| Metamath
Proof Explorer Theorem List (p. 192 of 494) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30937) |
(30938-32460) |
(32461-49324) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | mulg2 19101 | Group multiple (exponentiation) operation at two. (Contributed by Mario Carneiro, 15-Oct-2015.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ · = (.g‘𝐺) & ⊢ + = (+g‘𝐺) ⇒ ⊢ (𝑋 ∈ 𝐵 → (2 · 𝑋) = (𝑋 + 𝑋)) | ||
| Theorem | mulgnegnn 19102 | Group multiple (exponentiation) operation at a negative integer. (Contributed by Mario Carneiro, 11-Dec-2014.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ · = (.g‘𝐺) & ⊢ 𝐼 = (invg‘𝐺) ⇒ ⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) → (-𝑁 · 𝑋) = (𝐼‘(𝑁 · 𝑋))) | ||
| Theorem | mulgnn0p1 19103 | Group multiple (exponentiation) operation at a successor, extended to ℕ0. (Contributed by Mario Carneiro, 11-Dec-2014.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ · = (.g‘𝐺) & ⊢ + = (+g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵) → ((𝑁 + 1) · 𝑋) = ((𝑁 · 𝑋) + 𝑋)) | ||
| Theorem | mulgnnsubcl 19104* | Closure of the group multiple (exponentiation) operation in a submagma. (Contributed by Mario Carneiro, 10-Jan-2015.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ · = (.g‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ 𝑉) & ⊢ (𝜑 → 𝑆 ⊆ 𝐵) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → (𝑥 + 𝑦) ∈ 𝑆) ⇒ ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝑆) → (𝑁 · 𝑋) ∈ 𝑆) | ||
| Theorem | mulgnn0subcl 19105* | Closure of the group multiple (exponentiation) operation in a submonoid. (Contributed by Mario Carneiro, 10-Jan-2015.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ · = (.g‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ 𝑉) & ⊢ (𝜑 → 𝑆 ⊆ 𝐵) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → (𝑥 + 𝑦) ∈ 𝑆) & ⊢ 0 = (0g‘𝐺) & ⊢ (𝜑 → 0 ∈ 𝑆) ⇒ ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝑆) → (𝑁 · 𝑋) ∈ 𝑆) | ||
| Theorem | mulgsubcl 19106* | Closure of the group multiple (exponentiation) operation in a subgroup. (Contributed by Mario Carneiro, 10-Jan-2015.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ · = (.g‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ 𝑉) & ⊢ (𝜑 → 𝑆 ⊆ 𝐵) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → (𝑥 + 𝑦) ∈ 𝑆) & ⊢ 0 = (0g‘𝐺) & ⊢ (𝜑 → 0 ∈ 𝑆) & ⊢ 𝐼 = (invg‘𝐺) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → (𝐼‘𝑥) ∈ 𝑆) ⇒ ⊢ ((𝜑 ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝑆) → (𝑁 · 𝑋) ∈ 𝑆) | ||
| Theorem | mulgnncl 19107 | Closure of the group multiple (exponentiation) operation for a positive multiplier in a magma. (Contributed by Mario Carneiro, 11-Dec-2014.) (Revised by AV, 29-Aug-2021.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ · = (.g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Mgm ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) → (𝑁 · 𝑋) ∈ 𝐵) | ||
| Theorem | mulgnn0cl 19108 | Closure of the group multiple (exponentiation) operation for a nonnegative multiplier in a monoid. (Contributed by Mario Carneiro, 11-Dec-2014.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ · = (.g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵) → (𝑁 · 𝑋) ∈ 𝐵) | ||
| Theorem | mulgcl 19109 | Closure of the group multiple (exponentiation) operation. (Contributed by Mario Carneiro, 11-Dec-2014.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ · = (.g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵) → (𝑁 · 𝑋) ∈ 𝐵) | ||
| Theorem | mulgneg 19110 | Group multiple (exponentiation) operation at a negative integer. (Contributed by Paul Chapman, 17-Apr-2009.) (Revised by Mario Carneiro, 11-Dec-2014.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ · = (.g‘𝐺) & ⊢ 𝐼 = (invg‘𝐺) ⇒ ⊢ ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵) → (-𝑁 · 𝑋) = (𝐼‘(𝑁 · 𝑋))) | ||
| Theorem | mulgnegneg 19111 | The inverse of a negative group multiple is the positive group multiple. (Contributed by Paul Chapman, 17-Apr-2009.) (Revised by AV, 30-Aug-2021.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ · = (.g‘𝐺) & ⊢ 𝐼 = (invg‘𝐺) ⇒ ⊢ ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵) → (𝐼‘(-𝑁 · 𝑋)) = (𝑁 · 𝑋)) | ||
| Theorem | mulgm1 19112 | Group multiple (exponentiation) operation at negative one. (Contributed by Paul Chapman, 17-Apr-2009.) (Revised by Mario Carneiro, 20-Dec-2014.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ · = (.g‘𝐺) & ⊢ 𝐼 = (invg‘𝐺) ⇒ ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (-1 · 𝑋) = (𝐼‘𝑋)) | ||
| Theorem | mulgnn0cld 19113 | Closure of the group multiple (exponentiation) operation for a nonnegative multiplier in a monoid. Deduction associated with mulgnn0cl 19108. (Contributed by SN, 1-Feb-2025.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ · = (.g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ Mnd) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝑁 · 𝑋) ∈ 𝐵) | ||
| Theorem | mulgcld 19114 | Deduction associated with mulgcl 19109. (Contributed by Rohan Ridenour, 3-Aug-2023.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ · = (.g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ Grp) & ⊢ (𝜑 → 𝑁 ∈ ℤ) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝑁 · 𝑋) ∈ 𝐵) | ||
| Theorem | mulgaddcomlem 19115 | Lemma for mulgaddcom 19116. (Contributed by Paul Chapman, 17-Apr-2009.) (Revised by AV, 31-Aug-2021.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ · = (.g‘𝐺) & ⊢ + = (+g‘𝐺) ⇒ ⊢ (((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋 ∈ 𝐵) ∧ ((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋))) → ((-𝑦 · 𝑋) + 𝑋) = (𝑋 + (-𝑦 · 𝑋))) | ||
| Theorem | mulgaddcom 19116 | The group multiple operator commutes with the group operation. (Contributed by Paul Chapman, 17-Apr-2009.) (Revised by AV, 31-Aug-2021.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ · = (.g‘𝐺) & ⊢ + = (+g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵) → ((𝑁 · 𝑋) + 𝑋) = (𝑋 + (𝑁 · 𝑋))) | ||
| Theorem | mulginvcom 19117 | The group multiple operator commutes with the group inverse function. (Contributed by Paul Chapman, 17-Apr-2009.) (Revised by AV, 31-Aug-2021.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ · = (.g‘𝐺) & ⊢ 𝐼 = (invg‘𝐺) ⇒ ⊢ ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵) → (𝑁 · (𝐼‘𝑋)) = (𝐼‘(𝑁 · 𝑋))) | ||
| Theorem | mulginvinv 19118 | The group multiple operator commutes with the group inverse function. (Contributed by Paul Chapman, 17-Apr-2009.) (Revised by AV, 31-Aug-2021.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ · = (.g‘𝐺) & ⊢ 𝐼 = (invg‘𝐺) ⇒ ⊢ ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵) → (𝐼‘(𝑁 · (𝐼‘𝑋))) = (𝑁 · 𝑋)) | ||
| Theorem | mulgnn0z 19119 | A group multiple of the identity, for nonnegative multiple. (Contributed by Mario Carneiro, 13-Dec-2014.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ · = (.g‘𝐺) & ⊢ 0 = (0g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0) → (𝑁 · 0 ) = 0 ) | ||
| Theorem | mulgz 19120 | A group multiple of the identity, for integer multiple. (Contributed by Mario Carneiro, 13-Dec-2014.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ · = (.g‘𝐺) & ⊢ 0 = (0g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) → (𝑁 · 0 ) = 0 ) | ||
| Theorem | mulgnndir 19121 | Sum of group multiples, for positive multiples. (Contributed by Mario Carneiro, 11-Dec-2014.) (Revised by AV, 29-Aug-2021.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ · = (.g‘𝐺) & ⊢ + = (+g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵)) → ((𝑀 + 𝑁) · 𝑋) = ((𝑀 · 𝑋) + (𝑁 · 𝑋))) | ||
| Theorem | mulgnn0dir 19122 | Sum of group multiples, generalized to ℕ0. (Contributed by Mario Carneiro, 11-Dec-2014.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ · = (.g‘𝐺) & ⊢ + = (+g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵)) → ((𝑀 + 𝑁) · 𝑋) = ((𝑀 · 𝑋) + (𝑁 · 𝑋))) | ||
| Theorem | mulgdirlem 19123 | Lemma for mulgdir 19124. (Contributed by Mario Carneiro, 13-Dec-2014.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ · = (.g‘𝐺) & ⊢ + = (+g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) → ((𝑀 + 𝑁) · 𝑋) = ((𝑀 · 𝑋) + (𝑁 · 𝑋))) | ||
| Theorem | mulgdir 19124 | Sum of group multiples, generalized to ℤ. (Contributed by Mario Carneiro, 13-Dec-2014.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ · = (.g‘𝐺) & ⊢ + = (+g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵)) → ((𝑀 + 𝑁) · 𝑋) = ((𝑀 · 𝑋) + (𝑁 · 𝑋))) | ||
| Theorem | mulgp1 19125 | Group multiple (exponentiation) operation at a successor, extended to ℤ. (Contributed by Mario Carneiro, 11-Dec-2014.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ · = (.g‘𝐺) & ⊢ + = (+g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵) → ((𝑁 + 1) · 𝑋) = ((𝑁 · 𝑋) + 𝑋)) | ||
| Theorem | mulgneg2 19126 | Group multiple (exponentiation) operation at a negative integer. (Contributed by Mario Carneiro, 13-Dec-2014.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ · = (.g‘𝐺) & ⊢ 𝐼 = (invg‘𝐺) ⇒ ⊢ ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵) → (-𝑁 · 𝑋) = (𝑁 · (𝐼‘𝑋))) | ||
| Theorem | mulgnnass 19127 | Product of group multiples, for positive multiples in a semigroup. (Contributed by Mario Carneiro, 13-Dec-2014.) (Revised by AV, 29-Aug-2021.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ · = (.g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵)) → ((𝑀 · 𝑁) · 𝑋) = (𝑀 · (𝑁 · 𝑋))) | ||
| Theorem | mulgnn0ass 19128 | Product of group multiples, generalized to ℕ0. (Contributed by Mario Carneiro, 13-Dec-2014.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ · = (.g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵)) → ((𝑀 · 𝑁) · 𝑋) = (𝑀 · (𝑁 · 𝑋))) | ||
| Theorem | mulgass 19129 | Product of group multiples, generalized to ℤ. (Contributed by Mario Carneiro, 13-Dec-2014.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ · = (.g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵)) → ((𝑀 · 𝑁) · 𝑋) = (𝑀 · (𝑁 · 𝑋))) | ||
| Theorem | mulgassr 19130 | Reversed product of group multiples. (Contributed by Paul Chapman, 17-Apr-2009.) (Revised by AV, 30-Aug-2021.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ · = (.g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵)) → ((𝑁 · 𝑀) · 𝑋) = (𝑀 · (𝑁 · 𝑋))) | ||
| Theorem | mulgmodid 19131 | Casting out multiples of the identity element leaves the group multiple unchanged. (Contributed by Paul Chapman, 17-Apr-2009.) (Revised by AV, 30-Aug-2021.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ · = (.g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Grp ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ (𝑋 ∈ 𝐵 ∧ (𝑀 · 𝑋) = 0 )) → ((𝑁 mod 𝑀) · 𝑋) = (𝑁 · 𝑋)) | ||
| Theorem | mulgsubdir 19132 | Distribution of group multiples over subtraction for group elements, subdir 11697 analog. (Contributed by Mario Carneiro, 13-Dec-2014.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ · = (.g‘𝐺) & ⊢ − = (-g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵)) → ((𝑀 − 𝑁) · 𝑋) = ((𝑀 · 𝑋) − (𝑁 · 𝑋))) | ||
| Theorem | mhmmulg 19133 | A homomorphism of monoids preserves group multiples. (Contributed by Mario Carneiro, 14-Jun-2015.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ · = (.g‘𝐺) & ⊢ × = (.g‘𝐻) ⇒ ⊢ ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵) → (𝐹‘(𝑁 · 𝑋)) = (𝑁 × (𝐹‘𝑋))) | ||
| Theorem | mulgpropd 19134* | Two structures with the same group-nature have the same group multiple function. 𝐾 is expected to either be V (when strong equality is available) or 𝐵 (when closure is available). (Contributed by Stefan O'Rear, 21-Mar-2015.) (Revised by Mario Carneiro, 2-Oct-2015.) |
| ⊢ · = (.g‘𝐺) & ⊢ × = (.g‘𝐻) & ⊢ (𝜑 → 𝐵 = (Base‘𝐺)) & ⊢ (𝜑 → 𝐵 = (Base‘𝐻)) & ⊢ (𝜑 → 𝐵 ⊆ 𝐾) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾)) → (𝑥(+g‘𝐺)𝑦) ∈ 𝐾) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾)) → (𝑥(+g‘𝐺)𝑦) = (𝑥(+g‘𝐻)𝑦)) ⇒ ⊢ (𝜑 → · = × ) | ||
| Theorem | submmulgcl 19135 | Closure of the group multiple (exponentiation) operation in a submonoid. (Contributed by Mario Carneiro, 13-Jan-2015.) |
| ⊢ ∙ = (.g‘𝐺) ⇒ ⊢ ((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝑆) → (𝑁 ∙ 𝑋) ∈ 𝑆) | ||
| Theorem | submmulg 19136 | A group multiple is the same if evaluated in a submonoid. (Contributed by Mario Carneiro, 15-Jun-2015.) |
| ⊢ ∙ = (.g‘𝐺) & ⊢ 𝐻 = (𝐺 ↾s 𝑆) & ⊢ · = (.g‘𝐻) ⇒ ⊢ ((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝑆) → (𝑁 ∙ 𝑋) = (𝑁 · 𝑋)) | ||
| Theorem | pwsmulg 19137 | Value of a group multiple in a structure power. (Contributed by Mario Carneiro, 15-Jun-2015.) |
| ⊢ 𝑌 = (𝑅 ↑s 𝐼) & ⊢ 𝐵 = (Base‘𝑌) & ⊢ ∙ = (.g‘𝑌) & ⊢ · = (.g‘𝑅) ⇒ ⊢ (((𝑅 ∈ Mnd ∧ 𝐼 ∈ 𝑉) ∧ (𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ∧ 𝐴 ∈ 𝐼)) → ((𝑁 ∙ 𝑋)‘𝐴) = (𝑁 · (𝑋‘𝐴))) | ||
| Syntax | csubg 19138 | Extend class notation with all subgroups of a group. |
| class SubGrp | ||
| Syntax | cnsg 19139 | Extend class notation with all normal subgroups of a group. |
| class NrmSGrp | ||
| Syntax | cqg 19140 | Quotient group equivalence class. |
| class ~QG | ||
| Definition | df-subg 19141* | Define a subgroup of a group as a set of elements that is a group in its own right. Equivalently (issubg2 19159), a subgroup is a subset of the group that is closed for the group internal operation (see subgcl 19154), contains the neutral element of the group (see subg0 19150) and contains the inverses for all of its elements (see subginvcl 19153). (Contributed by Mario Carneiro, 2-Dec-2014.) |
| ⊢ SubGrp = (𝑤 ∈ Grp ↦ {𝑠 ∈ 𝒫 (Base‘𝑤) ∣ (𝑤 ↾s 𝑠) ∈ Grp}) | ||
| Definition | df-nsg 19142* | Define the equivalence relation in a quotient ring or quotient group (where 𝑖 is a two-sided ideal or a normal subgroup). For non-normal subgroups this generates the left cosets. (Contributed by Mario Carneiro, 15-Jun-2015.) |
| ⊢ NrmSGrp = (𝑤 ∈ Grp ↦ {𝑠 ∈ (SubGrp‘𝑤) ∣ [(Base‘𝑤) / 𝑏][(+g‘𝑤) / 𝑝]∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 ((𝑥𝑝𝑦) ∈ 𝑠 ↔ (𝑦𝑝𝑥) ∈ 𝑠)}) | ||
| Definition | df-eqg 19143* | Define the equivalence relation in a group generated by a subgroup. More precisely, if 𝐺 is a group and 𝐻 is a subgroup, then 𝐺 ~QG 𝐻 is the equivalence relation on 𝐺 associated with the left cosets of 𝐻. A typical application of this definition is the construction of the quotient group (resp. ring) of a group (resp. ring) by a normal subgroup (resp. two-sided ideal). (Contributed by Mario Carneiro, 15-Jun-2015.) |
| ⊢ ~QG = (𝑟 ∈ V, 𝑖 ∈ V ↦ {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ (Base‘𝑟) ∧ (((invg‘𝑟)‘𝑥)(+g‘𝑟)𝑦) ∈ 𝑖)}) | ||
| Theorem | issubg 19144 | The subgroup predicate. (Contributed by Mario Carneiro, 2-Dec-2014.) |
| ⊢ 𝐵 = (Base‘𝐺) ⇒ ⊢ (𝑆 ∈ (SubGrp‘𝐺) ↔ (𝐺 ∈ Grp ∧ 𝑆 ⊆ 𝐵 ∧ (𝐺 ↾s 𝑆) ∈ Grp)) | ||
| Theorem | subgss 19145 | A subgroup is a subset. (Contributed by Mario Carneiro, 2-Dec-2014.) |
| ⊢ 𝐵 = (Base‘𝐺) ⇒ ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ⊆ 𝐵) | ||
| Theorem | subgid 19146 | A group is a subgroup of itself. (Contributed by Mario Carneiro, 7-Dec-2014.) |
| ⊢ 𝐵 = (Base‘𝐺) ⇒ ⊢ (𝐺 ∈ Grp → 𝐵 ∈ (SubGrp‘𝐺)) | ||
| Theorem | subggrp 19147 | A subgroup is a group. (Contributed by Mario Carneiro, 2-Dec-2014.) |
| ⊢ 𝐻 = (𝐺 ↾s 𝑆) ⇒ ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝐻 ∈ Grp) | ||
| Theorem | subgbas 19148 | The base of the restricted group in a subgroup. (Contributed by Mario Carneiro, 2-Dec-2014.) |
| ⊢ 𝐻 = (𝐺 ↾s 𝑆) ⇒ ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 = (Base‘𝐻)) | ||
| Theorem | subgrcl 19149 | Reverse closure for the subgroup predicate. (Contributed by Mario Carneiro, 2-Dec-2014.) |
| ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp) | ||
| Theorem | subg0 19150 | A subgroup of a group must have the same identity as the group. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 30-Apr-2015.) |
| ⊢ 𝐻 = (𝐺 ↾s 𝑆) & ⊢ 0 = (0g‘𝐺) ⇒ ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 0 = (0g‘𝐻)) | ||
| Theorem | subginv 19151 | The inverse of an element in a subgroup is the same as the inverse in the larger group. (Contributed by Mario Carneiro, 2-Dec-2014.) |
| ⊢ 𝐻 = (𝐺 ↾s 𝑆) & ⊢ 𝐼 = (invg‘𝐺) & ⊢ 𝐽 = (invg‘𝐻) ⇒ ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ 𝑆) → (𝐼‘𝑋) = (𝐽‘𝑋)) | ||
| Theorem | subg0cl 19152 | The group identity is an element of any subgroup. (Contributed by Mario Carneiro, 2-Dec-2014.) |
| ⊢ 0 = (0g‘𝐺) ⇒ ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 0 ∈ 𝑆) | ||
| Theorem | subginvcl 19153 | The inverse of an element is closed in a subgroup. (Contributed by Mario Carneiro, 2-Dec-2014.) |
| ⊢ 𝐼 = (invg‘𝐺) ⇒ ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ 𝑆) → (𝐼‘𝑋) ∈ 𝑆) | ||
| Theorem | subgcl 19154 | A subgroup is closed under group operation. (Contributed by Mario Carneiro, 2-Dec-2014.) |
| ⊢ + = (+g‘𝐺) ⇒ ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) → (𝑋 + 𝑌) ∈ 𝑆) | ||
| Theorem | subgsubcl 19155 | A subgroup is closed under group subtraction. (Contributed by Mario Carneiro, 18-Jan-2015.) |
| ⊢ − = (-g‘𝐺) ⇒ ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) → (𝑋 − 𝑌) ∈ 𝑆) | ||
| Theorem | subgsub 19156 | The subtraction of elements in a subgroup is the same as subtraction in the group. (Contributed by Mario Carneiro, 15-Jun-2015.) |
| ⊢ − = (-g‘𝐺) & ⊢ 𝐻 = (𝐺 ↾s 𝑆) & ⊢ 𝑁 = (-g‘𝐻) ⇒ ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) → (𝑋 − 𝑌) = (𝑋𝑁𝑌)) | ||
| Theorem | subgmulgcl 19157 | Closure of the group multiple (exponentiation) operation in a subgroup. (Contributed by Mario Carneiro, 13-Jan-2015.) |
| ⊢ · = (.g‘𝐺) ⇒ ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝑆) → (𝑁 · 𝑋) ∈ 𝑆) | ||
| Theorem | subgmulg 19158 | A group multiple is the same if evaluated in a subgroup. (Contributed by Mario Carneiro, 15-Jan-2015.) |
| ⊢ · = (.g‘𝐺) & ⊢ 𝐻 = (𝐺 ↾s 𝑆) & ⊢ ∙ = (.g‘𝐻) ⇒ ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝑆) → (𝑁 · 𝑋) = (𝑁 ∙ 𝑋)) | ||
| Theorem | issubg2 19159* | Characterize the subgroups of a group by closure properties. (Contributed by Mario Carneiro, 2-Dec-2014.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ 𝐼 = (invg‘𝐺) ⇒ ⊢ (𝐺 ∈ Grp → (𝑆 ∈ (SubGrp‘𝐺) ↔ (𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ∧ ∀𝑥 ∈ 𝑆 (∀𝑦 ∈ 𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼‘𝑥) ∈ 𝑆)))) | ||
| Theorem | issubgrpd2 19160* | Prove a subgroup by closure (definition version). (Contributed by Stefan O'Rear, 7-Dec-2014.) |
| ⊢ (𝜑 → 𝑆 = (𝐼 ↾s 𝐷)) & ⊢ (𝜑 → 0 = (0g‘𝐼)) & ⊢ (𝜑 → + = (+g‘𝐼)) & ⊢ (𝜑 → 𝐷 ⊆ (Base‘𝐼)) & ⊢ (𝜑 → 0 ∈ 𝐷) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷) → (𝑥 + 𝑦) ∈ 𝐷) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → ((invg‘𝐼)‘𝑥) ∈ 𝐷) & ⊢ (𝜑 → 𝐼 ∈ Grp) ⇒ ⊢ (𝜑 → 𝐷 ∈ (SubGrp‘𝐼)) | ||
| Theorem | issubgrpd 19161* | Prove a subgroup by closure. (Contributed by Stefan O'Rear, 7-Dec-2014.) |
| ⊢ (𝜑 → 𝑆 = (𝐼 ↾s 𝐷)) & ⊢ (𝜑 → 0 = (0g‘𝐼)) & ⊢ (𝜑 → + = (+g‘𝐼)) & ⊢ (𝜑 → 𝐷 ⊆ (Base‘𝐼)) & ⊢ (𝜑 → 0 ∈ 𝐷) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷) → (𝑥 + 𝑦) ∈ 𝐷) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → ((invg‘𝐼)‘𝑥) ∈ 𝐷) & ⊢ (𝜑 → 𝐼 ∈ Grp) ⇒ ⊢ (𝜑 → 𝑆 ∈ Grp) | ||
| Theorem | issubg3 19162* | A subgroup is a symmetric submonoid. (Contributed by Mario Carneiro, 7-Mar-2015.) |
| ⊢ 𝐼 = (invg‘𝐺) ⇒ ⊢ (𝐺 ∈ Grp → (𝑆 ∈ (SubGrp‘𝐺) ↔ (𝑆 ∈ (SubMnd‘𝐺) ∧ ∀𝑥 ∈ 𝑆 (𝐼‘𝑥) ∈ 𝑆))) | ||
| Theorem | issubg4 19163* | A subgroup is a nonempty subset of the group closed under subtraction. (Contributed by Mario Carneiro, 17-Sep-2015.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ − = (-g‘𝐺) ⇒ ⊢ (𝐺 ∈ Grp → (𝑆 ∈ (SubGrp‘𝐺) ↔ (𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥 − 𝑦) ∈ 𝑆))) | ||
| Theorem | grpissubg 19164 | If the base set of a group is contained in the base set of another group, and the group operation of the group is the restriction of the group operation of the other group to its base set, then the (base set of the) group is subgroup of the other group. (Contributed by AV, 14-Mar-2019.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝑆 = (Base‘𝐻) ⇒ ⊢ ((𝐺 ∈ Grp ∧ 𝐻 ∈ Grp) → ((𝑆 ⊆ 𝐵 ∧ (+g‘𝐻) = ((+g‘𝐺) ↾ (𝑆 × 𝑆))) → 𝑆 ∈ (SubGrp‘𝐺))) | ||
| Theorem | resgrpisgrp 19165 | If the base set of a group is contained in the base set of another group, and the group operation of the group is the restriction of the group operation of the other group to its base set, then the other group restricted to the base set of the group is a group. (Contributed by AV, 14-Mar-2019.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝑆 = (Base‘𝐻) ⇒ ⊢ ((𝐺 ∈ Grp ∧ 𝐻 ∈ Grp) → ((𝑆 ⊆ 𝐵 ∧ (+g‘𝐻) = ((+g‘𝐺) ↾ (𝑆 × 𝑆))) → (𝐺 ↾s 𝑆) ∈ Grp)) | ||
| Theorem | subgsubm 19166 | A subgroup is a submonoid. (Contributed by Mario Carneiro, 18-Jun-2015.) |
| ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ∈ (SubMnd‘𝐺)) | ||
| Theorem | subsubg 19167 | A subgroup of a subgroup is a subgroup. (Contributed by Mario Carneiro, 19-Jan-2015.) |
| ⊢ 𝐻 = (𝐺 ↾s 𝑆) ⇒ ⊢ (𝑆 ∈ (SubGrp‘𝐺) → (𝐴 ∈ (SubGrp‘𝐻) ↔ (𝐴 ∈ (SubGrp‘𝐺) ∧ 𝐴 ⊆ 𝑆))) | ||
| Theorem | subgint 19168 | The intersection of a nonempty collection of subgroups is a subgroup. (Contributed by Mario Carneiro, 7-Dec-2014.) |
| ⊢ ((𝑆 ⊆ (SubGrp‘𝐺) ∧ 𝑆 ≠ ∅) → ∩ 𝑆 ∈ (SubGrp‘𝐺)) | ||
| Theorem | 0subg 19169 | The zero subgroup of an arbitrary group. (Contributed by Stefan O'Rear, 10-Dec-2014.) (Proof shortened by SN, 31-Jan-2025.) |
| ⊢ 0 = (0g‘𝐺) ⇒ ⊢ (𝐺 ∈ Grp → { 0 } ∈ (SubGrp‘𝐺)) | ||
| Theorem | 0subgOLD 19170 | Obsolete version of 0subg 19169 as of 31-Jan-2025. (Contributed by Stefan O'Rear, 10-Dec-2014.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ 0 = (0g‘𝐺) ⇒ ⊢ (𝐺 ∈ Grp → { 0 } ∈ (SubGrp‘𝐺)) | ||
| Theorem | trivsubgd 19171 | The only subgroup of a trivial group is itself. (Contributed by Rohan Ridenour, 3-Aug-2023.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ Grp) & ⊢ (𝜑 → 𝐵 = { 0 }) & ⊢ (𝜑 → 𝐴 ∈ (SubGrp‘𝐺)) ⇒ ⊢ (𝜑 → 𝐴 = 𝐵) | ||
| Theorem | trivsubgsnd 19172 | The only subgroup of a trivial group is itself. (Contributed by Rohan Ridenour, 3-Aug-2023.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ Grp) & ⊢ (𝜑 → 𝐵 = { 0 }) ⇒ ⊢ (𝜑 → (SubGrp‘𝐺) = {𝐵}) | ||
| Theorem | isnsg 19173* | Property of being a normal subgroup. (Contributed by Mario Carneiro, 18-Jan-2015.) |
| ⊢ 𝑋 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) ⇒ ⊢ (𝑆 ∈ (NrmSGrp‘𝐺) ↔ (𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝑦 + 𝑥) ∈ 𝑆))) | ||
| Theorem | isnsg2 19174* | Weaken the condition of isnsg 19173 to only one side of the implication. (Contributed by Mario Carneiro, 18-Jan-2015.) |
| ⊢ 𝑋 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) ⇒ ⊢ (𝑆 ∈ (NrmSGrp‘𝐺) ↔ (𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝑥 + 𝑦) ∈ 𝑆 → (𝑦 + 𝑥) ∈ 𝑆))) | ||
| Theorem | nsgbi 19175 | Defining property of a normal subgroup. (Contributed by Mario Carneiro, 18-Jan-2015.) |
| ⊢ 𝑋 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) ⇒ ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝐴 + 𝐵) ∈ 𝑆 ↔ (𝐵 + 𝐴) ∈ 𝑆)) | ||
| Theorem | nsgsubg 19176 | A normal subgroup is a subgroup. (Contributed by Mario Carneiro, 18-Jan-2015.) |
| ⊢ (𝑆 ∈ (NrmSGrp‘𝐺) → 𝑆 ∈ (SubGrp‘𝐺)) | ||
| Theorem | nsgconj 19177 | The conjugation of an element of a normal subgroup is in the subgroup. (Contributed by Mario Carneiro, 4-Feb-2015.) |
| ⊢ 𝑋 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ − = (-g‘𝐺) ⇒ ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑆) → ((𝐴 + 𝐵) − 𝐴) ∈ 𝑆) | ||
| Theorem | isnsg3 19178* | A subgroup is normal iff the conjugation of all the elements of the subgroup is in the subgroup. (Contributed by Mario Carneiro, 18-Jan-2015.) |
| ⊢ 𝑋 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ − = (-g‘𝐺) ⇒ ⊢ (𝑆 ∈ (NrmSGrp‘𝐺) ↔ (𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑆 ((𝑥 + 𝑦) − 𝑥) ∈ 𝑆)) | ||
| Theorem | subgacs 19179 | Subgroups are an algebraic closure system. (Contributed by Stefan O'Rear, 4-Apr-2015.) (Revised by Mario Carneiro, 22-Aug-2015.) |
| ⊢ 𝐵 = (Base‘𝐺) ⇒ ⊢ (𝐺 ∈ Grp → (SubGrp‘𝐺) ∈ (ACS‘𝐵)) | ||
| Theorem | nsgacs 19180 | Normal subgroups form an algebraic closure system. (Contributed by Stefan O'Rear, 4-Sep-2015.) |
| ⊢ 𝐵 = (Base‘𝐺) ⇒ ⊢ (𝐺 ∈ Grp → (NrmSGrp‘𝐺) ∈ (ACS‘𝐵)) | ||
| Theorem | elnmz 19181* | Elementhood in the normalizer. (Contributed by Mario Carneiro, 18-Jan-2015.) |
| ⊢ 𝑁 = {𝑥 ∈ 𝑋 ∣ ∀𝑦 ∈ 𝑋 ((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝑦 + 𝑥) ∈ 𝑆)} ⇒ ⊢ (𝐴 ∈ 𝑁 ↔ (𝐴 ∈ 𝑋 ∧ ∀𝑧 ∈ 𝑋 ((𝐴 + 𝑧) ∈ 𝑆 ↔ (𝑧 + 𝐴) ∈ 𝑆))) | ||
| Theorem | nmzbi 19182* | Defining property of the normalizer. (Contributed by Mario Carneiro, 18-Jan-2015.) |
| ⊢ 𝑁 = {𝑥 ∈ 𝑋 ∣ ∀𝑦 ∈ 𝑋 ((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝑦 + 𝑥) ∈ 𝑆)} ⇒ ⊢ ((𝐴 ∈ 𝑁 ∧ 𝐵 ∈ 𝑋) → ((𝐴 + 𝐵) ∈ 𝑆 ↔ (𝐵 + 𝐴) ∈ 𝑆)) | ||
| Theorem | nmzsubg 19183* | The normalizer NG(S) of a subset 𝑆 of the group is a subgroup. (Contributed by Mario Carneiro, 18-Jan-2015.) |
| ⊢ 𝑁 = {𝑥 ∈ 𝑋 ∣ ∀𝑦 ∈ 𝑋 ((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝑦 + 𝑥) ∈ 𝑆)} & ⊢ 𝑋 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) ⇒ ⊢ (𝐺 ∈ Grp → 𝑁 ∈ (SubGrp‘𝐺)) | ||
| Theorem | ssnmz 19184* | A subgroup is a subset of its normalizer. (Contributed by Mario Carneiro, 18-Jan-2015.) |
| ⊢ 𝑁 = {𝑥 ∈ 𝑋 ∣ ∀𝑦 ∈ 𝑋 ((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝑦 + 𝑥) ∈ 𝑆)} & ⊢ 𝑋 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) ⇒ ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ⊆ 𝑁) | ||
| Theorem | isnsg4 19185* | A subgroup is normal iff its normalizer is the entire group. (Contributed by Mario Carneiro, 18-Jan-2015.) |
| ⊢ 𝑁 = {𝑥 ∈ 𝑋 ∣ ∀𝑦 ∈ 𝑋 ((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝑦 + 𝑥) ∈ 𝑆)} & ⊢ 𝑋 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) ⇒ ⊢ (𝑆 ∈ (NrmSGrp‘𝐺) ↔ (𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 = 𝑋)) | ||
| Theorem | nmznsg 19186* | Any subgroup is a normal subgroup of its normalizer. (Contributed by Mario Carneiro, 19-Jan-2015.) |
| ⊢ 𝑁 = {𝑥 ∈ 𝑋 ∣ ∀𝑦 ∈ 𝑋 ((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝑦 + 𝑥) ∈ 𝑆)} & ⊢ 𝑋 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ 𝐻 = (𝐺 ↾s 𝑁) ⇒ ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ∈ (NrmSGrp‘𝐻)) | ||
| Theorem | 0nsg 19187 | The zero subgroup is normal. (Contributed by Mario Carneiro, 4-Feb-2015.) |
| ⊢ 0 = (0g‘𝐺) ⇒ ⊢ (𝐺 ∈ Grp → { 0 } ∈ (NrmSGrp‘𝐺)) | ||
| Theorem | nsgid 19188 | The whole group is a normal subgroup of itself. (Contributed by Mario Carneiro, 4-Feb-2015.) |
| ⊢ 𝐵 = (Base‘𝐺) ⇒ ⊢ (𝐺 ∈ Grp → 𝐵 ∈ (NrmSGrp‘𝐺)) | ||
| Theorem | 0idnsgd 19189 | The whole group and the zero subgroup are normal subgroups of a group. (Contributed by Rohan Ridenour, 3-Aug-2023.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ Grp) ⇒ ⊢ (𝜑 → {{ 0 }, 𝐵} ⊆ (NrmSGrp‘𝐺)) | ||
| Theorem | trivnsgd 19190 | The only normal subgroup of a trivial group is itself. (Contributed by Rohan Ridenour, 3-Aug-2023.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ Grp) & ⊢ (𝜑 → 𝐵 = { 0 }) ⇒ ⊢ (𝜑 → (NrmSGrp‘𝐺) = {𝐵}) | ||
| Theorem | triv1nsgd 19191 | A trivial group has exactly one normal subgroup. (Contributed by Rohan Ridenour, 3-Aug-2023.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ Grp) & ⊢ (𝜑 → 𝐵 = { 0 }) ⇒ ⊢ (𝜑 → (NrmSGrp‘𝐺) ≈ 1o) | ||
| Theorem | 1nsgtrivd 19192 | A group with exactly one normal subgroup is trivial. (Contributed by Rohan Ridenour, 3-Aug-2023.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ Grp) & ⊢ (𝜑 → (NrmSGrp‘𝐺) ≈ 1o) ⇒ ⊢ (𝜑 → 𝐵 = { 0 }) | ||
| Theorem | releqg 19193 | The left coset equivalence relation is a relation. (Contributed by Mario Carneiro, 14-Jun-2015.) |
| ⊢ 𝑅 = (𝐺 ~QG 𝑆) ⇒ ⊢ Rel 𝑅 | ||
| Theorem | eqgfval 19194* | Value of the subgroup left coset equivalence relation. (Contributed by Mario Carneiro, 15-Jan-2015.) |
| ⊢ 𝑋 = (Base‘𝐺) & ⊢ 𝑁 = (invg‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ 𝑅 = (𝐺 ~QG 𝑆) ⇒ ⊢ ((𝐺 ∈ 𝑉 ∧ 𝑆 ⊆ 𝑋) → 𝑅 = {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝑋 ∧ ((𝑁‘𝑥) + 𝑦) ∈ 𝑆)}) | ||
| Theorem | eqgval 19195 | Value of the subgroup left coset equivalence relation. (Contributed by Mario Carneiro, 15-Jan-2015.) (Revised by Mario Carneiro, 14-Jun-2015.) |
| ⊢ 𝑋 = (Base‘𝐺) & ⊢ 𝑁 = (invg‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ 𝑅 = (𝐺 ~QG 𝑆) ⇒ ⊢ ((𝐺 ∈ 𝑉 ∧ 𝑆 ⊆ 𝑋) → (𝐴𝑅𝐵 ↔ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ ((𝑁‘𝐴) + 𝐵) ∈ 𝑆))) | ||
| Theorem | eqger 19196 | The subgroup coset equivalence relation is an equivalence relation. (Contributed by Mario Carneiro, 13-Jan-2015.) |
| ⊢ 𝑋 = (Base‘𝐺) & ⊢ ∼ = (𝐺 ~QG 𝑌) ⇒ ⊢ (𝑌 ∈ (SubGrp‘𝐺) → ∼ Er 𝑋) | ||
| Theorem | eqglact 19197* | A left coset can be expressed as the image of a left action. (Contributed by Mario Carneiro, 20-Sep-2015.) |
| ⊢ 𝑋 = (Base‘𝐺) & ⊢ ∼ = (𝐺 ~QG 𝑌) & ⊢ + = (+g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Grp ∧ 𝑌 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋) → [𝐴] ∼ = ((𝑥 ∈ 𝑋 ↦ (𝐴 + 𝑥)) “ 𝑌)) | ||
| Theorem | eqgid 19198 | The left coset containing the identity is the original subgroup. (Contributed by Mario Carneiro, 20-Sep-2015.) |
| ⊢ 𝑋 = (Base‘𝐺) & ⊢ ∼ = (𝐺 ~QG 𝑌) & ⊢ 0 = (0g‘𝐺) ⇒ ⊢ (𝑌 ∈ (SubGrp‘𝐺) → [ 0 ] ∼ = 𝑌) | ||
| Theorem | eqgen 19199 | Each coset is equipotent to the subgroup itself (which is also the coset containing the identity). (Contributed by Mario Carneiro, 20-Sep-2015.) |
| ⊢ 𝑋 = (Base‘𝐺) & ⊢ ∼ = (𝐺 ~QG 𝑌) ⇒ ⊢ ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ (𝑋 / ∼ )) → 𝑌 ≈ 𝐴) | ||
| Theorem | eqgcpbl 19200 | The subgroup coset equivalence relation is compatible with addition when the subgroup is normal. (Contributed by Mario Carneiro, 14-Jun-2015.) |
| ⊢ 𝑋 = (Base‘𝐺) & ⊢ ∼ = (𝐺 ~QG 𝑌) & ⊢ + = (+g‘𝐺) ⇒ ⊢ (𝑌 ∈ (NrmSGrp‘𝐺) → ((𝐴 ∼ 𝐶 ∧ 𝐵 ∼ 𝐷) → (𝐴 + 𝐵) ∼ (𝐶 + 𝐷))) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |