![]() |
Metamath
Proof Explorer Theorem List (p. 135 of 435) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-28329) |
![]() (28330-29854) |
![]() (29855-43446) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | bccl 13401 | A binomial coefficient, in its extended domain, is a nonnegative integer. (Contributed by NM, 10-Jul-2005.) (Revised by Mario Carneiro, 9-Nov-2013.) |
⊢ ((𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℤ) → (𝑁C𝐾) ∈ ℕ0) | ||
Theorem | bccl2 13402 | A binomial coefficient, in its standard domain, is a positive integer. (Contributed by NM, 3-Jan-2006.) (Revised by Mario Carneiro, 10-Mar-2014.) |
⊢ (𝐾 ∈ (0...𝑁) → (𝑁C𝐾) ∈ ℕ) | ||
Theorem | bcn2m1 13403 | Compute the binomial coefficient "𝑁 choose 2 " from "(𝑁 − 1) choose 2 ": (N-1) + ( (N-1) 2 ) = ( N 2 ). (Contributed by Alexander van der Vekens, 7-Jan-2018.) |
⊢ (𝑁 ∈ ℕ → ((𝑁 − 1) + ((𝑁 − 1)C2)) = (𝑁C2)) | ||
Theorem | bcn2p1 13404 | Compute the binomial coefficient "(𝑁 + 1) choose 2 " from "𝑁 choose 2 ": N + ( N 2 ) = ( (N+1) 2 ). (Contributed by Alexander van der Vekens, 8-Jan-2018.) |
⊢ (𝑁 ∈ ℕ0 → (𝑁 + (𝑁C2)) = ((𝑁 + 1)C2)) | ||
Theorem | permnn 13405 | The number of permutations of 𝑁 − 𝑅 objects from a collection of 𝑁 objects is a positive integer. (Contributed by Jason Orendorff, 24-Jan-2007.) |
⊢ (𝑅 ∈ (0...𝑁) → ((!‘𝑁) / (!‘𝑅)) ∈ ℕ) | ||
Theorem | bcnm1 13406 | The binomial coefficent of (𝑁 − 1) is 𝑁. (Contributed by Scott Fenton, 16-May-2014.) |
⊢ (𝑁 ∈ ℕ0 → (𝑁C(𝑁 − 1)) = 𝑁) | ||
Theorem | 4bc3eq4 13407 | The value of four choose three. (Contributed by Scott Fenton, 11-Jun-2016.) |
⊢ (4C3) = 4 | ||
Theorem | 4bc2eq6 13408 | The value of four choose two. (Contributed by Scott Fenton, 9-Jan-2017.) |
⊢ (4C2) = 6 | ||
Syntax | chash 13409 | Extend the definition of a class to include the set size function. |
class ♯ | ||
Definition | df-hash 13410 | Define the set size function ♯, which gives the cardinality of a finite set as a member of ℕ0, and assigns all infinite sets the value +∞. For example, (♯‘{0, 1, 2}) = 3 (ex-hash 27867). (Contributed by Paul Chapman, 22-Jun-2011.) |
⊢ ♯ = (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) ∘ card) ∪ ((V ∖ Fin) × {+∞})) | ||
Theorem | hashkf 13411 | The finite part of the size function maps all finite sets to their cardinality, as members of ℕ0. (Contributed by Mario Carneiro, 13-Sep-2013.) (Revised by Mario Carneiro, 26-Dec-2014.) |
⊢ 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) & ⊢ 𝐾 = (𝐺 ∘ card) ⇒ ⊢ 𝐾:Fin⟶ℕ0 | ||
Theorem | hashgval 13412* | The value of the ♯ function in terms of the mapping 𝐺 from ω to ℕ0. The proof avoids the use of ax-ac 9595. (Contributed by Paul Chapman, 22-Jun-2011.) (Revised by Mario Carneiro, 26-Dec-2014.) |
⊢ 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) ⇒ ⊢ (𝐴 ∈ Fin → (𝐺‘(card‘𝐴)) = (♯‘𝐴)) | ||
Theorem | hashginv 13413* | ◡𝐺 maps the size function's value to card. (Contributed by Paul Chapman, 22-Jun-2011.) (Revised by Mario Carneiro, 15-Sep-2013.) |
⊢ 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) ⇒ ⊢ (𝐴 ∈ Fin → (◡𝐺‘(♯‘𝐴)) = (card‘𝐴)) | ||
Theorem | hashinf 13414 | The value of the ♯ function on an infinite set. (Contributed by Mario Carneiro, 13-Jul-2014.) |
⊢ ((𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin) → (♯‘𝐴) = +∞) | ||
Theorem | hashbnd 13415 | If 𝐴 has size bounded by an integer 𝐵, then 𝐴 is finite. (Contributed by Mario Carneiro, 14-Jun-2015.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ ℕ0 ∧ (♯‘𝐴) ≤ 𝐵) → 𝐴 ∈ Fin) | ||
Theorem | hashfxnn0 13416 | The size function is a function into the extended nonnegative integers. (Contributed by Mario Carneiro, 13-Sep-2013.) (Revised by AV, 10-Dec-2020.) |
⊢ ♯:V⟶ℕ0* | ||
Theorem | hashf 13417 | The size function maps all finite sets to their cardinality, as members of ℕ0, and infinite sets to +∞. TODO-AV: mark as OBSOLETE and replace it by hashfxnn0 13416? (Contributed by Mario Carneiro, 13-Sep-2013.) (Revised by Mario Carneiro, 13-Jul-2014.) (Proof shortened by AV, 24-Oct-2021.) |
⊢ ♯:V⟶(ℕ0 ∪ {+∞}) | ||
Theorem | hashxnn0 13418 | The value of the hash function for a set is an extended nonnegative integer. (Contributed by Alexander van der Vekens, 6-Dec-2017.) (Revised by AV, 10-Dec-2020.) |
⊢ (𝑀 ∈ 𝑉 → (♯‘𝑀) ∈ ℕ0*) | ||
Theorem | hashresfn 13419 | Restriction of the domain of the size function. (Contributed by Thierry Arnoux, 31-Jan-2017.) |
⊢ (♯ ↾ 𝐴) Fn 𝐴 | ||
Theorem | dmhashres 13420 | Restriction of the domain of the size function. (Contributed by Thierry Arnoux, 12-Jan-2017.) |
⊢ dom (♯ ↾ 𝐴) = 𝐴 | ||
Theorem | hashnn0pnf 13421 | The value of the hash function for a set is either a nonnegative integer or positive infinity. TODO-AV: mark as OBSOLETE and replace it by hashxnn0 13418? (Contributed by Alexander van der Vekens, 6-Dec-2017.) |
⊢ (𝑀 ∈ 𝑉 → ((♯‘𝑀) ∈ ℕ0 ∨ (♯‘𝑀) = +∞)) | ||
Theorem | hashnnn0genn0 13422 | If the size of a set is not a nonnegative integer, it is greater than or equal to any nonnegative integer. (Contributed by Alexander van der Vekens, 6-Dec-2017.) |
⊢ ((𝑀 ∈ 𝑉 ∧ (♯‘𝑀) ∉ ℕ0 ∧ 𝑁 ∈ ℕ0) → 𝑁 ≤ (♯‘𝑀)) | ||
Theorem | hashnemnf 13423 | The size of a set is never minus infinity. (Contributed by Alexander van der Vekens, 21-Dec-2017.) |
⊢ (𝐴 ∈ 𝑉 → (♯‘𝐴) ≠ -∞) | ||
Theorem | hashv01gt1 13424 | The size of a set is either 0 or 1 or greater than 1. (Contributed by Alexander van der Vekens, 29-Dec-2017.) |
⊢ (𝑀 ∈ 𝑉 → ((♯‘𝑀) = 0 ∨ (♯‘𝑀) = 1 ∨ 1 < (♯‘𝑀))) | ||
Theorem | hashfz1 13425 | The set (1...𝑁) has 𝑁 elements. (Contributed by Paul Chapman, 22-Jun-2011.) (Revised by Mario Carneiro, 15-Sep-2013.) |
⊢ (𝑁 ∈ ℕ0 → (♯‘(1...𝑁)) = 𝑁) | ||
Theorem | hashen 13426 | Two finite sets have the same number of elements iff they are equinumerous. (Contributed by Paul Chapman, 22-Jun-2011.) (Revised by Mario Carneiro, 15-Sep-2013.) |
⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((♯‘𝐴) = (♯‘𝐵) ↔ 𝐴 ≈ 𝐵)) | ||
Theorem | hasheni 13427 | Equinumerous sets have the same number of elements (even if they are not finite). (Contributed by Mario Carneiro, 15-Apr-2015.) |
⊢ (𝐴 ≈ 𝐵 → (♯‘𝐴) = (♯‘𝐵)) | ||
Theorem | hasheqf1o 13428* | The size of two finite sets is equal if and only if there is a bijection mapping one of the sets onto the other. (Contributed by Alexander van der Vekens, 17-Dec-2017.) |
⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((♯‘𝐴) = (♯‘𝐵) ↔ ∃𝑓 𝑓:𝐴–1-1-onto→𝐵)) | ||
Theorem | fiinfnf1o 13429* | There is no bijection between a finite set and an infinite set. (Contributed by Alexander van der Vekens, 25-Dec-2017.) |
⊢ ((𝐴 ∈ Fin ∧ ¬ 𝐵 ∈ Fin) → ¬ ∃𝑓 𝑓:𝐴–1-1-onto→𝐵) | ||
Theorem | focdmex 13430 | The codomain of an onto function is a set if its domain is a set. (Contributed by AV, 4-May-2021.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴–onto→𝐵) → 𝐵 ∈ V) | ||
Theorem | hasheqf1oi 13431* | The size of two sets is equal if there is a bijection mapping one of the sets onto the other. (Contributed by Alexander van der Vekens, 25-Dec-2017.) (Revised by AV, 4-May-2021.) |
⊢ (𝐴 ∈ 𝑉 → (∃𝑓 𝑓:𝐴–1-1-onto→𝐵 → (♯‘𝐴) = (♯‘𝐵))) | ||
Theorem | hashf1rn 13432 | The size of a finite set which is a one-to-one function is equal to the size of the function's range. (Contributed by Alexander van der Vekens, 12-Jan-2018.) (Revised by AV, 4-May-2021.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴–1-1→𝐵) → (♯‘𝐹) = (♯‘ran 𝐹)) | ||
Theorem | hasheqf1od 13433 | The size of two sets is equal if there is a bijection mapping one of the sets onto the other. (Contributed by AV, 4-May-2021.) |
⊢ (𝜑 → 𝐴 ∈ 𝑈) & ⊢ (𝜑 → 𝐹:𝐴–1-1-onto→𝐵) ⇒ ⊢ (𝜑 → (♯‘𝐴) = (♯‘𝐵)) | ||
Theorem | fz1eqb 13434 | Two possibly-empty 1-based finite sets of sequential integers are equal iff their endpoints are equal. (Contributed by Paul Chapman, 22-Jun-2011.) (Proof shortened by Mario Carneiro, 29-Mar-2014.) |
⊢ ((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → ((1...𝑀) = (1...𝑁) ↔ 𝑀 = 𝑁)) | ||
Theorem | hashcard 13435 | The size function of the cardinality function. (Contributed by Mario Carneiro, 19-Sep-2013.) (Revised by Mario Carneiro, 4-Nov-2013.) |
⊢ (𝐴 ∈ Fin → (♯‘(card‘𝐴)) = (♯‘𝐴)) | ||
Theorem | hashcl 13436 | Closure of the ♯ function. (Contributed by Paul Chapman, 26-Oct-2012.) (Revised by Mario Carneiro, 13-Jul-2014.) |
⊢ (𝐴 ∈ Fin → (♯‘𝐴) ∈ ℕ0) | ||
Theorem | hashxrcl 13437 | Extended real closure of the ♯ function. (Contributed by Mario Carneiro, 22-Apr-2015.) |
⊢ (𝐴 ∈ 𝑉 → (♯‘𝐴) ∈ ℝ*) | ||
Theorem | hashclb 13438 | Reverse closure of the ♯ function. (Contributed by Mario Carneiro, 15-Jan-2015.) |
⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ Fin ↔ (♯‘𝐴) ∈ ℕ0)) | ||
Theorem | nfile 13439 | The size of any infinite set is always greater than or equal to the size of any set. (Contributed by AV, 13-Nov-2020.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ ¬ 𝐵 ∈ Fin) → (♯‘𝐴) ≤ (♯‘𝐵)) | ||
Theorem | hashvnfin 13440 | A set of finite size is a finite set. (Contributed by Alexander van der Vekens, 8-Dec-2017.) |
⊢ ((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → ((♯‘𝑆) = 𝑁 → 𝑆 ∈ Fin)) | ||
Theorem | hashnfinnn0 13441 | The size of an infinite set is not a nonnegative integer. (Contributed by Alexander van der Vekens, 21-Dec-2017.) (Proof shortened by Alexander van der Vekens, 18-Jan-2018.) |
⊢ ((𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin) → (♯‘𝐴) ∉ ℕ0) | ||
Theorem | isfinite4 13442 | A finite set is equinumerous to the range of integers from one up to the hash value of the set. In other words, counting objects with natural numbers works if and only if it is a finite collection. (Contributed by Richard Penner, 26-Feb-2020.) |
⊢ (𝐴 ∈ Fin ↔ (1...(♯‘𝐴)) ≈ 𝐴) | ||
Theorem | hasheq0 13443 | Two ways of saying a finite set is empty. (Contributed by Paul Chapman, 26-Oct-2012.) (Revised by Mario Carneiro, 27-Jul-2014.) |
⊢ (𝐴 ∈ 𝑉 → ((♯‘𝐴) = 0 ↔ 𝐴 = ∅)) | ||
Theorem | hashneq0 13444 | Two ways of saying a set is not empty. (Contributed by Alexander van der Vekens, 23-Sep-2018.) |
⊢ (𝐴 ∈ 𝑉 → (0 < (♯‘𝐴) ↔ 𝐴 ≠ ∅)) | ||
Theorem | hashgt0n0 13445 | If the size of a set is greater than 0, the set is not empty. (Contributed by AV, 5-Aug-2018.) (Proof shortened by AV, 18-Nov-2018.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 0 < (♯‘𝐴)) → 𝐴 ≠ ∅) | ||
Theorem | hashnncl 13446 | Positive natural closure of the hash function. (Contributed by Mario Carneiro, 16-Jan-2015.) |
⊢ (𝐴 ∈ Fin → ((♯‘𝐴) ∈ ℕ ↔ 𝐴 ≠ ∅)) | ||
Theorem | hash0 13447 | The empty set has size zero. (Contributed by Mario Carneiro, 8-Jul-2014.) |
⊢ (♯‘∅) = 0 | ||
Theorem | hashsng 13448 | The size of a singleton. (Contributed by Paul Chapman, 26-Oct-2012.) (Proof shortened by Mario Carneiro, 13-Feb-2013.) |
⊢ (𝐴 ∈ 𝑉 → (♯‘{𝐴}) = 1) | ||
Theorem | hashen1 13449 | A set has size 1 if and only if it is equinumerous to the ordinal 1. (Contributed by AV, 14-Apr-2019.) |
⊢ (𝐴 ∈ 𝑉 → ((♯‘𝐴) = 1 ↔ 𝐴 ≈ 1o)) | ||
Theorem | hashrabrsn 13450* | The size of a restricted class abstraction restricted to a singleton is a nonnegative integer. (Contributed by Alexander van der Vekens, 22-Dec-2017.) |
⊢ (♯‘{𝑥 ∈ {𝐴} ∣ 𝜑}) ∈ ℕ0 | ||
Theorem | hashrabsn01 13451* | The size of a restricted class abstraction restricted to a singleton is either 0 or 1. (Contributed by Alexander van der Vekens, 3-Sep-2018.) |
⊢ ((♯‘{𝑥 ∈ {𝐴} ∣ 𝜑}) = 𝑁 → (𝑁 = 0 ∨ 𝑁 = 1)) | ||
Theorem | hashrabsn1 13452* | If the size of a restricted class abstraction restricted to a singleton is 1, the condition of the class abstraction must hold for the singleton. (Contributed by Alexander van der Vekens, 3-Sep-2018.) |
⊢ ((♯‘{𝑥 ∈ {𝐴} ∣ 𝜑}) = 1 → [𝐴 / 𝑥]𝜑) | ||
Theorem | hashfn 13453 | A function is equinumerous to its domain. (Contributed by Mario Carneiro, 12-Mar-2015.) |
⊢ (𝐹 Fn 𝐴 → (♯‘𝐹) = (♯‘𝐴)) | ||
Theorem | fseq1hash 13454 | The value of the size function on a finite 1-based sequence. (Contributed by Paul Chapman, 26-Oct-2012.) (Proof shortened by Mario Carneiro, 12-Mar-2015.) |
⊢ ((𝑁 ∈ ℕ0 ∧ 𝐹 Fn (1...𝑁)) → (♯‘𝐹) = 𝑁) | ||
Theorem | hashgadd 13455 | 𝐺 maps ordinal addition to integer addition. (Contributed by Paul Chapman, 30-Nov-2012.) (Revised by Mario Carneiro, 15-Sep-2013.) |
⊢ 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) ⇒ ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐺‘(𝐴 +o 𝐵)) = ((𝐺‘𝐴) + (𝐺‘𝐵))) | ||
Theorem | hashgval2 13456 | A short expression for the 𝐺 function of hashgf1o 13064. (Contributed by Mario Carneiro, 24-Jan-2015.) |
⊢ (♯ ↾ ω) = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) | ||
Theorem | hashdom 13457 | Dominance relation for the size function. (Contributed by Mario Carneiro, 22-Sep-2013.) (Revised by Mario Carneiro, 22-Apr-2015.) |
⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ 𝑉) → ((♯‘𝐴) ≤ (♯‘𝐵) ↔ 𝐴 ≼ 𝐵)) | ||
Theorem | hashdomi 13458 | Non-strict order relation of the ♯ function on the full cardinal poset. (Contributed by Stefan O'Rear, 12-Sep-2015.) |
⊢ (𝐴 ≼ 𝐵 → (♯‘𝐴) ≤ (♯‘𝐵)) | ||
Theorem | hashsdom 13459 | Strict dominance relation for the size function. (Contributed by Mario Carneiro, 18-Aug-2014.) |
⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((♯‘𝐴) < (♯‘𝐵) ↔ 𝐴 ≺ 𝐵)) | ||
Theorem | hashun 13460 | The size of the union of disjoint finite sets is the sum of their sizes. (Contributed by Paul Chapman, 30-Nov-2012.) (Revised by Mario Carneiro, 15-Sep-2013.) |
⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴 ∩ 𝐵) = ∅) → (♯‘(𝐴 ∪ 𝐵)) = ((♯‘𝐴) + (♯‘𝐵))) | ||
Theorem | hashun2 13461 | The size of the union of finite sets is less than or equal to the sum of their sizes. (Contributed by Mario Carneiro, 23-Sep-2013.) (Proof shortened by Mario Carneiro, 27-Jul-2014.) |
⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (♯‘(𝐴 ∪ 𝐵)) ≤ ((♯‘𝐴) + (♯‘𝐵))) | ||
Theorem | hashun3 13462 | The size of the union of finite sets is the sum of their sizes minus the size of the intersection. (Contributed by Mario Carneiro, 6-Aug-2017.) |
⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (♯‘(𝐴 ∪ 𝐵)) = (((♯‘𝐴) + (♯‘𝐵)) − (♯‘(𝐴 ∩ 𝐵)))) | ||
Theorem | hashinfxadd 13463 | The extended real addition of the size of an infinite set with the size of an arbitrary set yields plus infinity. (Contributed by Alexander van der Vekens, 20-Dec-2017.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ (♯‘𝐴) ∉ ℕ0) → ((♯‘𝐴) +𝑒 (♯‘𝐵)) = +∞) | ||
Theorem | hashunx 13464 | The size of the union of disjoint sets is the result of the extended real addition of their sizes, analogous to hashun 13460. (Contributed by Alexander van der Vekens, 21-Dec-2017.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ (𝐴 ∩ 𝐵) = ∅) → (♯‘(𝐴 ∪ 𝐵)) = ((♯‘𝐴) +𝑒 (♯‘𝐵))) | ||
Theorem | hashge0 13465 | The cardinality of a set is greater than or equal to zero. (Contributed by Thierry Arnoux, 2-Mar-2017.) |
⊢ (𝐴 ∈ 𝑉 → 0 ≤ (♯‘𝐴)) | ||
Theorem | hashgt0 13466 | The cardinality of a nonempty set is greater than zero. (Contributed by Thierry Arnoux, 2-Mar-2017.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐴 ≠ ∅) → 0 < (♯‘𝐴)) | ||
Theorem | hashge1 13467 | The cardinality of a nonempty set is greater than or equal to one. (Contributed by Thierry Arnoux, 20-Jun-2017.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐴 ≠ ∅) → 1 ≤ (♯‘𝐴)) | ||
Theorem | 1elfz0hash 13468 | 1 is an element of the finite set of sequential nonnegative integers bounded by the size of a nonempty finite set. (Contributed by AV, 9-May-2020.) |
⊢ ((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → 1 ∈ (0...(♯‘𝐴))) | ||
Theorem | hashnn0n0nn 13469 | If a nonnegative integer is the size of a set which contains at least one element, this integer is a positive integer. (Contributed by Alexander van der Vekens, 9-Jan-2018.) |
⊢ (((𝑉 ∈ 𝑊 ∧ 𝑌 ∈ ℕ0) ∧ ((♯‘𝑉) = 𝑌 ∧ 𝑁 ∈ 𝑉)) → 𝑌 ∈ ℕ) | ||
Theorem | hashunsng 13470 | The size of the union of a finite set with a disjoint singleton is one more than the size of the set. (Contributed by Paul Chapman, 30-Nov-2012.) |
⊢ (𝐵 ∈ 𝑉 → ((𝐴 ∈ Fin ∧ ¬ 𝐵 ∈ 𝐴) → (♯‘(𝐴 ∪ {𝐵})) = ((♯‘𝐴) + 1))) | ||
Theorem | hashprg 13471 | The size of an unordered pair. (Contributed by Mario Carneiro, 27-Sep-2013.) (Revised by Mario Carneiro, 5-May-2016.) (Revised by AV, 18-Sep-2021.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ≠ 𝐵 ↔ (♯‘{𝐴, 𝐵}) = 2)) | ||
Theorem | elprchashprn2 13472 | If one element of an unordered pair is not a set, the size of the unordered pair is not 2. (Contributed by Alexander van der Vekens, 7-Oct-2017.) |
⊢ (¬ 𝑀 ∈ V → ¬ (♯‘{𝑀, 𝑁}) = 2) | ||
Theorem | hashprb 13473 | The size of an unordered pair is 2 if and only if its elements are different sets. (Contributed by Alexander van der Vekens, 17-Jan-2018.) |
⊢ ((𝑀 ∈ V ∧ 𝑁 ∈ V ∧ 𝑀 ≠ 𝑁) ↔ (♯‘{𝑀, 𝑁}) = 2) | ||
Theorem | hashprdifel 13474 | The elements of an unordered pair of size 2 are different sets. (Contributed by AV, 27-Jan-2020.) |
⊢ 𝑆 = {𝐴, 𝐵} ⇒ ⊢ ((♯‘𝑆) = 2 → (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵)) | ||
Theorem | prhash2ex 13475 | There is (at least) one set with two different elements: the unordered pair containing 0 and 1. In contrast to pr0hash2ex 13484, numbers are used instead of sets because their representation is shorter (and more comprehensive). (Contributed by AV, 29-Jan-2020.) |
⊢ (♯‘{0, 1}) = 2 | ||
Theorem | hashle00 13476 | If the size of a set is less than or equal to zero, the set must be empty. (Contributed by Alexander van der Vekens, 6-Jan-2018.) (Proof shortened by AV, 24-Oct-2021.) |
⊢ (𝑉 ∈ 𝑊 → ((♯‘𝑉) ≤ 0 ↔ 𝑉 = ∅)) | ||
Theorem | hashgt0elex 13477* | If the size of a set is greater than zero, then the set must contain at least one element. (Contributed by Alexander van der Vekens, 6-Jan-2018.) |
⊢ ((𝑉 ∈ 𝑊 ∧ 0 < (♯‘𝑉)) → ∃𝑥 𝑥 ∈ 𝑉) | ||
Theorem | hashgt0elexb 13478* | The size of a set is greater than zero if and only if the set contains at least one element. (Contributed by Alexander van der Vekens, 18-Jan-2018.) |
⊢ (𝑉 ∈ 𝑊 → (0 < (♯‘𝑉) ↔ ∃𝑥 𝑥 ∈ 𝑉)) | ||
Theorem | hashp1i 13479 | Size of a finite ordinal. (Contributed by Mario Carneiro, 5-Jan-2016.) |
⊢ 𝐴 ∈ ω & ⊢ 𝐵 = suc 𝐴 & ⊢ (♯‘𝐴) = 𝑀 & ⊢ (𝑀 + 1) = 𝑁 ⇒ ⊢ (♯‘𝐵) = 𝑁 | ||
Theorem | hash1 13480 | Size of a finite ordinal. (Contributed by Mario Carneiro, 5-Jan-2016.) |
⊢ (♯‘1o) = 1 | ||
Theorem | hash2 13481 | Size of a finite ordinal. (Contributed by Mario Carneiro, 5-Jan-2016.) |
⊢ (♯‘2o) = 2 | ||
Theorem | hash3 13482 | Size of a finite ordinal. (Contributed by Mario Carneiro, 5-Jan-2016.) |
⊢ (♯‘3o) = 3 | ||
Theorem | hash4 13483 | Size of a finite ordinal. (Contributed by Mario Carneiro, 5-Jan-2016.) |
⊢ (♯‘4o) = 4 | ||
Theorem | pr0hash2ex 13484 | There is (at least) one set with two different elements: the unordered pair containing the empty set and the singleton containing the empty set. (Contributed by AV, 29-Jan-2020.) |
⊢ (♯‘{∅, {∅}}) = 2 | ||
Theorem | hashss 13485 | The size of a subset is less than or equal to the size of its superset. (Contributed by Alexander van der Vekens, 14-Jul-2018.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴) → (♯‘𝐵) ≤ (♯‘𝐴)) | ||
Theorem | prsshashgt1 13486 | The size of a superset of a proper unordered pair is greater than 1. (Contributed by AV, 6-Feb-2021.) |
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) ∧ 𝐶 ∈ 𝑈) → ({𝐴, 𝐵} ⊆ 𝐶 → 2 ≤ (♯‘𝐶))) | ||
Theorem | hashin 13487 | The size of the intersection of a set and a class is less than or equal to the size of the set. (Contributed by AV, 4-Jan-2021.) |
⊢ (𝐴 ∈ 𝑉 → (♯‘(𝐴 ∩ 𝐵)) ≤ (♯‘𝐴)) | ||
Theorem | hashssdif 13488 | The size of the difference of a finite set and a subset is the set's size minus the subset's. (Contributed by Steve Rodriguez, 24-Oct-2015.) |
⊢ ((𝐴 ∈ Fin ∧ 𝐵 ⊆ 𝐴) → (♯‘(𝐴 ∖ 𝐵)) = ((♯‘𝐴) − (♯‘𝐵))) | ||
Theorem | hashdif 13489 | The size of the difference of a finite set and another set is the first set's size minus that of the intersection of both. (Contributed by Steve Rodriguez, 24-Oct-2015.) |
⊢ (𝐴 ∈ Fin → (♯‘(𝐴 ∖ 𝐵)) = ((♯‘𝐴) − (♯‘(𝐴 ∩ 𝐵)))) | ||
Theorem | hashdifsn 13490 | The size of the difference of a finite set and a singleton subset is the set's size minus 1. (Contributed by Alexander van der Vekens, 6-Jan-2018.) |
⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ 𝐴) → (♯‘(𝐴 ∖ {𝐵})) = ((♯‘𝐴) − 1)) | ||
Theorem | hashdifpr 13491 | The size of the difference of a finite set and a proper ordered pair subset is the set's size minus 2. (Contributed by AV, 16-Dec-2020.) |
⊢ ((𝐴 ∈ Fin ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐵 ≠ 𝐶)) → (♯‘(𝐴 ∖ {𝐵, 𝐶})) = ((♯‘𝐴) − 2)) | ||
Theorem | hashsn01 13492 | The size of a singleton is either 0 or 1. (Contributed by AV, 23-Feb-2021.) |
⊢ ((♯‘{𝐴}) = 0 ∨ (♯‘{𝐴}) = 1) | ||
Theorem | hashsnle1 13493 | The size of a singleton is less than or equal to 1. (Contributed by AV, 23-Feb-2021.) |
⊢ (♯‘{𝐴}) ≤ 1 | ||
Theorem | hashsnlei 13494 | Get an upper bound on a concretely specified finite set. Base case: singleton set. (Contributed by Mario Carneiro, 11-Feb-2015.) (Proof shortened by AV, 23-Feb-2021.) |
⊢ ({𝐴} ∈ Fin ∧ (♯‘{𝐴}) ≤ 1) | ||
Theorem | hash1snb 13495* | The size of a set is 1 if and only if it is a singleton (containing a set). (Contributed by Alexander van der Vekens, 7-Dec-2017.) |
⊢ (𝑉 ∈ 𝑊 → ((♯‘𝑉) = 1 ↔ ∃𝑎 𝑉 = {𝑎})) | ||
Theorem | euhash1 13496* | The size of a set is 1 in terms of existential uniqueness. (Contributed by Alexander van der Vekens, 8-Feb-2018.) |
⊢ (𝑉 ∈ 𝑊 → ((♯‘𝑉) = 1 ↔ ∃!𝑎 𝑎 ∈ 𝑉)) | ||
Theorem | hash1n0 13497 | If the size of a set is 1 the set is not empty. (Contributed by AV, 23-Dec-2020.) |
⊢ ((𝐴 ∈ 𝑉 ∧ (♯‘𝐴) = 1) → 𝐴 ≠ ∅) | ||
Theorem | hashgt12el 13498* | In a set with more than one element are two different elements. (Contributed by Alexander van der Vekens, 15-Nov-2017.) |
⊢ ((𝑉 ∈ 𝑊 ∧ 1 < (♯‘𝑉)) → ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 𝑎 ≠ 𝑏) | ||
Theorem | hashgt12el2 13499* | In a set with more than one element are two different elements. (Contributed by Alexander van der Vekens, 15-Nov-2017.) |
⊢ ((𝑉 ∈ 𝑊 ∧ 1 < (♯‘𝑉) ∧ 𝐴 ∈ 𝑉) → ∃𝑏 ∈ 𝑉 𝐴 ≠ 𝑏) | ||
Theorem | hashunlei 13500 | Get an upper bound on a concretely specified finite set. Induction step: union of two finite bounded sets. (Contributed by Mario Carneiro, 11-Feb-2015.) |
⊢ 𝐶 = (𝐴 ∪ 𝐵) & ⊢ (𝐴 ∈ Fin ∧ (♯‘𝐴) ≤ 𝐾) & ⊢ (𝐵 ∈ Fin ∧ (♯‘𝐵) ≤ 𝑀) & ⊢ 𝐾 ∈ ℕ0 & ⊢ 𝑀 ∈ ℕ0 & ⊢ (𝐾 + 𝑀) = 𝑁 ⇒ ⊢ (𝐶 ∈ Fin ∧ (♯‘𝐶) ≤ 𝑁) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |