Home | Metamath
Proof Explorer Theorem List (p. 135 of 464) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-29181) |
Hilbert Space Explorer
(29182-30704) |
Users' Mathboxes
(30705-46395) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | fzo0to3tp 13401 | A half-open integer range from 0 to 3 is an unordered triple. (Contributed by Alexander van der Vekens, 9-Nov-2017.) |
⊢ (0..^3) = {0, 1, 2} | ||
Theorem | fzo0to42pr 13402 | A half-open integer range from 0 to 4 is a union of two unordered pairs. (Contributed by Alexander van der Vekens, 17-Nov-2017.) |
⊢ (0..^4) = ({0, 1} ∪ {2, 3}) | ||
Theorem | fzo1to4tp 13403 | A half-open integer range from 1 to 4 is an unordered triple. (Contributed by AV, 28-Jul-2021.) |
⊢ (1..^4) = {1, 2, 3} | ||
Theorem | fzo0sn0fzo1 13404 | A half-open range of nonnegative integers is the union of the singleton set containing 0 and a half-open range of positive integers. (Contributed by Alexander van der Vekens, 18-May-2018.) |
⊢ (𝑁 ∈ ℕ → (0..^𝑁) = ({0} ∪ (1..^𝑁))) | ||
Theorem | elfzo0l 13405 | A member of a half-open range of nonnegative integers is either 0 or a member of the corresponding half-open range of positive integers. (Contributed by AV, 5-Feb-2021.) |
⊢ (𝐾 ∈ (0..^𝑁) → (𝐾 = 0 ∨ 𝐾 ∈ (1..^𝑁))) | ||
Theorem | fzoend 13406 | The endpoint of a half-open integer range. (Contributed by Mario Carneiro, 29-Sep-2015.) |
⊢ (𝐴 ∈ (𝐴..^𝐵) → (𝐵 − 1) ∈ (𝐴..^𝐵)) | ||
Theorem | fzo0end 13407 | The endpoint of a zero-based half-open range. (Contributed by Stefan O'Rear, 27-Aug-2015.) (Revised by Mario Carneiro, 29-Sep-2015.) |
⊢ (𝐵 ∈ ℕ → (𝐵 − 1) ∈ (0..^𝐵)) | ||
Theorem | ssfzo12 13408 | Subset relationship for half-open integer ranges. (Contributed by Alexander van der Vekens, 16-Mar-2018.) |
⊢ ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ 𝐾 < 𝐿) → ((𝐾..^𝐿) ⊆ (𝑀..^𝑁) → (𝑀 ≤ 𝐾 ∧ 𝐿 ≤ 𝑁))) | ||
Theorem | ssfzoulel 13409 | If a half-open integer range is a subset of a half-open range of nonnegative integers, but its lower bound is greater than or equal to the upper bound of the containing range, or its upper bound is less than or equal to 0, then its upper bound is less than or equal to its lower bound (and therefore it is actually empty). (Contributed by Alexander van der Vekens, 24-May-2018.) |
⊢ ((𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝑁 ≤ 𝐴 ∨ 𝐵 ≤ 0) → ((𝐴..^𝐵) ⊆ (0..^𝑁) → 𝐵 ≤ 𝐴))) | ||
Theorem | ssfzo12bi 13410 | Subset relationship for half-open integer ranges. (Contributed by Alexander van der Vekens, 5-Nov-2018.) |
⊢ (((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 < 𝐿) → ((𝐾..^𝐿) ⊆ (𝑀..^𝑁) ↔ (𝑀 ≤ 𝐾 ∧ 𝐿 ≤ 𝑁))) | ||
Theorem | ubmelm1fzo 13411 | The result of subtracting 1 and an integer of a half-open range of nonnegative integers from the upper bound of this range is contained in this range. (Contributed by AV, 23-Mar-2018.) (Revised by AV, 30-Oct-2018.) |
⊢ (𝐾 ∈ (0..^𝑁) → ((𝑁 − 𝐾) − 1) ∈ (0..^𝑁)) | ||
Theorem | fzofzp1 13412 | If a point is in a half-open range, the next point is in the closed range. (Contributed by Stefan O'Rear, 23-Aug-2015.) |
⊢ (𝐶 ∈ (𝐴..^𝐵) → (𝐶 + 1) ∈ (𝐴...𝐵)) | ||
Theorem | fzofzp1b 13413 | If a point is in a half-open range, the next point is in the closed range. (Contributed by Mario Carneiro, 27-Sep-2015.) |
⊢ (𝐶 ∈ (ℤ≥‘𝐴) → (𝐶 ∈ (𝐴..^𝐵) ↔ (𝐶 + 1) ∈ (𝐴...𝐵))) | ||
Theorem | elfzom1b 13414 | An integer is a member of a 1-based finite set of sequential integers iff its predecessor is a member of the corresponding 0-based set. (Contributed by Mario Carneiro, 27-Sep-2015.) |
⊢ ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (1..^𝑁) ↔ (𝐾 − 1) ∈ (0..^(𝑁 − 1)))) | ||
Theorem | elfzom1elp1fzo1 13415 | Membership of a nonnegative integer incremented by one in a half-open range of positive integers. (Contributed by AV, 20-Mar-2021.) |
⊢ ((𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(𝑁 − 1))) → (𝐼 + 1) ∈ (1..^𝑁)) | ||
Theorem | elfzo1elm1fzo0 13416 | Membership of a positive integer decremented by one in a half-open range of nonnegative integers. (Contributed by AV, 20-Mar-2021.) |
⊢ (𝐼 ∈ (1..^𝑁) → (𝐼 − 1) ∈ (0..^(𝑁 − 1))) | ||
Theorem | elfzonelfzo 13417 | If an element of a half-open integer range is not contained in the lower subrange, it must be in the upper subrange. (Contributed by Alexander van der Vekens, 30-Mar-2018.) |
⊢ (𝑁 ∈ ℤ → ((𝐾 ∈ (𝑀..^𝑅) ∧ ¬ 𝐾 ∈ (𝑀..^𝑁)) → 𝐾 ∈ (𝑁..^𝑅))) | ||
Theorem | fzonfzoufzol 13418 | If an element of a half-open integer range is not in the upper part of the range, it is in the lower part of the range. (Contributed by Alexander van der Vekens, 29-Oct-2018.) |
⊢ ((𝑀 ∈ ℤ ∧ 𝑀 < 𝑁 ∧ 𝐼 ∈ (0..^𝑁)) → (¬ 𝐼 ∈ ((𝑁 − 𝑀)..^𝑁) → 𝐼 ∈ (0..^(𝑁 − 𝑀)))) | ||
Theorem | elfzomelpfzo 13419 | An integer increased by another integer is an element of a half-open integer range if and only if the integer is contained in the half-open integer range with bounds decreased by the other integer. (Contributed by Alexander van der Vekens, 30-Mar-2018.) |
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → (𝐾 ∈ ((𝑀 − 𝐿)..^(𝑁 − 𝐿)) ↔ (𝐾 + 𝐿) ∈ (𝑀..^𝑁))) | ||
Theorem | elfznelfzo 13420 | A value in a finite set of sequential integers is a border value if it is not contained in the half-open integer range contained in the finite set of sequential integers. (Contributed by Alexander van der Vekens, 31-Oct-2017.) (Revised by Thierry Arnoux, 22-Dec-2021.) |
⊢ ((𝑀 ∈ (0...𝐾) ∧ ¬ 𝑀 ∈ (1..^𝐾)) → (𝑀 = 0 ∨ 𝑀 = 𝐾)) | ||
Theorem | elfznelfzob 13421 | A value in a finite set of sequential integers is a border value if and only if it is not contained in the half-open integer range contained in the finite set of sequential integers. (Contributed by Alexander van der Vekens, 17-Jan-2018.) (Revised by Thierry Arnoux, 22-Dec-2021.) |
⊢ (𝑀 ∈ (0...𝐾) → (¬ 𝑀 ∈ (1..^𝐾) ↔ (𝑀 = 0 ∨ 𝑀 = 𝐾))) | ||
Theorem | peano2fzor 13422 | A Peano-postulate-like theorem for downward closure of a half-open integer range. (Contributed by Mario Carneiro, 1-Oct-2015.) |
⊢ ((𝐾 ∈ (ℤ≥‘𝑀) ∧ (𝐾 + 1) ∈ (𝑀..^𝑁)) → 𝐾 ∈ (𝑀..^𝑁)) | ||
Theorem | fzosplitsn 13423 | Extending a half-open range by a singleton on the end. (Contributed by Stefan O'Rear, 23-Aug-2015.) |
⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (𝐴..^(𝐵 + 1)) = ((𝐴..^𝐵) ∪ {𝐵})) | ||
Theorem | fzosplitpr 13424 | Extending a half-open integer range by an unordered pair at the end. (Contributed by Alexander van der Vekens, 22-Sep-2018.) |
⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (𝐴..^(𝐵 + 2)) = ((𝐴..^𝐵) ∪ {𝐵, (𝐵 + 1)})) | ||
Theorem | fzosplitprm1 13425 | Extending a half-open integer range by an unordered pair at the end. (Contributed by Alexander van der Vekens, 22-Sep-2018.) (Proof shortened by AV, 25-Jun-2022.) |
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 < 𝐵) → (𝐴..^(𝐵 + 1)) = ((𝐴..^(𝐵 − 1)) ∪ {(𝐵 − 1), 𝐵})) | ||
Theorem | fzosplitsni 13426 | Membership in a half-open range extended by a singleton. (Contributed by Stefan O'Rear, 23-Aug-2015.) |
⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (𝐶 ∈ (𝐴..^(𝐵 + 1)) ↔ (𝐶 ∈ (𝐴..^𝐵) ∨ 𝐶 = 𝐵))) | ||
Theorem | fzisfzounsn 13427 | A finite interval of integers as union of a half-open integer range and a singleton. (Contributed by Alexander van der Vekens, 15-Jun-2018.) |
⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (𝐴...𝐵) = ((𝐴..^𝐵) ∪ {𝐵})) | ||
Theorem | elfzr 13428 | A member of a finite interval of integers is either a member of the corresponding half-open integer range or the upper bound of the interval. (Contributed by AV, 5-Feb-2021.) |
⊢ (𝐾 ∈ (𝑀...𝑁) → (𝐾 ∈ (𝑀..^𝑁) ∨ 𝐾 = 𝑁)) | ||
Theorem | elfzlmr 13429 | A member of a finite interval of integers is either its lower bound or its upper bound or an element of its interior. (Contributed by AV, 5-Feb-2021.) |
⊢ (𝐾 ∈ (𝑀...𝑁) → (𝐾 = 𝑀 ∨ 𝐾 ∈ ((𝑀 + 1)..^𝑁) ∨ 𝐾 = 𝑁)) | ||
Theorem | elfz0lmr 13430 | A member of a finite interval of nonnegative integers is either 0 or its upper bound or an element of its interior. (Contributed by AV, 5-Feb-2021.) |
⊢ (𝐾 ∈ (0...𝑁) → (𝐾 = 0 ∨ 𝐾 ∈ (1..^𝑁) ∨ 𝐾 = 𝑁)) | ||
Theorem | fzostep1 13431 | Two possibilities for a number one greater than a number in a half-open range. (Contributed by Stefan O'Rear, 23-Aug-2015.) |
⊢ (𝐴 ∈ (𝐵..^𝐶) → ((𝐴 + 1) ∈ (𝐵..^𝐶) ∨ (𝐴 + 1) = 𝐶)) | ||
Theorem | fzoshftral 13432* | Shift the scanning order inside of a universal quantification restricted to a half-open integer range, analogous to fzshftral 13273. (Contributed by Alexander van der Vekens, 23-Sep-2018.) |
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (∀𝑗 ∈ (𝑀..^𝑁)𝜑 ↔ ∀𝑘 ∈ ((𝑀 + 𝐾)..^(𝑁 + 𝐾))[(𝑘 − 𝐾) / 𝑗]𝜑)) | ||
Theorem | fzind2 13433* | Induction on the integers from 𝑀 to 𝑁 inclusive. The first four hypotheses give us the substitution instances we need; the last two are the basis and the induction step. Version of fzind 12348 using integer range definitions. (Contributed by Mario Carneiro, 6-Feb-2016.) |
⊢ (𝑥 = 𝑀 → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) & ⊢ (𝑥 = (𝑦 + 1) → (𝜑 ↔ 𝜃)) & ⊢ (𝑥 = 𝐾 → (𝜑 ↔ 𝜏)) & ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝜓) & ⊢ (𝑦 ∈ (𝑀..^𝑁) → (𝜒 → 𝜃)) ⇒ ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝜏) | ||
Theorem | fvinim0ffz 13434 | The function values for the borders of a finite interval of integers, which is the domain of the function, are not in the image of the interior of the interval iff the intersection of the images of the interior and the borders is empty. (Contributed by Alexander van der Vekens, 31-Oct-2017.) (Revised by AV, 5-Feb-2021.) |
⊢ ((𝐹:(0...𝐾)⟶𝑉 ∧ 𝐾 ∈ ℕ0) → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ ↔ ((𝐹‘0) ∉ (𝐹 “ (1..^𝐾)) ∧ (𝐹‘𝐾) ∉ (𝐹 “ (1..^𝐾))))) | ||
Theorem | injresinjlem 13435 | Lemma for injresinj 13436. (Contributed by Alexander van der Vekens, 31-Oct-2017.) (Proof shortened by AV, 14-Feb-2021.) (Revised by Thierry Arnoux, 23-Dec-2021.) |
⊢ (¬ 𝑌 ∈ (1..^𝐾) → ((𝐹‘0) ≠ (𝐹‘𝐾) → ((𝐹:(0...𝐾)⟶𝑉 ∧ 𝐾 ∈ ℕ0) → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → ((𝑋 ∈ (0...𝐾) ∧ 𝑌 ∈ (0...𝐾)) → ((𝐹‘𝑋) = (𝐹‘𝑌) → 𝑋 = 𝑌)))))) | ||
Theorem | injresinj 13436 | A function whose restriction is injective and the values of the remaining arguments are different from all other values is injective itself. (Contributed by Alexander van der Vekens, 31-Oct-2017.) |
⊢ (𝐾 ∈ ℕ0 → ((𝐹:(0...𝐾)⟶𝑉 ∧ Fun ◡(𝐹 ↾ (1..^𝐾)) ∧ (𝐹‘0) ≠ (𝐹‘𝐾)) → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → Fun ◡𝐹))) | ||
Theorem | subfzo0 13437 | The difference between two elements in a half-open range of nonnegative integers is greater than the negation of the upper bound and less than the upper bound of the range. (Contributed by AV, 20-Mar-2021.) |
⊢ ((𝐼 ∈ (0..^𝑁) ∧ 𝐽 ∈ (0..^𝑁)) → (-𝑁 < (𝐼 − 𝐽) ∧ (𝐼 − 𝐽) < 𝑁)) | ||
Syntax | cfl 13438 | Extend class notation with floor (greatest integer) function. |
class ⌊ | ||
Syntax | cceil 13439 | Extend class notation to include the ceiling function. |
class ⌈ | ||
Definition | df-fl 13440* |
Define the floor (greatest integer less than or equal to) function. See
flval 13442 for its value, fllelt 13445 for its basic property, and flcl 13443
for
its closure. For example, (⌊‘(3 / 2)) =
1 while
(⌊‘-(3 / 2)) = -2 (ex-fl 28712).
The term "floor" was coined by Ken Iverson. He also invented a mathematical notation for floor, consisting of an L-shaped left bracket and its reflection as a right bracket. In APL, the left-bracket alone is used, and we borrow this idea. (Thanks to Paul Chapman for this information.) (Contributed by NM, 14-Nov-2004.) |
⊢ ⌊ = (𝑥 ∈ ℝ ↦ (℩𝑦 ∈ ℤ (𝑦 ≤ 𝑥 ∧ 𝑥 < (𝑦 + 1)))) | ||
Definition | df-ceil 13441 |
The ceiling (least integer greater than or equal to) function. Defined in
ISO 80000-2:2009(E) operation 2-9.18 and the "NIST Digital Library of
Mathematical Functions" , front introduction, "Common Notations
and
Definitions" section at http://dlmf.nist.gov/front/introduction#Sx4.
See ceilval 13486 for its value, ceilge 13493 and ceilm1lt 13496 for its basic
properties, and ceilcl 13490 for its closure. For example,
(⌈‘(3 / 2)) = 2 while (⌈‘-(3 / 2)) = -1
(ex-ceil 28713).
The symbol ⌈ is inspired by the gamma shaped left bracket of the usual notation. (Contributed by David A. Wheeler, 19-May-2015.) |
⊢ ⌈ = (𝑥 ∈ ℝ ↦ -(⌊‘-𝑥)) | ||
Theorem | flval 13442* | Value of the floor (greatest integer) function. The floor of 𝐴 is the (unique) integer less than or equal to 𝐴 whose successor is strictly greater than 𝐴. (Contributed by NM, 14-Nov-2004.) (Revised by Mario Carneiro, 2-Nov-2013.) |
⊢ (𝐴 ∈ ℝ → (⌊‘𝐴) = (℩𝑥 ∈ ℤ (𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1)))) | ||
Theorem | flcl 13443 | The floor (greatest integer) function is an integer (closure law). (Contributed by NM, 15-Nov-2004.) (Revised by Mario Carneiro, 2-Nov-2013.) |
⊢ (𝐴 ∈ ℝ → (⌊‘𝐴) ∈ ℤ) | ||
Theorem | reflcl 13444 | The floor (greatest integer) function is real. (Contributed by NM, 15-Jul-2008.) |
⊢ (𝐴 ∈ ℝ → (⌊‘𝐴) ∈ ℝ) | ||
Theorem | fllelt 13445 | A basic property of the floor (greatest integer) function. (Contributed by NM, 15-Nov-2004.) (Revised by Mario Carneiro, 2-Nov-2013.) |
⊢ (𝐴 ∈ ℝ → ((⌊‘𝐴) ≤ 𝐴 ∧ 𝐴 < ((⌊‘𝐴) + 1))) | ||
Theorem | flcld 13446 | The floor (greatest integer) function is an integer (closure law). (Contributed by Mario Carneiro, 28-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) ⇒ ⊢ (𝜑 → (⌊‘𝐴) ∈ ℤ) | ||
Theorem | flle 13447 | A basic property of the floor (greatest integer) function. (Contributed by NM, 24-Feb-2005.) |
⊢ (𝐴 ∈ ℝ → (⌊‘𝐴) ≤ 𝐴) | ||
Theorem | flltp1 13448 | A basic property of the floor (greatest integer) function. (Contributed by NM, 24-Feb-2005.) |
⊢ (𝐴 ∈ ℝ → 𝐴 < ((⌊‘𝐴) + 1)) | ||
Theorem | fllep1 13449 | A basic property of the floor (greatest integer) function. (Contributed by Mario Carneiro, 21-May-2016.) |
⊢ (𝐴 ∈ ℝ → 𝐴 ≤ ((⌊‘𝐴) + 1)) | ||
Theorem | fraclt1 13450 | The fractional part of a real number is less than one. (Contributed by NM, 15-Jul-2008.) |
⊢ (𝐴 ∈ ℝ → (𝐴 − (⌊‘𝐴)) < 1) | ||
Theorem | fracle1 13451 | The fractional part of a real number is less than or equal to one. (Contributed by Mario Carneiro, 21-May-2016.) |
⊢ (𝐴 ∈ ℝ → (𝐴 − (⌊‘𝐴)) ≤ 1) | ||
Theorem | fracge0 13452 | The fractional part of a real number is nonnegative. (Contributed by NM, 17-Jul-2008.) |
⊢ (𝐴 ∈ ℝ → 0 ≤ (𝐴 − (⌊‘𝐴))) | ||
Theorem | flge 13453 | The floor function value is the greatest integer less than or equal to its argument. (Contributed by NM, 15-Nov-2004.) (Proof shortened by Fan Zheng, 14-Jul-2016.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ) → (𝐵 ≤ 𝐴 ↔ 𝐵 ≤ (⌊‘𝐴))) | ||
Theorem | fllt 13454 | The floor function value is less than the next integer. (Contributed by NM, 24-Feb-2005.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ) → (𝐴 < 𝐵 ↔ (⌊‘𝐴) < 𝐵)) | ||
Theorem | flflp1 13455 | Move floor function between strict and non-strict inequality. (Contributed by Brendan Leahy, 25-Oct-2017.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((⌊‘𝐴) ≤ 𝐵 ↔ 𝐴 < ((⌊‘𝐵) + 1))) | ||
Theorem | flid 13456 | An integer is its own floor. (Contributed by NM, 15-Nov-2004.) |
⊢ (𝐴 ∈ ℤ → (⌊‘𝐴) = 𝐴) | ||
Theorem | flidm 13457 | The floor function is idempotent. (Contributed by NM, 17-Aug-2008.) |
⊢ (𝐴 ∈ ℝ → (⌊‘(⌊‘𝐴)) = (⌊‘𝐴)) | ||
Theorem | flidz 13458 | A real number equals its floor iff it is an integer. (Contributed by NM, 11-Nov-2008.) |
⊢ (𝐴 ∈ ℝ → ((⌊‘𝐴) = 𝐴 ↔ 𝐴 ∈ ℤ)) | ||
Theorem | flltnz 13459 | The floor of a non-integer real is less than it. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ ((𝐴 ∈ ℝ ∧ ¬ 𝐴 ∈ ℤ) → (⌊‘𝐴) < 𝐴) | ||
Theorem | flwordi 13460 | Ordering relation for the floor function. (Contributed by NM, 31-Dec-2005.) (Proof shortened by Fan Zheng, 14-Jul-2016.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → (⌊‘𝐴) ≤ (⌊‘𝐵)) | ||
Theorem | flword2 13461 | Ordering relation for the floor function. (Contributed by Mario Carneiro, 7-Jun-2016.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → (⌊‘𝐵) ∈ (ℤ≥‘(⌊‘𝐴))) | ||
Theorem | flval2 13462* | An alternate way to define the floor function. (Contributed by NM, 16-Nov-2004.) |
⊢ (𝐴 ∈ ℝ → (⌊‘𝐴) = (℩𝑥 ∈ ℤ (𝑥 ≤ 𝐴 ∧ ∀𝑦 ∈ ℤ (𝑦 ≤ 𝐴 → 𝑦 ≤ 𝑥)))) | ||
Theorem | flval3 13463* | An alternate way to define the floor function, as the supremum of all integers less than or equal to its argument. (Contributed by NM, 15-Nov-2004.) (Proof shortened by Mario Carneiro, 6-Sep-2014.) |
⊢ (𝐴 ∈ ℝ → (⌊‘𝐴) = sup({𝑥 ∈ ℤ ∣ 𝑥 ≤ 𝐴}, ℝ, < )) | ||
Theorem | flbi 13464 | A condition equivalent to floor. (Contributed by NM, 11-Mar-2005.) (Revised by Mario Carneiro, 2-Nov-2013.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ) → ((⌊‘𝐴) = 𝐵 ↔ (𝐵 ≤ 𝐴 ∧ 𝐴 < (𝐵 + 1)))) | ||
Theorem | flbi2 13465 | A condition equivalent to floor. (Contributed by NM, 15-Aug-2008.) |
⊢ ((𝑁 ∈ ℤ ∧ 𝐹 ∈ ℝ) → ((⌊‘(𝑁 + 𝐹)) = 𝑁 ↔ (0 ≤ 𝐹 ∧ 𝐹 < 1))) | ||
Theorem | adddivflid 13466 | The floor of a sum of an integer and a fraction is equal to the integer iff the denominator of the fraction is less than the numerator. (Contributed by AV, 14-Jul-2021.) |
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0 ∧ 𝐶 ∈ ℕ) → (𝐵 < 𝐶 ↔ (⌊‘(𝐴 + (𝐵 / 𝐶))) = 𝐴)) | ||
Theorem | ico01fl0 13467 | The floor of a real number in [0, 1) is 0. Remark: may shorten the proof of modid 13544 or a version of it where the antecedent is membership in an interval. (Contributed by BJ, 29-Jun-2019.) |
⊢ (𝐴 ∈ (0[,)1) → (⌊‘𝐴) = 0) | ||
Theorem | flge0nn0 13468 | The floor of a number greater than or equal to 0 is a nonnegative integer. (Contributed by NM, 26-Apr-2005.) |
⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (⌊‘𝐴) ∈ ℕ0) | ||
Theorem | flge1nn 13469 | The floor of a number greater than or equal to 1 is a positive integer. (Contributed by NM, 26-Apr-2005.) |
⊢ ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → (⌊‘𝐴) ∈ ℕ) | ||
Theorem | fldivnn0 13470 | The floor function of a division of a nonnegative integer by a positive integer is a nonnegative integer. (Contributed by Alexander van der Vekens, 14-Apr-2018.) |
⊢ ((𝐾 ∈ ℕ0 ∧ 𝐿 ∈ ℕ) → (⌊‘(𝐾 / 𝐿)) ∈ ℕ0) | ||
Theorem | refldivcl 13471 | The floor function of a division of a real number by a positive real number is a real number. (Contributed by Alexander van der Vekens, 14-Apr-2018.) |
⊢ ((𝐾 ∈ ℝ ∧ 𝐿 ∈ ℝ+) → (⌊‘(𝐾 / 𝐿)) ∈ ℝ) | ||
Theorem | divfl0 13472 | The floor of a fraction is 0 iff the denominator is less than the numerator. (Contributed by AV, 8-Jul-2021.) |
⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ) → (𝐴 < 𝐵 ↔ (⌊‘(𝐴 / 𝐵)) = 0)) | ||
Theorem | fladdz 13473 | An integer can be moved in and out of the floor of a sum. (Contributed by NM, 27-Apr-2005.) (Proof shortened by Fan Zheng, 16-Jun-2016.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ) → (⌊‘(𝐴 + 𝑁)) = ((⌊‘𝐴) + 𝑁)) | ||
Theorem | flzadd 13474 | An integer can be moved in and out of the floor of a sum. (Contributed by NM, 2-Jan-2009.) |
⊢ ((𝑁 ∈ ℤ ∧ 𝐴 ∈ ℝ) → (⌊‘(𝑁 + 𝐴)) = (𝑁 + (⌊‘𝐴))) | ||
Theorem | flmulnn0 13475 | Move a nonnegative integer in and out of a floor. (Contributed by NM, 2-Jan-2009.) (Proof shortened by Fan Zheng, 7-Jun-2016.) |
⊢ ((𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℝ) → (𝑁 · (⌊‘𝐴)) ≤ (⌊‘(𝑁 · 𝐴))) | ||
Theorem | btwnzge0 13476 | A real bounded between an integer and its successor is nonnegative iff the integer is nonnegative. Second half of Lemma 13-4.1 of [Gleason] p. 217. (For the first half see rebtwnz 12616.) (Contributed by NM, 12-Mar-2005.) |
⊢ (((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ) ∧ (𝑁 ≤ 𝐴 ∧ 𝐴 < (𝑁 + 1))) → (0 ≤ 𝐴 ↔ 0 ≤ 𝑁)) | ||
Theorem | 2tnp1ge0ge0 13477 | Two times an integer plus one is not negative iff the integer is not negative. (Contributed by AV, 19-Jun-2021.) (Proof shortened by AV, 10-Jul-2022.) |
⊢ (𝑁 ∈ ℤ → (0 ≤ ((2 · 𝑁) + 1) ↔ 0 ≤ 𝑁)) | ||
Theorem | flhalf 13478 | Ordering relation for the floor of half of an integer. (Contributed by NM, 1-Jan-2006.) (Proof shortened by Mario Carneiro, 7-Jun-2016.) |
⊢ (𝑁 ∈ ℤ → 𝑁 ≤ (2 · (⌊‘((𝑁 + 1) / 2)))) | ||
Theorem | fldivle 13479 | The floor function of a division of a real number by a positive real number is less than or equal to the division. (Contributed by Alexander van der Vekens, 14-Apr-2018.) |
⊢ ((𝐾 ∈ ℝ ∧ 𝐿 ∈ ℝ+) → (⌊‘(𝐾 / 𝐿)) ≤ (𝐾 / 𝐿)) | ||
Theorem | fldivnn0le 13480 | The floor function of a division of a nonnegative integer by a positive integer is less than or equal to the division. (Contributed by Alexander van der Vekens, 14-Apr-2018.) |
⊢ ((𝐾 ∈ ℕ0 ∧ 𝐿 ∈ ℕ) → (⌊‘(𝐾 / 𝐿)) ≤ (𝐾 / 𝐿)) | ||
Theorem | flltdivnn0lt 13481 | The floor function of a division of a nonnegative integer by a positive integer is less than the division of a greater dividend by the same positive integer. (Contributed by Alexander van der Vekens, 14-Apr-2018.) |
⊢ ((𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝐿 ∈ ℕ) → (𝐾 < 𝑁 → (⌊‘(𝐾 / 𝐿)) < (𝑁 / 𝐿))) | ||
Theorem | ltdifltdiv 13482 | If the dividend of a division is less than the difference between a real number and the divisor, the floor function of the division plus 1 is less than the division of the real number by the divisor. (Contributed by Alexander van der Vekens, 14-Apr-2018.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℝ) → (𝐴 < (𝐶 − 𝐵) → ((⌊‘(𝐴 / 𝐵)) + 1) < (𝐶 / 𝐵))) | ||
Theorem | fldiv4p1lem1div2 13483 | The floor of an integer equal to 3 or greater than 4, increased by 1, is less than or equal to the half of the integer minus 1. (Contributed by AV, 8-Jul-2021.) |
⊢ ((𝑁 = 3 ∨ 𝑁 ∈ (ℤ≥‘5)) → ((⌊‘(𝑁 / 4)) + 1) ≤ ((𝑁 − 1) / 2)) | ||
Theorem | fldiv4lem1div2uz2 13484 | The floor of an integer greater than 1, divided by 4 is less than or equal to the half of the integer minus 1. (Contributed by AV, 5-Jul-2021.) (Proof shortened by AV, 9-Jul-2022.) |
⊢ (𝑁 ∈ (ℤ≥‘2) → (⌊‘(𝑁 / 4)) ≤ ((𝑁 − 1) / 2)) | ||
Theorem | fldiv4lem1div2 13485 | The floor of a positive integer divided by 4 is less than or equal to the half of the integer minus 1. (Contributed by AV, 9-Jul-2021.) |
⊢ (𝑁 ∈ ℕ → (⌊‘(𝑁 / 4)) ≤ ((𝑁 − 1) / 2)) | ||
Theorem | ceilval 13486 | The value of the ceiling function. (Contributed by David A. Wheeler, 19-May-2015.) |
⊢ (𝐴 ∈ ℝ → (⌈‘𝐴) = -(⌊‘-𝐴)) | ||
Theorem | dfceil2 13487* | Alternative definition of the ceiling function using restricted iota. (Contributed by AV, 1-Dec-2018.) |
⊢ ⌈ = (𝑥 ∈ ℝ ↦ (℩𝑦 ∈ ℤ (𝑥 ≤ 𝑦 ∧ 𝑦 < (𝑥 + 1)))) | ||
Theorem | ceilval2 13488* | The value of the ceiling function using restricted iota. (Contributed by AV, 1-Dec-2018.) |
⊢ (𝐴 ∈ ℝ → (⌈‘𝐴) = (℩𝑦 ∈ ℤ (𝐴 ≤ 𝑦 ∧ 𝑦 < (𝐴 + 1)))) | ||
Theorem | ceicl 13489 | The ceiling function returns an integer (closure law). (Contributed by Jeff Hankins, 10-Jun-2007.) |
⊢ (𝐴 ∈ ℝ → -(⌊‘-𝐴) ∈ ℤ) | ||
Theorem | ceilcl 13490 | Closure of the ceiling function. (Contributed by David A. Wheeler, 19-May-2015.) |
⊢ (𝐴 ∈ ℝ → (⌈‘𝐴) ∈ ℤ) | ||
Theorem | ceilcld 13491 | Closure of the ceiling function. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) ⇒ ⊢ (𝜑 → (⌈‘𝐴) ∈ ℤ) | ||
Theorem | ceige 13492 | The ceiling of a real number is greater than or equal to that number. (Contributed by Jeff Hankins, 10-Jun-2007.) |
⊢ (𝐴 ∈ ℝ → 𝐴 ≤ -(⌊‘-𝐴)) | ||
Theorem | ceilge 13493 | The ceiling of a real number is greater than or equal to that number. (Contributed by AV, 30-Nov-2018.) |
⊢ (𝐴 ∈ ℝ → 𝐴 ≤ (⌈‘𝐴)) | ||
Theorem | ceilged 13494 | The ceiling of a real number is greater than or equal to that number. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) ⇒ ⊢ (𝜑 → 𝐴 ≤ (⌈‘𝐴)) | ||
Theorem | ceim1l 13495 | One less than the ceiling of a real number is strictly less than that number. (Contributed by Jeff Hankins, 10-Jun-2007.) |
⊢ (𝐴 ∈ ℝ → (-(⌊‘-𝐴) − 1) < 𝐴) | ||
Theorem | ceilm1lt 13496 | One less than the ceiling of a real number is strictly less than that number. (Contributed by AV, 30-Nov-2018.) |
⊢ (𝐴 ∈ ℝ → ((⌈‘𝐴) − 1) < 𝐴) | ||
Theorem | ceile 13497 | The ceiling of a real number is the smallest integer greater than or equal to it. (Contributed by Jeff Hankins, 10-Jun-2007.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ≤ 𝐵) → -(⌊‘-𝐴) ≤ 𝐵) | ||
Theorem | ceille 13498 | The ceiling of a real number is the smallest integer greater than or equal to it. (Contributed by AV, 30-Nov-2018.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ≤ 𝐵) → (⌈‘𝐴) ≤ 𝐵) | ||
Theorem | ceilid 13499 | An integer is its own ceiling. (Contributed by AV, 30-Nov-2018.) |
⊢ (𝐴 ∈ ℤ → (⌈‘𝐴) = 𝐴) | ||
Theorem | ceilidz 13500 | A real number equals its ceiling iff it is an integer. (Contributed by AV, 30-Nov-2018.) |
⊢ (𝐴 ∈ ℝ → (𝐴 ∈ ℤ ↔ (⌈‘𝐴) = 𝐴)) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |