‘𝑁)) | ||
Theorem | hashgf1o 13430 | 𝐺 maps ω one-to-one onto ℕ0. (Contributed by Paul Chapman, 22-Jun-2011.) (Revised by Mario Carneiro, 13-Sep-2013.) |
⊢ 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) ⇒ ⊢ 𝐺:ω–1-1-onto→ℕ0 | ||
Theorem | fzfi 13431 | A finite interval of integers is finite. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 12-Mar-2015.) |
⊢ (𝑀...𝑁) ∈ Fin | ||
Theorem | fzfid 13432 | Commonly used special case of fzfi 13431. (Contributed by Mario Carneiro, 25-May-2014.) |
⊢ (𝜑 → (𝑀...𝑁) ∈ Fin) | ||
Theorem | fzofi 13433 | Half-open integer sets are finite. (Contributed by Stefan O'Rear, 15-Aug-2015.) |
⊢ (𝑀..^𝑁) ∈ Fin | ||
Theorem | fsequb 13434* | The values of a finite real sequence have an upper bound. (Contributed by NM, 19-Sep-2005.) (Proof shortened by Mario Carneiro, 28-Apr-2015.) |
⊢ (∀𝑘 ∈ (𝑀...𝑁)(𝐹‘𝑘) ∈ ℝ → ∃𝑥 ∈ ℝ ∀𝑘 ∈ (𝑀...𝑁)(𝐹‘𝑘) < 𝑥) | ||
Theorem | fsequb2 13435* | The values of a finite real sequence have an upper bound. (Contributed by NM, 20-Sep-2005.) (Proof shortened by Mario Carneiro, 28-Apr-2015.) |
⊢ (𝐹:(𝑀...𝑁)⟶ℝ → ∃𝑥 ∈ ℝ ∀𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥) | ||
Theorem | fseqsupcl 13436 | The values of a finite real sequence have a supremum. (Contributed by NM, 20-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) |
⊢ ((𝑁 ∈ (ℤ≥‘𝑀) ∧ 𝐹:(𝑀...𝑁)⟶ℝ) → sup(ran 𝐹, ℝ, < ) ∈ ℝ) | ||
Theorem | fseqsupubi 13437 | The values of a finite real sequence are bounded by their supremum. (Contributed by NM, 20-Sep-2005.) |
⊢ ((𝐾 ∈ (𝑀...𝑁) ∧ 𝐹:(𝑀...𝑁)⟶ℝ) → (𝐹‘𝐾) ≤ sup(ran 𝐹, ℝ, < )) | ||
Theorem | nn0ennn 13438 | The nonnegative integers are equinumerous to the positive integers. (Contributed by NM, 19-Jul-2004.) |
⊢ ℕ0 ≈ ℕ | ||
Theorem | nnenom 13439 | The set of positive integers (as a subset of complex numbers) is equinumerous to omega (the set of finite ordinal numbers). (Contributed by NM, 31-Jul-2004.) (Revised by Mario Carneiro, 15-Sep-2013.) |
⊢ ℕ ≈ ω | ||
Theorem | nnct 13440 | ℕ is countable. (Contributed by Thierry Arnoux, 29-Dec-2016.) |
⊢ ℕ ≼ ω | ||
Theorem | uzindi 13441* | Indirect strong induction on the upper integers. (Contributed by Stefan O'Rear, 25-Aug-2015.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝑇 ∈ (ℤ≥‘𝐿)) & ⊢ ((𝜑 ∧ 𝑅 ∈ (𝐿...𝑇) ∧ ∀𝑦(𝑆 ∈ (𝐿..^𝑅) → 𝜒)) → 𝜓) & ⊢ (𝑥 = 𝑦 → (𝜓 ↔ 𝜒)) & ⊢ (𝑥 = 𝐴 → (𝜓 ↔ 𝜃)) & ⊢ (𝑥 = 𝑦 → 𝑅 = 𝑆) & ⊢ (𝑥 = 𝐴 → 𝑅 = 𝑇) ⇒ ⊢ (𝜑 → 𝜃) | ||
Theorem | axdc4uzlem 13442* | Lemma for axdc4uz 13443. (Contributed by Mario Carneiro, 8-Jan-2014.) (Revised by Mario Carneiro, 26-Dec-2014.) |
⊢ 𝑀 ∈ ℤ & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ 𝐴 ∈ V & ⊢ 𝐺 = (rec((𝑦 ∈ V ↦ (𝑦 + 1)), 𝑀) ↾ ω) & ⊢ 𝐻 = (𝑛 ∈ ω, 𝑥 ∈ 𝐴 ↦ ((𝐺‘𝑛)𝐹𝑥)) ⇒ ⊢ ((𝐶 ∈ 𝐴 ∧ 𝐹:(𝑍 × 𝐴)⟶(𝒫 𝐴 ∖ {∅})) → ∃𝑔(𝑔:𝑍⟶𝐴 ∧ (𝑔‘𝑀) = 𝐶 ∧ ∀𝑘 ∈ 𝑍 (𝑔‘(𝑘 + 1)) ∈ (𝑘𝐹(𝑔‘𝑘)))) | ||
Theorem | axdc4uz 13443* | A version of axdc4 9956 that works on an upper set of integers instead of ω. (Contributed by Mario Carneiro, 8-Jan-2014.) |
⊢ 𝑀 ∈ ℤ & ⊢ 𝑍 = (ℤ≥‘𝑀) ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝐴 ∧ 𝐹:(𝑍 × 𝐴)⟶(𝒫 𝐴 ∖ {∅})) → ∃𝑔(𝑔:𝑍⟶𝐴 ∧ (𝑔‘𝑀) = 𝐶 ∧ ∀𝑘 ∈ 𝑍 (𝑔‘(𝑘 + 1)) ∈ (𝑘𝐹(𝑔‘𝑘)))) | ||
Theorem | ssnn0fi 13444* | A subset of the nonnegative integers is finite if and only if there is a nonnegative integer so that all integers greater than this integer are not contained in the subset. (Contributed by AV, 3-Oct-2019.) |
⊢ (𝑆 ⊆ ℕ0 → (𝑆 ∈ Fin ↔ ∃𝑠 ∈ ℕ0 ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → 𝑥 ∉ 𝑆))) | ||
Theorem | rabssnn0fi 13445* | A subset of the nonnegative integers defined by a restricted class abstraction is finite if there is a nonnegative integer so that for all integers greater than this integer the condition of the class abstraction is not fulfilled. (Contributed by AV, 3-Oct-2019.) |
⊢ ({𝑥 ∈ ℕ0 ∣ 𝜑} ∈ Fin ↔ ∃𝑠 ∈ ℕ0 ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ¬ 𝜑)) | ||
Theorem | uzsinds 13446* | Strong (or "total") induction principle over an upper set of integers. (Contributed by Scott Fenton, 16-May-2014.) |
⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = 𝑁 → (𝜑 ↔ 𝜒)) & ⊢ (𝑥 ∈ (ℤ≥‘𝑀) → (∀𝑦 ∈ (𝑀...(𝑥 − 1))𝜓 → 𝜑)) ⇒ ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝜒) | ||
Theorem | nnsinds 13447* | Strong (or "total") induction principle over the naturals. (Contributed by Scott Fenton, 16-May-2014.) |
⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = 𝑁 → (𝜑 ↔ 𝜒)) & ⊢ (𝑥 ∈ ℕ → (∀𝑦 ∈ (1...(𝑥 − 1))𝜓 → 𝜑)) ⇒ ⊢ (𝑁 ∈ ℕ → 𝜒) | ||
Theorem | nn0sinds 13448* | Strong (or "total") induction principle over the nonnegative integers. (Contributed by Scott Fenton, 16-May-2014.) |
⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = 𝑁 → (𝜑 ↔ 𝜒)) & ⊢ (𝑥 ∈ ℕ0 → (∀𝑦 ∈ (0...(𝑥 − 1))𝜓 → 𝜑)) ⇒ ⊢ (𝑁 ∈ ℕ0 → 𝜒) | ||
Theorem | fsuppmapnn0fiublem 13449* | Lemma for fsuppmapnn0fiub 13450 and fsuppmapnn0fiubex 13451. (Contributed by AV, 2-Oct-2019.) |
⊢ 𝑈 = ∪ 𝑓 ∈ 𝑀 (𝑓 supp 𝑍) & ⊢ 𝑆 = sup(𝑈, ℝ, < ) ⇒ ⊢ ((𝑀 ⊆ (𝑅 ↑m ℕ0) ∧ 𝑀 ∈ Fin ∧ 𝑍 ∈ 𝑉) → ((∀𝑓 ∈ 𝑀 𝑓 finSupp 𝑍 ∧ 𝑈 ≠ ∅) → 𝑆 ∈ ℕ0)) | ||
Theorem | fsuppmapnn0fiub 13450* | If all functions of a finite set of functions over the nonnegative integers are finitely supported, then the support of all these functions is contained in a finite set of sequential integers starting at 0 and ending with the supremum of the union of the support of these functions. (Contributed by AV, 2-Oct-2019.) (Proof shortened by JJ, 2-Aug-2021.) |
⊢ 𝑈 = ∪ 𝑓 ∈ 𝑀 (𝑓 supp 𝑍) & ⊢ 𝑆 = sup(𝑈, ℝ, < ) ⇒ ⊢ ((𝑀 ⊆ (𝑅 ↑m ℕ0) ∧ 𝑀 ∈ Fin ∧ 𝑍 ∈ 𝑉) → ((∀𝑓 ∈ 𝑀 𝑓 finSupp 𝑍 ∧ 𝑈 ≠ ∅) → ∀𝑓 ∈ 𝑀 (𝑓 supp 𝑍) ⊆ (0...𝑆))) | ||
Theorem | fsuppmapnn0fiubex 13451* | If all functions of a finite set of functions over the nonnegative integers are finitely supported, then the support of all these functions is contained in a finite set of sequential integers starting at 0. (Contributed by AV, 2-Oct-2019.) |
⊢ ((𝑀 ⊆ (𝑅 ↑m ℕ0) ∧ 𝑀 ∈ Fin ∧ 𝑍 ∈ 𝑉) → (∀𝑓 ∈ 𝑀 𝑓 finSupp 𝑍 → ∃𝑚 ∈ ℕ0 ∀𝑓 ∈ 𝑀 (𝑓 supp 𝑍) ⊆ (0...𝑚))) | ||
Theorem | fsuppmapnn0fiub0 13452* | If all functions of a finite set of functions over the nonnegative integers are finitely supported, then all these functions are zero for all integers greater than a fixed integer. (Contributed by AV, 3-Oct-2019.) |
⊢ ((𝑀 ⊆ (𝑅 ↑m ℕ0) ∧ 𝑀 ∈ Fin ∧ 𝑍 ∈ 𝑉) → (∀𝑓 ∈ 𝑀 𝑓 finSupp 𝑍 → ∃𝑚 ∈ ℕ0 ∀𝑓 ∈ 𝑀 ∀𝑥 ∈ ℕ0 (𝑚 < 𝑥 → (𝑓‘𝑥) = 𝑍))) | ||
Theorem | suppssfz 13453* | Condition for a function over the nonnegative integers to have a support contained in a finite set of sequential integers. (Contributed by AV, 9-Oct-2019.) |
⊢ (𝜑 → 𝑍 ∈ 𝑉) & ⊢ (𝜑 → 𝐹 ∈ (𝐵 ↑m ℕ0)) & ⊢ (𝜑 → 𝑆 ∈ ℕ0) & ⊢ (𝜑 → ∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹‘𝑥) = 𝑍)) ⇒ ⊢ (𝜑 → (𝐹 supp 𝑍) ⊆ (0...𝑆)) | ||
Theorem | fsuppmapnn0ub 13454* | If a function over the nonnegative integers is finitely supported, then there is an upper bound for the arguments resulting in nonzero values. (Contributed by AV, 6-Oct-2019.) |
⊢ ((𝐹 ∈ (𝑅 ↑m ℕ0) ∧ 𝑍 ∈ 𝑉) → (𝐹 finSupp 𝑍 → ∃𝑚 ∈ ℕ0 ∀𝑥 ∈ ℕ0 (𝑚 < 𝑥 → (𝐹‘𝑥) = 𝑍))) | ||
Theorem | fsuppmapnn0fz 13455* | If a function over the nonnegative integers is finitely supported, then there is an upper bound for a finite set of sequential integers containing the support of the function. (Contributed by AV, 30-Sep-2019.) (Proof shortened by AV, 6-Oct-2019.) |
⊢ ((𝐹 ∈ (𝑅 ↑m ℕ0) ∧ 𝑍 ∈ 𝑉) → (𝐹 finSupp 𝑍 → ∃𝑚 ∈ ℕ0 (𝐹 supp 𝑍) ⊆ (0...𝑚))) | ||
Theorem | mptnn0fsupp 13456* | A mapping from the nonnegative integers is finitely supported under certain conditions. (Contributed by AV, 5-Oct-2019.) (Revised by AV, 23-Dec-2019.) |
⊢ (𝜑 → 0 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → 𝐶 ∈ 𝐵) & ⊢ (𝜑 → ∃𝑠 ∈ ℕ0 ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ⦋𝑥 / 𝑘⦌𝐶 = 0 )) ⇒ ⊢ (𝜑 → (𝑘 ∈ ℕ0 ↦ 𝐶) finSupp 0 ) | ||
Theorem | mptnn0fsuppd 13457* | A mapping from the nonnegative integers is finitely supported under certain conditions. (Contributed by AV, 2-Dec-2019.) (Revised by AV, 23-Dec-2019.) |
⊢ (𝜑 → 0 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → 𝐶 ∈ 𝐵) & ⊢ (𝑘 = 𝑥 → 𝐶 = 𝐷) & ⊢ (𝜑 → ∃𝑠 ∈ ℕ0 ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → 𝐷 = 0 )) ⇒ ⊢ (𝜑 → (𝑘 ∈ ℕ0 ↦ 𝐶) finSupp 0 ) | ||
Theorem | mptnn0fsuppr 13458* | A finitely supported mapping from the nonnegative integers fulfills certain conditions. (Contributed by AV, 3-Nov-2019.) (Revised by AV, 23-Dec-2019.) |
⊢ (𝜑 → 0 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → 𝐶 ∈ 𝐵) & ⊢ (𝜑 → (𝑘 ∈ ℕ0 ↦ 𝐶) finSupp 0 ) ⇒ ⊢ (𝜑 → ∃𝑠 ∈ ℕ0 ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ⦋𝑥 / 𝑘⦌𝐶 = 0 )) | ||
Theorem | f13idfv 13459 | A one-to-one function with the domain { 0, 1 ,2 } in terms of function values. (Contributed by Alexander van der Vekens, 26-Jan-2018.) |
⊢ 𝐴 = (0...2) ⇒ ⊢ (𝐹:𝐴–1-1→𝐵 ↔ (𝐹:𝐴⟶𝐵 ∧ ((𝐹‘0) ≠ (𝐹‘1) ∧ (𝐹‘0) ≠ (𝐹‘2) ∧ (𝐹‘1) ≠ (𝐹‘2)))) | ||
Syntax | cseq 13460 | Extend class notation with recursive sequence builder. |
class seq𝑀( + , 𝐹) | ||
Definition | df-seq 13461* |
Define a general-purpose operation that builds a recursive sequence
(i.e., a function on an upper integer set such as ℕ or ℕ0)
whose value at an index is a function of its previous value and the
value of an input sequence at that index. This definition is
complicated, but fortunately it is not intended to be used directly.
Instead, the only purpose of this definition is to provide us with an
object that has the properties expressed by seq1 13473
and seqp1 13475.
Typically, those are the main theorems that would be used in practice.
The first operand in the parentheses is the operation that is applied to the previous value and the value of the input sequence (second operand). The operand to the left of the parenthesis is the integer to start from. For example, for the operation +, an input sequence 𝐹 with values 1, 1/2, 1/4, 1/8,... would be transformed into the output sequence seq1( + , 𝐹) with values 1, 3/2, 7/4, 15/8,.., so that (seq1( + , 𝐹)‘1) = 1, (seq1( + , 𝐹)‘2) = 3/2, etc. In other words, seq𝑀( + , 𝐹) transforms a sequence 𝐹 into an infinite series. seq𝑀( + , 𝐹) ⇝ 2 means "the sum of F(n) from n = M to infinity is 2." Since limits are unique (climuni 14999), by climdm 15001 the "sum of F(n) from n = 1 to infinity" can be expressed as ( ⇝ ‘seq1( + , 𝐹)) (provided the sequence converges) and evaluates to 2 in this example. Internally, the rec function generates as its values a set of ordered pairs starting at 〈𝑀, (𝐹‘𝑀)〉, with the first member of each pair incremented by one in each successive value. So, the range of rec is exactly the sequence we want, and we just extract the range (restricted to omega) and throw away the domain. This definition has its roots in a series of theorems from om2uz0i 13406 through om2uzf1oi 13412, originally proved by Raph Levien for use with df-exp 13522 and later generalized for arbitrary recursive sequences. Definition df-sum 15136 extracts the summation values from partial (finite) and complete (infinite) series. (Contributed by NM, 18-Apr-2005.) (Revised by Mario Carneiro, 4-Sep-2013.) |
⊢ seq𝑀( + , 𝐹) = (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉) “ ω) | ||
Theorem | seqex 13462 | Existence of the sequence builder operation. (Contributed by Mario Carneiro, 4-Sep-2013.) |
⊢ seq𝑀( + , 𝐹) ∈ V | ||
Theorem | seqeq1 13463 | Equality theorem for the sequence builder operation. (Contributed by Mario Carneiro, 4-Sep-2013.) |
⊢ (𝑀 = 𝑁 → seq𝑀( + , 𝐹) = seq𝑁( + , 𝐹)) | ||
Theorem | seqeq2 13464 | Equality theorem for the sequence builder operation. (Contributed by Mario Carneiro, 4-Sep-2013.) |
⊢ ( + = 𝑄 → seq𝑀( + , 𝐹) = seq𝑀(𝑄, 𝐹)) | ||
Theorem | seqeq3 13465 | Equality theorem for the sequence builder operation. (Contributed by Mario Carneiro, 4-Sep-2013.) |
⊢ (𝐹 = 𝐺 → seq𝑀( + , 𝐹) = seq𝑀( + , 𝐺)) | ||
Theorem | seqeq1d 13466 | Equality deduction for the sequence builder operation. (Contributed by Mario Carneiro, 7-Sep-2013.) |
⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → seq𝐴( + , 𝐹) = seq𝐵( + , 𝐹)) | ||
Theorem | seqeq2d 13467 | Equality deduction for the sequence builder operation. (Contributed by Mario Carneiro, 7-Sep-2013.) |
⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → seq𝑀(𝐴, 𝐹) = seq𝑀(𝐵, 𝐹)) | ||
Theorem | seqeq3d 13468 | Equality deduction for the sequence builder operation. (Contributed by Mario Carneiro, 7-Sep-2013.) |
⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → seq𝑀( + , 𝐴) = seq𝑀( + , 𝐵)) | ||
Theorem | seqeq123d 13469 | Equality deduction for the sequence builder operation. (Contributed by Mario Carneiro, 7-Sep-2013.) |
⊢ (𝜑 → 𝑀 = 𝑁) & ⊢ (𝜑 → + = 𝑄) & ⊢ (𝜑 → 𝐹 = 𝐺) ⇒ ⊢ (𝜑 → seq𝑀( + , 𝐹) = seq𝑁(𝑄, 𝐺)) | ||
Theorem | nfseq 13470 | Hypothesis builder for the sequence builder operation. (Contributed by Mario Carneiro, 24-Jun-2013.) (Revised by Mario Carneiro, 15-Oct-2016.) |
⊢ Ⅎ𝑥𝑀 & ⊢ Ⅎ𝑥 + & ⊢ Ⅎ𝑥𝐹 ⇒ ⊢ Ⅎ𝑥seq𝑀( + , 𝐹) | ||
Theorem | seqval 13471* | Value of the sequence builder function. (Contributed by Mario Carneiro, 24-Jun-2013.) |
⊢ 𝑅 = (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑥(𝑧 ∈ V, 𝑤 ∈ V ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)〉), 〈𝑀, (𝐹‘𝑀)〉) ↾ ω) ⇒ ⊢ seq𝑀( + , 𝐹) = ran 𝑅 | ||
Theorem | seqfn 13472 | The sequence builder function is a function. (Contributed by Mario Carneiro, 24-Jun-2013.) (Revised by Mario Carneiro, 15-Sep-2013.) |
⊢ (𝑀 ∈ ℤ → seq𝑀( + , 𝐹) Fn (ℤ≥‘𝑀)) | ||
Theorem | seq1 13473 | Value of the sequence builder function at its initial value. (Contributed by Mario Carneiro, 24-Jun-2013.) (Revised by Mario Carneiro, 15-Sep-2013.) |
⊢ (𝑀 ∈ ℤ → (seq𝑀( + , 𝐹)‘𝑀) = (𝐹‘𝑀)) | ||
Theorem | seq1i 13474 | Value of the sequence builder function at its initial value. (Contributed by Mario Carneiro, 30-Apr-2014.) |
⊢ 𝑀 ∈ ℤ & ⊢ (𝜑 → (𝐹‘𝑀) = 𝐴) ⇒ ⊢ (𝜑 → (seq𝑀( + , 𝐹)‘𝑀) = 𝐴) | ||
Theorem | seqp1 13475 | Value of the sequence builder function at a successor. (Contributed by Mario Carneiro, 24-Jun-2013.) (Revised by Mario Carneiro, 15-Sep-2013.) |
⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (seq𝑀( + , 𝐹)‘(𝑁 + 1)) = ((seq𝑀( + , 𝐹)‘𝑁) + (𝐹‘(𝑁 + 1)))) | ||
Theorem | seqexw 13476 | Weak version of seqex 13462 that holds without ax-rep 5154. A sequence builder exists when its binary operation input exists and its starting index is an integer. (Contributed by Rohan Ridenour, 14-Aug-2023.) |
⊢ + ∈ V & ⊢ 𝑀 ∈ ℤ ⇒ ⊢ seq𝑀( + , 𝐹) ∈ V | ||
Theorem | seqp1d 13477 | Value of the sequence builder function at a successor, deduction form. (Contributed by Mario Carneiro, 30-Apr-2014.) (Revised by AV, 3-May-2024.) |
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑁 ∈ 𝑍) & ⊢ 𝐾 = (𝑁 + 1) & ⊢ (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) = 𝐴) & ⊢ (𝜑 → (𝐹‘𝐾) = 𝐵) ⇒ ⊢ (𝜑 → (seq𝑀( + , 𝐹)‘𝐾) = (𝐴 + 𝐵)) | ||
Theorem | seqp1iOLD 13478 | Obsolete version of seqp1d 13477 as of 3-May-2024. Value of the sequence builder function at a successor. (Contributed by Mario Carneiro, 30-Apr-2014.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ 𝑁 ∈ 𝑍 & ⊢ 𝐾 = (𝑁 + 1) & ⊢ (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) = 𝐴) & ⊢ (𝜑 → (𝐹‘𝐾) = 𝐵) ⇒ ⊢ (𝜑 → (seq𝑀( + , 𝐹)‘𝐾) = (𝐴 + 𝐵)) | ||
Theorem | seqm1 13479 | Value of the sequence builder function at a successor. (Contributed by Mario Carneiro, 24-Jun-2013.) |
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ (ℤ≥‘(𝑀 + 1))) → (seq𝑀( + , 𝐹)‘𝑁) = ((seq𝑀( + , 𝐹)‘(𝑁 − 1)) + (𝐹‘𝑁))) | ||
Theorem | seqcl2 13480* | Closure properties of the recursive sequence builder. (Contributed by Mario Carneiro, 2-Jul-2013.) (Revised by Mario Carneiro, 27-May-2014.) |
⊢ (𝜑 → (𝐹‘𝑀) ∈ 𝐶) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷)) → (𝑥 + 𝑦) ∈ 𝐶) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑀 + 1)...𝑁)) → (𝐹‘𝑥) ∈ 𝐷) ⇒ ⊢ (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) ∈ 𝐶) | ||
Theorem | seqf2 13481* | Range of the recursive sequence builder. (Contributed by Mario Carneiro, 24-Jun-2013.) (Revised by Mario Carneiro, 27-May-2014.) |
⊢ (𝜑 → (𝐹‘𝑀) ∈ 𝐶) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷)) → (𝑥 + 𝑦) ∈ 𝐶) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘(𝑀 + 1))) → (𝐹‘𝑥) ∈ 𝐷) ⇒ ⊢ (𝜑 → seq𝑀( + , 𝐹):𝑍⟶𝐶) | ||
Theorem | seqcl 13482* | Closure properties of the recursive sequence builder. (Contributed by Mario Carneiro, 2-Jul-2013.) (Revised by Mario Carneiro, 27-May-2014.) |
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝐹‘𝑥) ∈ 𝑆) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) ⇒ ⊢ (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) ∈ 𝑆) | ||
Theorem | seqf 13483* | Range of the recursive sequence builder (special case of seqf2 13481). (Contributed by Mario Carneiro, 24-Jun-2013.) |
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑍) → (𝐹‘𝑥) ∈ 𝑆) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) ⇒ ⊢ (𝜑 → seq𝑀( + , 𝐹):𝑍⟶𝑆) | ||
Theorem | seqfveq2 13484* | Equality of sequences. (Contributed by NM, 17-Mar-2005.) (Revised by Mario Carneiro, 27-May-2014.) |
⊢ (𝜑 → 𝐾 ∈ (ℤ≥‘𝑀)) & ⊢ (𝜑 → (seq𝑀( + , 𝐹)‘𝐾) = (𝐺‘𝐾)) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝐾)) & ⊢ ((𝜑 ∧ 𝑘 ∈ ((𝐾 + 1)...𝑁)) → (𝐹‘𝑘) = (𝐺‘𝑘)) ⇒ ⊢ (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) = (seq𝐾( + , 𝐺)‘𝑁)) | ||
Theorem | seqfeq2 13485* | Equality of sequences. (Contributed by Mario Carneiro, 13-Jul-2013.) (Revised by Mario Carneiro, 27-May-2014.) |
⊢ (𝜑 → 𝐾 ∈ (ℤ≥‘𝑀)) & ⊢ (𝜑 → (seq𝑀( + , 𝐹)‘𝐾) = (𝐺‘𝐾)) & ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘(𝐾 + 1))) → (𝐹‘𝑘) = (𝐺‘𝑘)) ⇒ ⊢ (𝜑 → (seq𝑀( + , 𝐹) ↾ (ℤ≥‘𝐾)) = seq𝐾( + , 𝐺)) | ||
Theorem | seqfveq 13486* | Equality of sequences. (Contributed by NM, 17-Mar-2005.) (Revised by Mario Carneiro, 27-May-2014.) |
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐹‘𝑘) = (𝐺‘𝑘)) ⇒ ⊢ (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) = (seq𝑀( + , 𝐺)‘𝑁)) | ||
Theorem | seqfeq 13487* | Equality of sequences. (Contributed by Mario Carneiro, 13-Jul-2013.) (Revised by Mario Carneiro, 27-May-2014.) |
⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑘) = (𝐺‘𝑘)) ⇒ ⊢ (𝜑 → seq𝑀( + , 𝐹) = seq𝑀( + , 𝐺)) | ||
Theorem | seqshft2 13488* | Shifting the index set of a sequence. (Contributed by Mario Carneiro, 27-Feb-2014.) (Revised by Mario Carneiro, 27-May-2014.) |
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ (𝜑 → 𝐾 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐹‘𝑘) = (𝐺‘(𝑘 + 𝐾))) ⇒ ⊢ (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) = (seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑁 + 𝐾))) | ||
Theorem | seqres 13489 | Restricting its characteristic function to (ℤ≥‘𝑀) does not affect the seq function. (Contributed by Mario Carneiro, 24-Jun-2013.) (Revised by Mario Carneiro, 27-May-2014.) |
⊢ (𝑀 ∈ ℤ → seq𝑀( + , (𝐹 ↾ (ℤ≥‘𝑀))) = seq𝑀( + , 𝐹)) | ||
Theorem | serf 13490* | An infinite series of complex terms is a function from ℕ to ℂ. (Contributed by NM, 18-Apr-2005.) (Revised by Mario Carneiro, 27-May-2014.) |
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) ⇒ ⊢ (𝜑 → seq𝑀( + , 𝐹):𝑍⟶ℂ) | ||
Theorem | serfre 13491* | An infinite series of real numbers is a function from ℕ to ℝ. (Contributed by NM, 18-Apr-2005.) (Revised by Mario Carneiro, 27-May-2014.) |
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℝ) ⇒ ⊢ (𝜑 → seq𝑀( + , 𝐹):𝑍⟶ℝ) | ||
Theorem | monoord 13492* | Ordering relation for a monotonic sequence, increasing case. (Contributed by NM, 13-Mar-2005.) (Revised by Mario Carneiro, 9-Feb-2014.) |
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐹‘𝑘) ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...(𝑁 − 1))) → (𝐹‘𝑘) ≤ (𝐹‘(𝑘 + 1))) ⇒ ⊢ (𝜑 → (𝐹‘𝑀) ≤ (𝐹‘𝑁)) | ||
Theorem | monoord2 13493* | Ordering relation for a monotonic sequence, decreasing case. (Contributed by Mario Carneiro, 18-Jul-2014.) |
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐹‘𝑘) ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...(𝑁 − 1))) → (𝐹‘(𝑘 + 1)) ≤ (𝐹‘𝑘)) ⇒ ⊢ (𝜑 → (𝐹‘𝑁) ≤ (𝐹‘𝑀)) | ||
Theorem | sermono 13494* | The partial sums in an infinite series of positive terms form a monotonic sequence. (Contributed by NM, 17-Mar-2005.) (Revised by Mario Carneiro, 30-Jun-2013.) |
⊢ (𝜑 → 𝐾 ∈ (ℤ≥‘𝑀)) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝐾)) & ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝐹‘𝑥) ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐾 + 1)...𝑁)) → 0 ≤ (𝐹‘𝑥)) ⇒ ⊢ (𝜑 → (seq𝑀( + , 𝐹)‘𝐾) ≤ (seq𝑀( + , 𝐹)‘𝑁)) | ||
Theorem | seqsplit 13495* | Split a sequence into two sequences. (Contributed by NM, 17-Mar-2005.) (Revised by Mario Carneiro, 27-May-2014.) |
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘(𝑀 + 1))) & ⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘𝐾)) & ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐾...𝑁)) → (𝐹‘𝑥) ∈ 𝑆) ⇒ ⊢ (𝜑 → (seq𝐾( + , 𝐹)‘𝑁) = ((seq𝐾( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘𝑁))) | ||
Theorem | seq1p 13496* | Removing the first term from a sequence. (Contributed by NM, 17-Mar-2005.) (Revised by Mario Carneiro, 27-May-2014.) |
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘(𝑀 + 1))) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝐹‘𝑥) ∈ 𝑆) ⇒ ⊢ (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) = ((𝐹‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘𝑁))) | ||
Theorem | seqcaopr3 13497* | Lemma for seqcaopr2 13498. (Contributed by Mario Carneiro, 25-Apr-2016.) |
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝑄𝑦) ∈ 𝑆) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐹‘𝑘) ∈ 𝑆) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐺‘𝑘) ∈ 𝑆) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐻‘𝑘) = ((𝐹‘𝑘)𝑄(𝐺‘𝑘))) & ⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁)) → (((seq𝑀( + , 𝐹)‘𝑛)𝑄(seq𝑀( + , 𝐺)‘𝑛)) + ((𝐹‘(𝑛 + 1))𝑄(𝐺‘(𝑛 + 1)))) = (((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1)))𝑄((seq𝑀( + , 𝐺)‘𝑛) + (𝐺‘(𝑛 + 1))))) ⇒ ⊢ (𝜑 → (seq𝑀( + , 𝐻)‘𝑁) = ((seq𝑀( + , 𝐹)‘𝑁)𝑄(seq𝑀( + , 𝐺)‘𝑁))) | ||
Theorem | seqcaopr2 13498* | The sum of two infinite series (generalized to an arbitrary commutative and associative operation). (Contributed by Mario Carneiro, 30-May-2014.) |
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝑄𝑦) ∈ 𝑆) & ⊢ ((𝜑 ∧ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆))) → ((𝑥𝑄𝑧) + (𝑦𝑄𝑤)) = ((𝑥 + 𝑦)𝑄(𝑧 + 𝑤))) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐹‘𝑘) ∈ 𝑆) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐺‘𝑘) ∈ 𝑆) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐻‘𝑘) = ((𝐹‘𝑘)𝑄(𝐺‘𝑘))) ⇒ ⊢ (𝜑 → (seq𝑀( + , 𝐻)‘𝑁) = ((seq𝑀( + , 𝐹)‘𝑁)𝑄(seq𝑀( + , 𝐺)‘𝑁))) | ||
Theorem | seqcaopr 13499* | The sum of two infinite series (generalized to an arbitrary commutative and associative operation). (Contributed by NM, 17-Mar-2005.) (Revised by Mario Carneiro, 30-May-2014.) |
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) = (𝑦 + 𝑥)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐹‘𝑘) ∈ 𝑆) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐺‘𝑘) ∈ 𝑆) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐻‘𝑘) = ((𝐹‘𝑘) + (𝐺‘𝑘))) ⇒ ⊢ (𝜑 → (seq𝑀( + , 𝐻)‘𝑁) = ((seq𝑀( + , 𝐹)‘𝑁) + (seq𝑀( + , 𝐺)‘𝑁))) | ||
Theorem | seqf1olem2a 13500* | Lemma for seqf1o 13503. (Contributed by Mario Carneiro, 24-Apr-2016.) |
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶)) → (𝑥 + 𝑦) = (𝑦 + 𝑥)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ (𝜑 → 𝐶 ⊆ 𝑆) & ⊢ (𝜑 → 𝐺:𝐴⟶𝐶) & ⊢ (𝜑 → 𝐾 ∈ 𝐴) & ⊢ (𝜑 → (𝑀...𝑁) ⊆ 𝐴) ⇒ ⊢ (𝜑 → ((𝐺‘𝐾) + (seq𝑀( + , 𝐺)‘𝑁)) = ((seq𝑀( + , 𝐺)‘𝑁) + (𝐺‘𝐾))) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |