Detailed syntax breakdown of Definition df-ga
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | cga 19308 | . 2
class 
GrpAct | 
| 2 |  | vg | . . 3
setvar 𝑔 | 
| 3 |  | vs | . . 3
setvar 𝑠 | 
| 4 |  | cgrp 18952 | . . 3
class
Grp | 
| 5 |  | cvv 3479 | . . 3
class
V | 
| 6 |  | vb | . . . 4
setvar 𝑏 | 
| 7 | 2 | cv 1538 | . . . . 5
class 𝑔 | 
| 8 |  | cbs 17248 | . . . . 5
class
Base | 
| 9 | 7, 8 | cfv 6560 | . . . 4
class
(Base‘𝑔) | 
| 10 |  | c0g 17485 | . . . . . . . . . 10
class
0g | 
| 11 | 7, 10 | cfv 6560 | . . . . . . . . 9
class
(0g‘𝑔) | 
| 12 |  | vx | . . . . . . . . . 10
setvar 𝑥 | 
| 13 | 12 | cv 1538 | . . . . . . . . 9
class 𝑥 | 
| 14 |  | vm | . . . . . . . . . 10
setvar 𝑚 | 
| 15 | 14 | cv 1538 | . . . . . . . . 9
class 𝑚 | 
| 16 | 11, 13, 15 | co 7432 | . . . . . . . 8
class
((0g‘𝑔)𝑚𝑥) | 
| 17 | 16, 13 | wceq 1539 | . . . . . . 7
wff
((0g‘𝑔)𝑚𝑥) = 𝑥 | 
| 18 |  | vy | . . . . . . . . . . . . 13
setvar 𝑦 | 
| 19 | 18 | cv 1538 | . . . . . . . . . . . 12
class 𝑦 | 
| 20 |  | vz | . . . . . . . . . . . . 13
setvar 𝑧 | 
| 21 | 20 | cv 1538 | . . . . . . . . . . . 12
class 𝑧 | 
| 22 |  | cplusg 17298 | . . . . . . . . . . . . 13
class
+g | 
| 23 | 7, 22 | cfv 6560 | . . . . . . . . . . . 12
class
(+g‘𝑔) | 
| 24 | 19, 21, 23 | co 7432 | . . . . . . . . . . 11
class (𝑦(+g‘𝑔)𝑧) | 
| 25 | 24, 13, 15 | co 7432 | . . . . . . . . . 10
class ((𝑦(+g‘𝑔)𝑧)𝑚𝑥) | 
| 26 | 21, 13, 15 | co 7432 | . . . . . . . . . . 11
class (𝑧𝑚𝑥) | 
| 27 | 19, 26, 15 | co 7432 | . . . . . . . . . 10
class (𝑦𝑚(𝑧𝑚𝑥)) | 
| 28 | 25, 27 | wceq 1539 | . . . . . . . . 9
wff ((𝑦(+g‘𝑔)𝑧)𝑚𝑥) = (𝑦𝑚(𝑧𝑚𝑥)) | 
| 29 | 6 | cv 1538 | . . . . . . . . 9
class 𝑏 | 
| 30 | 28, 20, 29 | wral 3060 | . . . . . . . 8
wff
∀𝑧 ∈
𝑏 ((𝑦(+g‘𝑔)𝑧)𝑚𝑥) = (𝑦𝑚(𝑧𝑚𝑥)) | 
| 31 | 30, 18, 29 | wral 3060 | . . . . . . 7
wff
∀𝑦 ∈
𝑏 ∀𝑧 ∈ 𝑏 ((𝑦(+g‘𝑔)𝑧)𝑚𝑥) = (𝑦𝑚(𝑧𝑚𝑥)) | 
| 32 | 17, 31 | wa 395 | . . . . . 6
wff
(((0g‘𝑔)𝑚𝑥) = 𝑥 ∧ ∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 ((𝑦(+g‘𝑔)𝑧)𝑚𝑥) = (𝑦𝑚(𝑧𝑚𝑥))) | 
| 33 | 3 | cv 1538 | . . . . . 6
class 𝑠 | 
| 34 | 32, 12, 33 | wral 3060 | . . . . 5
wff
∀𝑥 ∈
𝑠
(((0g‘𝑔)𝑚𝑥) = 𝑥 ∧ ∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 ((𝑦(+g‘𝑔)𝑧)𝑚𝑥) = (𝑦𝑚(𝑧𝑚𝑥))) | 
| 35 | 29, 33 | cxp 5682 | . . . . . 6
class (𝑏 × 𝑠) | 
| 36 |  | cmap 8867 | . . . . . 6
class 
↑m | 
| 37 | 33, 35, 36 | co 7432 | . . . . 5
class (𝑠 ↑m (𝑏 × 𝑠)) | 
| 38 | 34, 14, 37 | crab 3435 | . . . 4
class {𝑚 ∈ (𝑠 ↑m (𝑏 × 𝑠)) ∣ ∀𝑥 ∈ 𝑠 (((0g‘𝑔)𝑚𝑥) = 𝑥 ∧ ∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 ((𝑦(+g‘𝑔)𝑧)𝑚𝑥) = (𝑦𝑚(𝑧𝑚𝑥)))} | 
| 39 | 6, 9, 38 | csb 3898 | . . 3
class
⦋(Base‘𝑔) / 𝑏⦌{𝑚 ∈ (𝑠 ↑m (𝑏 × 𝑠)) ∣ ∀𝑥 ∈ 𝑠 (((0g‘𝑔)𝑚𝑥) = 𝑥 ∧ ∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 ((𝑦(+g‘𝑔)𝑧)𝑚𝑥) = (𝑦𝑚(𝑧𝑚𝑥)))} | 
| 40 | 2, 3, 4, 5, 39 | cmpo 7434 | . 2
class (𝑔 ∈ Grp, 𝑠 ∈ V ↦
⦋(Base‘𝑔) / 𝑏⦌{𝑚 ∈ (𝑠 ↑m (𝑏 × 𝑠)) ∣ ∀𝑥 ∈ 𝑠 (((0g‘𝑔)𝑚𝑥) = 𝑥 ∧ ∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 ((𝑦(+g‘𝑔)𝑧)𝑚𝑥) = (𝑦𝑚(𝑧𝑚𝑥)))}) | 
| 41 | 1, 40 | wceq 1539 | 1
wff  GrpAct =
(𝑔 ∈ Grp, 𝑠 ∈ V ↦
⦋(Base‘𝑔) / 𝑏⦌{𝑚 ∈ (𝑠 ↑m (𝑏 × 𝑠)) ∣ ∀𝑥 ∈ 𝑠 (((0g‘𝑔)𝑚𝑥) = 𝑥 ∧ ∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 ((𝑦(+g‘𝑔)𝑧)𝑚𝑥) = (𝑦𝑚(𝑧𝑚𝑥)))}) |