Detailed syntax breakdown of Definition df-ga
| Step | Hyp | Ref
| Expression |
| 1 | | cga 19277 |
. 2
class
GrpAct |
| 2 | | vg |
. . 3
setvar 𝑔 |
| 3 | | vs |
. . 3
setvar 𝑠 |
| 4 | | cgrp 18921 |
. . 3
class
Grp |
| 5 | | cvv 3464 |
. . 3
class
V |
| 6 | | vb |
. . . 4
setvar 𝑏 |
| 7 | 2 | cv 1539 |
. . . . 5
class 𝑔 |
| 8 | | cbs 17233 |
. . . . 5
class
Base |
| 9 | 7, 8 | cfv 6536 |
. . . 4
class
(Base‘𝑔) |
| 10 | | c0g 17458 |
. . . . . . . . . 10
class
0g |
| 11 | 7, 10 | cfv 6536 |
. . . . . . . . 9
class
(0g‘𝑔) |
| 12 | | vx |
. . . . . . . . . 10
setvar 𝑥 |
| 13 | 12 | cv 1539 |
. . . . . . . . 9
class 𝑥 |
| 14 | | vm |
. . . . . . . . . 10
setvar 𝑚 |
| 15 | 14 | cv 1539 |
. . . . . . . . 9
class 𝑚 |
| 16 | 11, 13, 15 | co 7410 |
. . . . . . . 8
class
((0g‘𝑔)𝑚𝑥) |
| 17 | 16, 13 | wceq 1540 |
. . . . . . 7
wff
((0g‘𝑔)𝑚𝑥) = 𝑥 |
| 18 | | vy |
. . . . . . . . . . . . 13
setvar 𝑦 |
| 19 | 18 | cv 1539 |
. . . . . . . . . . . 12
class 𝑦 |
| 20 | | vz |
. . . . . . . . . . . . 13
setvar 𝑧 |
| 21 | 20 | cv 1539 |
. . . . . . . . . . . 12
class 𝑧 |
| 22 | | cplusg 17276 |
. . . . . . . . . . . . 13
class
+g |
| 23 | 7, 22 | cfv 6536 |
. . . . . . . . . . . 12
class
(+g‘𝑔) |
| 24 | 19, 21, 23 | co 7410 |
. . . . . . . . . . 11
class (𝑦(+g‘𝑔)𝑧) |
| 25 | 24, 13, 15 | co 7410 |
. . . . . . . . . 10
class ((𝑦(+g‘𝑔)𝑧)𝑚𝑥) |
| 26 | 21, 13, 15 | co 7410 |
. . . . . . . . . . 11
class (𝑧𝑚𝑥) |
| 27 | 19, 26, 15 | co 7410 |
. . . . . . . . . 10
class (𝑦𝑚(𝑧𝑚𝑥)) |
| 28 | 25, 27 | wceq 1540 |
. . . . . . . . 9
wff ((𝑦(+g‘𝑔)𝑧)𝑚𝑥) = (𝑦𝑚(𝑧𝑚𝑥)) |
| 29 | 6 | cv 1539 |
. . . . . . . . 9
class 𝑏 |
| 30 | 28, 20, 29 | wral 3052 |
. . . . . . . 8
wff
∀𝑧 ∈
𝑏 ((𝑦(+g‘𝑔)𝑧)𝑚𝑥) = (𝑦𝑚(𝑧𝑚𝑥)) |
| 31 | 30, 18, 29 | wral 3052 |
. . . . . . 7
wff
∀𝑦 ∈
𝑏 ∀𝑧 ∈ 𝑏 ((𝑦(+g‘𝑔)𝑧)𝑚𝑥) = (𝑦𝑚(𝑧𝑚𝑥)) |
| 32 | 17, 31 | wa 395 |
. . . . . 6
wff
(((0g‘𝑔)𝑚𝑥) = 𝑥 ∧ ∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 ((𝑦(+g‘𝑔)𝑧)𝑚𝑥) = (𝑦𝑚(𝑧𝑚𝑥))) |
| 33 | 3 | cv 1539 |
. . . . . 6
class 𝑠 |
| 34 | 32, 12, 33 | wral 3052 |
. . . . 5
wff
∀𝑥 ∈
𝑠
(((0g‘𝑔)𝑚𝑥) = 𝑥 ∧ ∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 ((𝑦(+g‘𝑔)𝑧)𝑚𝑥) = (𝑦𝑚(𝑧𝑚𝑥))) |
| 35 | 29, 33 | cxp 5657 |
. . . . . 6
class (𝑏 × 𝑠) |
| 36 | | cmap 8845 |
. . . . . 6
class
↑m |
| 37 | 33, 35, 36 | co 7410 |
. . . . 5
class (𝑠 ↑m (𝑏 × 𝑠)) |
| 38 | 34, 14, 37 | crab 3420 |
. . . 4
class {𝑚 ∈ (𝑠 ↑m (𝑏 × 𝑠)) ∣ ∀𝑥 ∈ 𝑠 (((0g‘𝑔)𝑚𝑥) = 𝑥 ∧ ∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 ((𝑦(+g‘𝑔)𝑧)𝑚𝑥) = (𝑦𝑚(𝑧𝑚𝑥)))} |
| 39 | 6, 9, 38 | csb 3879 |
. . 3
class
⦋(Base‘𝑔) / 𝑏⦌{𝑚 ∈ (𝑠 ↑m (𝑏 × 𝑠)) ∣ ∀𝑥 ∈ 𝑠 (((0g‘𝑔)𝑚𝑥) = 𝑥 ∧ ∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 ((𝑦(+g‘𝑔)𝑧)𝑚𝑥) = (𝑦𝑚(𝑧𝑚𝑥)))} |
| 40 | 2, 3, 4, 5, 39 | cmpo 7412 |
. 2
class (𝑔 ∈ Grp, 𝑠 ∈ V ↦
⦋(Base‘𝑔) / 𝑏⦌{𝑚 ∈ (𝑠 ↑m (𝑏 × 𝑠)) ∣ ∀𝑥 ∈ 𝑠 (((0g‘𝑔)𝑚𝑥) = 𝑥 ∧ ∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 ((𝑦(+g‘𝑔)𝑧)𝑚𝑥) = (𝑦𝑚(𝑧𝑚𝑥)))}) |
| 41 | 1, 40 | wceq 1540 |
1
wff GrpAct =
(𝑔 ∈ Grp, 𝑠 ∈ V ↦
⦋(Base‘𝑔) / 𝑏⦌{𝑚 ∈ (𝑠 ↑m (𝑏 × 𝑠)) ∣ ∀𝑥 ∈ 𝑠 (((0g‘𝑔)𝑚𝑥) = 𝑥 ∧ ∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 ((𝑦(+g‘𝑔)𝑧)𝑚𝑥) = (𝑦𝑚(𝑧𝑚𝑥)))}) |