Home | Metamath
Proof Explorer Theorem List (p. 192 of 464) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-29181) |
Hilbert Space Explorer
(29182-30704) |
Users' Mathboxes
(30705-46395) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | gexid 19101 | Any element to the power of the group exponent. (Contributed by Mario Carneiro, 24-Apr-2016.) |
⊢ 𝑋 = (Base‘𝐺) & ⊢ 𝐸 = (gEx‘𝐺) & ⊢ · = (.g‘𝐺) & ⊢ 0 = (0g‘𝐺) ⇒ ⊢ (𝐴 ∈ 𝑋 → (𝐸 · 𝐴) = 0 ) | ||
Theorem | gexlem2 19102* | Any positive annihilator of all the group elements is an upper bound on the group exponent. (Contributed by Mario Carneiro, 24-Apr-2016.) (Proof shortened by AV, 26-Sep-2020.) |
⊢ 𝑋 = (Base‘𝐺) & ⊢ 𝐸 = (gEx‘𝐺) & ⊢ · = (.g‘𝐺) & ⊢ 0 = (0g‘𝐺) ⇒ ⊢ ((𝐺 ∈ 𝑉 ∧ 𝑁 ∈ ℕ ∧ ∀𝑥 ∈ 𝑋 (𝑁 · 𝑥) = 0 ) → 𝐸 ∈ (1...𝑁)) | ||
Theorem | gexdvdsi 19103 | Any group element is annihilated by any multiple of the group exponent. (Contributed by Mario Carneiro, 24-Apr-2016.) |
⊢ 𝑋 = (Base‘𝐺) & ⊢ 𝐸 = (gEx‘𝐺) & ⊢ · = (.g‘𝐺) & ⊢ 0 = (0g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝐸 ∥ 𝑁) → (𝑁 · 𝐴) = 0 ) | ||
Theorem | gexdvds 19104* | The only 𝑁 that annihilate all the elements of the group are the multiples of the group exponent. (Contributed by Mario Carneiro, 24-Apr-2016.) |
⊢ 𝑋 = (Base‘𝐺) & ⊢ 𝐸 = (gEx‘𝐺) & ⊢ · = (.g‘𝐺) & ⊢ 0 = (0g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) → (𝐸 ∥ 𝑁 ↔ ∀𝑥 ∈ 𝑋 (𝑁 · 𝑥) = 0 )) | ||
Theorem | gexdvds2 19105* | An integer divides the group exponent iff it divides all the group orders. In other words, the group exponent is the LCM of the orders of all the elements. (Contributed by Mario Carneiro, 24-Apr-2016.) |
⊢ 𝑋 = (Base‘𝐺) & ⊢ 𝐸 = (gEx‘𝐺) & ⊢ 𝑂 = (od‘𝐺) ⇒ ⊢ ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) → (𝐸 ∥ 𝑁 ↔ ∀𝑥 ∈ 𝑋 (𝑂‘𝑥) ∥ 𝑁)) | ||
Theorem | gexod 19106 | Any group element is annihilated by any multiple of the group exponent. (Contributed by Mario Carneiro, 24-Apr-2016.) |
⊢ 𝑋 = (Base‘𝐺) & ⊢ 𝐸 = (gEx‘𝐺) & ⊢ 𝑂 = (od‘𝐺) ⇒ ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → (𝑂‘𝐴) ∥ 𝐸) | ||
Theorem | gexcl3 19107* | If the order of every group element is bounded by 𝑁, the group has finite exponent. (Contributed by Mario Carneiro, 24-Apr-2016.) |
⊢ 𝑋 = (Base‘𝐺) & ⊢ 𝐸 = (gEx‘𝐺) & ⊢ 𝑂 = (od‘𝐺) ⇒ ⊢ ((𝐺 ∈ Grp ∧ ∀𝑥 ∈ 𝑋 (𝑂‘𝑥) ∈ (1...𝑁)) → 𝐸 ∈ ℕ) | ||
Theorem | gexnnod 19108 | Every group element has finite order if the exponent is finite. (Contributed by Mario Carneiro, 24-Apr-2016.) |
⊢ 𝑋 = (Base‘𝐺) & ⊢ 𝐸 = (gEx‘𝐺) & ⊢ 𝑂 = (od‘𝐺) ⇒ ⊢ ((𝐺 ∈ Grp ∧ 𝐸 ∈ ℕ ∧ 𝐴 ∈ 𝑋) → (𝑂‘𝐴) ∈ ℕ) | ||
Theorem | gexcl2 19109 | The exponent of a finite group is finite. (Contributed by Mario Carneiro, 24-Apr-2016.) |
⊢ 𝑋 = (Base‘𝐺) & ⊢ 𝐸 = (gEx‘𝐺) ⇒ ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) → 𝐸 ∈ ℕ) | ||
Theorem | gexdvds3 19110 | The exponent of a finite group divides the order (cardinality) of the group. Corollary of Lagrange's theorem for the order of a subgroup. (Contributed by Mario Carneiro, 24-Apr-2016.) |
⊢ 𝑋 = (Base‘𝐺) & ⊢ 𝐸 = (gEx‘𝐺) ⇒ ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) → 𝐸 ∥ (♯‘𝑋)) | ||
Theorem | gex1 19111 | A group or monoid has exponent 1 iff it is trivial. (Contributed by Mario Carneiro, 24-Apr-2016.) |
⊢ 𝑋 = (Base‘𝐺) & ⊢ 𝐸 = (gEx‘𝐺) ⇒ ⊢ (𝐺 ∈ Mnd → (𝐸 = 1 ↔ 𝑋 ≈ 1o)) | ||
Theorem | ispgp 19112* | A group is a 𝑃-group if every element has some power of 𝑃 as its order. (Contributed by Mario Carneiro, 15-Jan-2015.) |
⊢ 𝑋 = (Base‘𝐺) & ⊢ 𝑂 = (od‘𝐺) ⇒ ⊢ (𝑃 pGrp 𝐺 ↔ (𝑃 ∈ ℙ ∧ 𝐺 ∈ Grp ∧ ∀𝑥 ∈ 𝑋 ∃𝑛 ∈ ℕ0 (𝑂‘𝑥) = (𝑃↑𝑛))) | ||
Theorem | pgpprm 19113 | Reverse closure for the first argument of pGrp. (Contributed by Mario Carneiro, 15-Jan-2015.) |
⊢ (𝑃 pGrp 𝐺 → 𝑃 ∈ ℙ) | ||
Theorem | pgpgrp 19114 | Reverse closure for the second argument of pGrp. (Contributed by Mario Carneiro, 15-Jan-2015.) |
⊢ (𝑃 pGrp 𝐺 → 𝐺 ∈ Grp) | ||
Theorem | pgpfi1 19115 | A finite group with order a power of a prime 𝑃 is a 𝑃-group. (Contributed by Mario Carneiro, 16-Jan-2015.) |
⊢ 𝑋 = (Base‘𝐺) ⇒ ⊢ ((𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) → ((♯‘𝑋) = (𝑃↑𝑁) → 𝑃 pGrp 𝐺)) | ||
Theorem | pgp0 19116 | The identity subgroup is a 𝑃-group for every prime 𝑃. (Contributed by Mario Carneiro, 19-Jan-2015.) |
⊢ 0 = (0g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ) → 𝑃 pGrp (𝐺 ↾s { 0 })) | ||
Theorem | subgpgp 19117 | A subgroup of a p-group is a p-group. (Contributed by Mario Carneiro, 27-Apr-2016.) |
⊢ ((𝑃 pGrp 𝐺 ∧ 𝑆 ∈ (SubGrp‘𝐺)) → 𝑃 pGrp (𝐺 ↾s 𝑆)) | ||
Theorem | sylow1lem1 19118* | Lemma for sylow1 19123. The p-adic valuation of the size of 𝑆 is equal to the number of excess powers of 𝑃 in (♯‘𝑋) / (𝑃↑𝑁). (Contributed by Mario Carneiro, 15-Jan-2015.) |
⊢ 𝑋 = (Base‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ Grp) & ⊢ (𝜑 → 𝑋 ∈ Fin) & ⊢ (𝜑 → 𝑃 ∈ ℙ) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → (𝑃↑𝑁) ∥ (♯‘𝑋)) & ⊢ + = (+g‘𝐺) & ⊢ 𝑆 = {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃↑𝑁)} ⇒ ⊢ (𝜑 → ((♯‘𝑆) ∈ ℕ ∧ (𝑃 pCnt (♯‘𝑆)) = ((𝑃 pCnt (♯‘𝑋)) − 𝑁))) | ||
Theorem | sylow1lem2 19119* | Lemma for sylow1 19123. The function ⊕ is a group action on 𝑆. (Contributed by Mario Carneiro, 15-Jan-2015.) |
⊢ 𝑋 = (Base‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ Grp) & ⊢ (𝜑 → 𝑋 ∈ Fin) & ⊢ (𝜑 → 𝑃 ∈ ℙ) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → (𝑃↑𝑁) ∥ (♯‘𝑋)) & ⊢ + = (+g‘𝐺) & ⊢ 𝑆 = {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃↑𝑁)} & ⊢ ⊕ = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑆 ↦ ran (𝑧 ∈ 𝑦 ↦ (𝑥 + 𝑧))) ⇒ ⊢ (𝜑 → ⊕ ∈ (𝐺 GrpAct 𝑆)) | ||
Theorem | sylow1lem3 19120* | Lemma for sylow1 19123. One of the orbits of the group action has p-adic valuation less than the prime count of the set 𝑆. (Contributed by Mario Carneiro, 15-Jan-2015.) |
⊢ 𝑋 = (Base‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ Grp) & ⊢ (𝜑 → 𝑋 ∈ Fin) & ⊢ (𝜑 → 𝑃 ∈ ℙ) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → (𝑃↑𝑁) ∥ (♯‘𝑋)) & ⊢ + = (+g‘𝐺) & ⊢ 𝑆 = {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃↑𝑁)} & ⊢ ⊕ = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑆 ↦ ran (𝑧 ∈ 𝑦 ↦ (𝑥 + 𝑧))) & ⊢ ∼ = {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝑆 ∧ ∃𝑔 ∈ 𝑋 (𝑔 ⊕ 𝑥) = 𝑦)} ⇒ ⊢ (𝜑 → ∃𝑤 ∈ 𝑆 (𝑃 pCnt (♯‘[𝑤] ∼ )) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁)) | ||
Theorem | sylow1lem4 19121* | Lemma for sylow1 19123. The stabilizer subgroup of any element of 𝑆 is at most 𝑃↑𝑁 in size. (Contributed by Mario Carneiro, 15-Jan-2015.) |
⊢ 𝑋 = (Base‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ Grp) & ⊢ (𝜑 → 𝑋 ∈ Fin) & ⊢ (𝜑 → 𝑃 ∈ ℙ) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → (𝑃↑𝑁) ∥ (♯‘𝑋)) & ⊢ + = (+g‘𝐺) & ⊢ 𝑆 = {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃↑𝑁)} & ⊢ ⊕ = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑆 ↦ ran (𝑧 ∈ 𝑦 ↦ (𝑥 + 𝑧))) & ⊢ ∼ = {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝑆 ∧ ∃𝑔 ∈ 𝑋 (𝑔 ⊕ 𝑥) = 𝑦)} & ⊢ (𝜑 → 𝐵 ∈ 𝑆) & ⊢ 𝐻 = {𝑢 ∈ 𝑋 ∣ (𝑢 ⊕ 𝐵) = 𝐵} ⇒ ⊢ (𝜑 → (♯‘𝐻) ≤ (𝑃↑𝑁)) | ||
Theorem | sylow1lem5 19122* | Lemma for sylow1 19123. Using Lagrange's theorem and the orbit-stabilizer theorem, show that there is a subgroup with size exactly 𝑃↑𝑁. (Contributed by Mario Carneiro, 16-Jan-2015.) |
⊢ 𝑋 = (Base‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ Grp) & ⊢ (𝜑 → 𝑋 ∈ Fin) & ⊢ (𝜑 → 𝑃 ∈ ℙ) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → (𝑃↑𝑁) ∥ (♯‘𝑋)) & ⊢ + = (+g‘𝐺) & ⊢ 𝑆 = {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃↑𝑁)} & ⊢ ⊕ = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑆 ↦ ran (𝑧 ∈ 𝑦 ↦ (𝑥 + 𝑧))) & ⊢ ∼ = {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝑆 ∧ ∃𝑔 ∈ 𝑋 (𝑔 ⊕ 𝑥) = 𝑦)} & ⊢ (𝜑 → 𝐵 ∈ 𝑆) & ⊢ 𝐻 = {𝑢 ∈ 𝑋 ∣ (𝑢 ⊕ 𝐵) = 𝐵} & ⊢ (𝜑 → (𝑃 pCnt (♯‘[𝐵] ∼ )) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁)) ⇒ ⊢ (𝜑 → ∃ℎ ∈ (SubGrp‘𝐺)(♯‘ℎ) = (𝑃↑𝑁)) | ||
Theorem | sylow1 19123* | Sylow's first theorem. If 𝑃↑𝑁 is a prime power that divides the cardinality of 𝐺, then 𝐺 has a supgroup with size 𝑃↑𝑁. This is part of Metamath 100 proof #72. (Contributed by Mario Carneiro, 16-Jan-2015.) |
⊢ 𝑋 = (Base‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ Grp) & ⊢ (𝜑 → 𝑋 ∈ Fin) & ⊢ (𝜑 → 𝑃 ∈ ℙ) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → (𝑃↑𝑁) ∥ (♯‘𝑋)) ⇒ ⊢ (𝜑 → ∃𝑔 ∈ (SubGrp‘𝐺)(♯‘𝑔) = (𝑃↑𝑁)) | ||
Theorem | odcau 19124* | Cauchy's theorem for the order of an element in a group. A finite group whose order divides a prime 𝑃 contains an element of order 𝑃. (Contributed by Mario Carneiro, 16-Jan-2015.) |
⊢ 𝑋 = (Base‘𝐺) & ⊢ 𝑂 = (od‘𝐺) ⇒ ⊢ (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (♯‘𝑋)) → ∃𝑔 ∈ 𝑋 (𝑂‘𝑔) = 𝑃) | ||
Theorem | pgpfi 19125* | The converse to pgpfi1 19115. A finite group is a 𝑃-group iff it has size some power of 𝑃. (Contributed by Mario Carneiro, 16-Jan-2015.) |
⊢ 𝑋 = (Base‘𝐺) ⇒ ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) → (𝑃 pGrp 𝐺 ↔ (𝑃 ∈ ℙ ∧ ∃𝑛 ∈ ℕ0 (♯‘𝑋) = (𝑃↑𝑛)))) | ||
Theorem | pgpfi2 19126 | Alternate version of pgpfi 19125. (Contributed by Mario Carneiro, 27-Apr-2016.) |
⊢ 𝑋 = (Base‘𝐺) ⇒ ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) → (𝑃 pGrp 𝐺 ↔ (𝑃 ∈ ℙ ∧ (♯‘𝑋) = (𝑃↑(𝑃 pCnt (♯‘𝑋)))))) | ||
Theorem | pgphash 19127 | The order of a p-group. (Contributed by Mario Carneiro, 27-Apr-2016.) |
⊢ 𝑋 = (Base‘𝐺) ⇒ ⊢ ((𝑃 pGrp 𝐺 ∧ 𝑋 ∈ Fin) → (♯‘𝑋) = (𝑃↑(𝑃 pCnt (♯‘𝑋)))) | ||
Theorem | isslw 19128* | The property of being a Sylow subgroup. A Sylow 𝑃-subgroup is a 𝑃-group which has no proper supersets that are also 𝑃-groups. (Contributed by Mario Carneiro, 16-Jan-2015.) |
⊢ (𝐻 ∈ (𝑃 pSyl 𝐺) ↔ (𝑃 ∈ ℙ ∧ 𝐻 ∈ (SubGrp‘𝐺) ∧ ∀𝑘 ∈ (SubGrp‘𝐺)((𝐻 ⊆ 𝑘 ∧ 𝑃 pGrp (𝐺 ↾s 𝑘)) ↔ 𝐻 = 𝑘))) | ||
Theorem | slwprm 19129 | Reverse closure for the first argument of a Sylow 𝑃-subgroup. (Contributed by Mario Carneiro, 16-Jan-2015.) (Revised by Mario Carneiro, 2-May-2015.) |
⊢ (𝐻 ∈ (𝑃 pSyl 𝐺) → 𝑃 ∈ ℙ) | ||
Theorem | slwsubg 19130 | A Sylow 𝑃-subgroup is a subgroup. (Contributed by Mario Carneiro, 16-Jan-2015.) |
⊢ (𝐻 ∈ (𝑃 pSyl 𝐺) → 𝐻 ∈ (SubGrp‘𝐺)) | ||
Theorem | slwispgp 19131 | Defining property of a Sylow 𝑃-subgroup. (Contributed by Mario Carneiro, 16-Jan-2015.) |
⊢ 𝑆 = (𝐺 ↾s 𝐾) ⇒ ⊢ ((𝐻 ∈ (𝑃 pSyl 𝐺) ∧ 𝐾 ∈ (SubGrp‘𝐺)) → ((𝐻 ⊆ 𝐾 ∧ 𝑃 pGrp 𝑆) ↔ 𝐻 = 𝐾)) | ||
Theorem | slwpss 19132 | A proper superset of a Sylow subgroup is not a 𝑃-group. (Contributed by Mario Carneiro, 16-Jan-2015.) |
⊢ 𝑆 = (𝐺 ↾s 𝐾) ⇒ ⊢ ((𝐻 ∈ (𝑃 pSyl 𝐺) ∧ 𝐾 ∈ (SubGrp‘𝐺) ∧ 𝐻 ⊊ 𝐾) → ¬ 𝑃 pGrp 𝑆) | ||
Theorem | slwpgp 19133 | A Sylow 𝑃-subgroup is a 𝑃-group. (Contributed by Mario Carneiro, 16-Jan-2015.) |
⊢ 𝑆 = (𝐺 ↾s 𝐻) ⇒ ⊢ (𝐻 ∈ (𝑃 pSyl 𝐺) → 𝑃 pGrp 𝑆) | ||
Theorem | pgpssslw 19134* | Every 𝑃-subgroup is contained in a Sylow 𝑃-subgroup. (Contributed by Mario Carneiro, 16-Jan-2015.) |
⊢ 𝑋 = (Base‘𝐺) & ⊢ 𝑆 = (𝐺 ↾s 𝐻) & ⊢ 𝐹 = (𝑥 ∈ {𝑦 ∈ (SubGrp‘𝐺) ∣ (𝑃 pGrp (𝐺 ↾s 𝑦) ∧ 𝐻 ⊆ 𝑦)} ↦ (♯‘𝑥)) ⇒ ⊢ ((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) → ∃𝑘 ∈ (𝑃 pSyl 𝐺)𝐻 ⊆ 𝑘) | ||
Theorem | slwn0 19135 | Every finite group contains a Sylow 𝑃-subgroup. (Contributed by Mario Carneiro, 16-Jan-2015.) |
⊢ 𝑋 = (Base‘𝐺) ⇒ ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) → (𝑃 pSyl 𝐺) ≠ ∅) | ||
Theorem | subgslw 19136 | A Sylow subgroup that is contained in a larger subgroup is also Sylow with respect to the subgroup. (The converse need not be true.) (Contributed by Mario Carneiro, 19-Jan-2015.) |
⊢ 𝐻 = (𝐺 ↾s 𝑆) ⇒ ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐾 ∈ (𝑃 pSyl 𝐺) ∧ 𝐾 ⊆ 𝑆) → 𝐾 ∈ (𝑃 pSyl 𝐻)) | ||
Theorem | sylow2alem1 19137* | Lemma for sylow2a 19139. An equivalence class of fixed points is a singleton. (Contributed by Mario Carneiro, 17-Jan-2015.) |
⊢ 𝑋 = (Base‘𝐺) & ⊢ (𝜑 → ⊕ ∈ (𝐺 GrpAct 𝑌)) & ⊢ (𝜑 → 𝑃 pGrp 𝐺) & ⊢ (𝜑 → 𝑋 ∈ Fin) & ⊢ (𝜑 → 𝑌 ∈ Fin) & ⊢ 𝑍 = {𝑢 ∈ 𝑌 ∣ ∀ℎ ∈ 𝑋 (ℎ ⊕ 𝑢) = 𝑢} & ⊢ ∼ = {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝑌 ∧ ∃𝑔 ∈ 𝑋 (𝑔 ⊕ 𝑥) = 𝑦)} ⇒ ⊢ ((𝜑 ∧ 𝐴 ∈ 𝑍) → [𝐴] ∼ = {𝐴}) | ||
Theorem | sylow2alem2 19138* | Lemma for sylow2a 19139. All the orbits which are not for fixed points have size ∣ 𝐺 ∣ / ∣ 𝐺𝑥 ∣ (where 𝐺𝑥 is the stabilizer subgroup) and thus are powers of 𝑃. And since they are all nontrivial (because any orbit which is a singleton is a fixed point), they all divide 𝑃, and so does the sum of all of them. (Contributed by Mario Carneiro, 17-Jan-2015.) |
⊢ 𝑋 = (Base‘𝐺) & ⊢ (𝜑 → ⊕ ∈ (𝐺 GrpAct 𝑌)) & ⊢ (𝜑 → 𝑃 pGrp 𝐺) & ⊢ (𝜑 → 𝑋 ∈ Fin) & ⊢ (𝜑 → 𝑌 ∈ Fin) & ⊢ 𝑍 = {𝑢 ∈ 𝑌 ∣ ∀ℎ ∈ 𝑋 (ℎ ⊕ 𝑢) = 𝑢} & ⊢ ∼ = {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝑌 ∧ ∃𝑔 ∈ 𝑋 (𝑔 ⊕ 𝑥) = 𝑦)} ⇒ ⊢ (𝜑 → 𝑃 ∥ Σ𝑧 ∈ ((𝑌 / ∼ ) ∖ 𝒫 𝑍)(♯‘𝑧)) | ||
Theorem | sylow2a 19139* | A named lemma of Sylow's second and third theorems. If 𝐺 is a finite 𝑃-group that acts on the finite set 𝑌, then the set 𝑍 of all points of 𝑌 fixed by every element of 𝐺 has cardinality equivalent to the cardinality of 𝑌, mod 𝑃. (Contributed by Mario Carneiro, 17-Jan-2015.) |
⊢ 𝑋 = (Base‘𝐺) & ⊢ (𝜑 → ⊕ ∈ (𝐺 GrpAct 𝑌)) & ⊢ (𝜑 → 𝑃 pGrp 𝐺) & ⊢ (𝜑 → 𝑋 ∈ Fin) & ⊢ (𝜑 → 𝑌 ∈ Fin) & ⊢ 𝑍 = {𝑢 ∈ 𝑌 ∣ ∀ℎ ∈ 𝑋 (ℎ ⊕ 𝑢) = 𝑢} & ⊢ ∼ = {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝑌 ∧ ∃𝑔 ∈ 𝑋 (𝑔 ⊕ 𝑥) = 𝑦)} ⇒ ⊢ (𝜑 → 𝑃 ∥ ((♯‘𝑌) − (♯‘𝑍))) | ||
Theorem | sylow2blem1 19140* | Lemma for sylow2b 19143. Evaluate the group action on a left coset. (Contributed by Mario Carneiro, 17-Jan-2015.) |
⊢ 𝑋 = (Base‘𝐺) & ⊢ (𝜑 → 𝑋 ∈ Fin) & ⊢ (𝜑 → 𝐻 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → 𝐾 ∈ (SubGrp‘𝐺)) & ⊢ + = (+g‘𝐺) & ⊢ ∼ = (𝐺 ~QG 𝐾) & ⊢ · = (𝑥 ∈ 𝐻, 𝑦 ∈ (𝑋 / ∼ ) ↦ ran (𝑧 ∈ 𝑦 ↦ (𝑥 + 𝑧))) ⇒ ⊢ ((𝜑 ∧ 𝐵 ∈ 𝐻 ∧ 𝐶 ∈ 𝑋) → (𝐵 · [𝐶] ∼ ) = [(𝐵 + 𝐶)] ∼ ) | ||
Theorem | sylow2blem2 19141* | Lemma for sylow2b 19143. Left multiplication in a subgroup 𝐻 is a group action on the set of all left cosets of 𝐾. (Contributed by Mario Carneiro, 17-Jan-2015.) |
⊢ 𝑋 = (Base‘𝐺) & ⊢ (𝜑 → 𝑋 ∈ Fin) & ⊢ (𝜑 → 𝐻 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → 𝐾 ∈ (SubGrp‘𝐺)) & ⊢ + = (+g‘𝐺) & ⊢ ∼ = (𝐺 ~QG 𝐾) & ⊢ · = (𝑥 ∈ 𝐻, 𝑦 ∈ (𝑋 / ∼ ) ↦ ran (𝑧 ∈ 𝑦 ↦ (𝑥 + 𝑧))) ⇒ ⊢ (𝜑 → · ∈ ((𝐺 ↾s 𝐻) GrpAct (𝑋 / ∼ ))) | ||
Theorem | sylow2blem3 19142* | Sylow's second theorem. Putting together the results of sylow2a 19139 and the orbit-stabilizer theorem to show that 𝑃 does not divide the set of all fixed points under the group action, we get that there is a fixed point of the group action, so that there is some 𝑔 ∈ 𝑋 with ℎ𝑔𝐾 = 𝑔𝐾 for all ℎ ∈ 𝐻. This implies that invg(𝑔)ℎ𝑔 ∈ 𝐾, so ℎ is in the conjugated subgroup 𝑔𝐾invg(𝑔). (Contributed by Mario Carneiro, 18-Jan-2015.) |
⊢ 𝑋 = (Base‘𝐺) & ⊢ (𝜑 → 𝑋 ∈ Fin) & ⊢ (𝜑 → 𝐻 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → 𝐾 ∈ (SubGrp‘𝐺)) & ⊢ + = (+g‘𝐺) & ⊢ ∼ = (𝐺 ~QG 𝐾) & ⊢ · = (𝑥 ∈ 𝐻, 𝑦 ∈ (𝑋 / ∼ ) ↦ ran (𝑧 ∈ 𝑦 ↦ (𝑥 + 𝑧))) & ⊢ (𝜑 → 𝑃 pGrp (𝐺 ↾s 𝐻)) & ⊢ (𝜑 → (♯‘𝐾) = (𝑃↑(𝑃 pCnt (♯‘𝑋)))) & ⊢ − = (-g‘𝐺) ⇒ ⊢ (𝜑 → ∃𝑔 ∈ 𝑋 𝐻 ⊆ ran (𝑥 ∈ 𝐾 ↦ ((𝑔 + 𝑥) − 𝑔))) | ||
Theorem | sylow2b 19143* | Sylow's second theorem. Any 𝑃-group 𝐻 is a subgroup of a conjugated 𝑃-group 𝐾 of order 𝑃↑𝑛 ∥ (♯‘𝑋) with 𝑛 maximal. This is usually stated under the assumption that 𝐾 is a Sylow subgroup, but we use a slightly different definition, whose equivalence to this one requires this theorem. This is part of Metamath 100 proof #72. (Contributed by Mario Carneiro, 18-Jan-2015.) |
⊢ 𝑋 = (Base‘𝐺) & ⊢ (𝜑 → 𝑋 ∈ Fin) & ⊢ (𝜑 → 𝐻 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → 𝐾 ∈ (SubGrp‘𝐺)) & ⊢ + = (+g‘𝐺) & ⊢ (𝜑 → 𝑃 pGrp (𝐺 ↾s 𝐻)) & ⊢ (𝜑 → (♯‘𝐾) = (𝑃↑(𝑃 pCnt (♯‘𝑋)))) & ⊢ − = (-g‘𝐺) ⇒ ⊢ (𝜑 → ∃𝑔 ∈ 𝑋 𝐻 ⊆ ran (𝑥 ∈ 𝐾 ↦ ((𝑔 + 𝑥) − 𝑔))) | ||
Theorem | slwhash 19144 | A sylow subgroup has cardinality equal to the maximum power of 𝑃 dividing the group. (Contributed by Mario Carneiro, 18-Jan-2015.) |
⊢ 𝑋 = (Base‘𝐺) & ⊢ (𝜑 → 𝑋 ∈ Fin) & ⊢ (𝜑 → 𝐻 ∈ (𝑃 pSyl 𝐺)) ⇒ ⊢ (𝜑 → (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋)))) | ||
Theorem | fislw 19145 | The sylow subgroups of a finite group are exactly the groups which have cardinality equal to the maximum power of 𝑃 dividing the group. (Contributed by Mario Carneiro, 16-Jan-2015.) |
⊢ 𝑋 = (Base‘𝐺) ⇒ ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) → (𝐻 ∈ (𝑃 pSyl 𝐺) ↔ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋)))))) | ||
Theorem | sylow2 19146* | Sylow's second theorem. See also sylow2b 19143 for the "hard" part of the proof. Any two Sylow 𝑃-subgroups are conjugate to one another, and hence the same size, namely 𝑃↑(𝑃 pCnt ∣ 𝑋 ∣ ) (see fislw 19145). This is part of Metamath 100 proof #72. (Contributed by Mario Carneiro, 18-Jan-2015.) |
⊢ 𝑋 = (Base‘𝐺) & ⊢ (𝜑 → 𝑋 ∈ Fin) & ⊢ (𝜑 → 𝐻 ∈ (𝑃 pSyl 𝐺)) & ⊢ (𝜑 → 𝐾 ∈ (𝑃 pSyl 𝐺)) & ⊢ + = (+g‘𝐺) & ⊢ − = (-g‘𝐺) ⇒ ⊢ (𝜑 → ∃𝑔 ∈ 𝑋 𝐻 = ran (𝑥 ∈ 𝐾 ↦ ((𝑔 + 𝑥) − 𝑔))) | ||
Theorem | sylow3lem1 19147* | Lemma for sylow3 19153, first part. (Contributed by Mario Carneiro, 19-Jan-2015.) |
⊢ 𝑋 = (Base‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ Grp) & ⊢ (𝜑 → 𝑋 ∈ Fin) & ⊢ (𝜑 → 𝑃 ∈ ℙ) & ⊢ + = (+g‘𝐺) & ⊢ − = (-g‘𝐺) & ⊢ ⊕ = (𝑥 ∈ 𝑋, 𝑦 ∈ (𝑃 pSyl 𝐺) ↦ ran (𝑧 ∈ 𝑦 ↦ ((𝑥 + 𝑧) − 𝑥))) ⇒ ⊢ (𝜑 → ⊕ ∈ (𝐺 GrpAct (𝑃 pSyl 𝐺))) | ||
Theorem | sylow3lem2 19148* | Lemma for sylow3 19153, first part. The stabilizer of a given Sylow subgroup 𝐾 in the group action ⊕ acting on all of 𝐺 is the normalizer NG(K). (Contributed by Mario Carneiro, 19-Jan-2015.) |
⊢ 𝑋 = (Base‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ Grp) & ⊢ (𝜑 → 𝑋 ∈ Fin) & ⊢ (𝜑 → 𝑃 ∈ ℙ) & ⊢ + = (+g‘𝐺) & ⊢ − = (-g‘𝐺) & ⊢ ⊕ = (𝑥 ∈ 𝑋, 𝑦 ∈ (𝑃 pSyl 𝐺) ↦ ran (𝑧 ∈ 𝑦 ↦ ((𝑥 + 𝑧) − 𝑥))) & ⊢ (𝜑 → 𝐾 ∈ (𝑃 pSyl 𝐺)) & ⊢ 𝐻 = {𝑢 ∈ 𝑋 ∣ (𝑢 ⊕ 𝐾) = 𝐾} & ⊢ 𝑁 = {𝑥 ∈ 𝑋 ∣ ∀𝑦 ∈ 𝑋 ((𝑥 + 𝑦) ∈ 𝐾 ↔ (𝑦 + 𝑥) ∈ 𝐾)} ⇒ ⊢ (𝜑 → 𝐻 = 𝑁) | ||
Theorem | sylow3lem3 19149* | Lemma for sylow3 19153, first part. The number of Sylow subgroups is the same as the index (number of cosets) of the normalizer of the Sylow subgroup 𝐾. (Contributed by Mario Carneiro, 19-Jan-2015.) |
⊢ 𝑋 = (Base‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ Grp) & ⊢ (𝜑 → 𝑋 ∈ Fin) & ⊢ (𝜑 → 𝑃 ∈ ℙ) & ⊢ + = (+g‘𝐺) & ⊢ − = (-g‘𝐺) & ⊢ ⊕ = (𝑥 ∈ 𝑋, 𝑦 ∈ (𝑃 pSyl 𝐺) ↦ ran (𝑧 ∈ 𝑦 ↦ ((𝑥 + 𝑧) − 𝑥))) & ⊢ (𝜑 → 𝐾 ∈ (𝑃 pSyl 𝐺)) & ⊢ 𝐻 = {𝑢 ∈ 𝑋 ∣ (𝑢 ⊕ 𝐾) = 𝐾} & ⊢ 𝑁 = {𝑥 ∈ 𝑋 ∣ ∀𝑦 ∈ 𝑋 ((𝑥 + 𝑦) ∈ 𝐾 ↔ (𝑦 + 𝑥) ∈ 𝐾)} ⇒ ⊢ (𝜑 → (♯‘(𝑃 pSyl 𝐺)) = (♯‘(𝑋 / (𝐺 ~QG 𝑁)))) | ||
Theorem | sylow3lem4 19150* | Lemma for sylow3 19153, first part. The number of Sylow subgroups is a divisor of the size of 𝐺 reduced by the size of a Sylow subgroup of 𝐺. (Contributed by Mario Carneiro, 19-Jan-2015.) |
⊢ 𝑋 = (Base‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ Grp) & ⊢ (𝜑 → 𝑋 ∈ Fin) & ⊢ (𝜑 → 𝑃 ∈ ℙ) & ⊢ + = (+g‘𝐺) & ⊢ − = (-g‘𝐺) & ⊢ ⊕ = (𝑥 ∈ 𝑋, 𝑦 ∈ (𝑃 pSyl 𝐺) ↦ ran (𝑧 ∈ 𝑦 ↦ ((𝑥 + 𝑧) − 𝑥))) & ⊢ (𝜑 → 𝐾 ∈ (𝑃 pSyl 𝐺)) & ⊢ 𝐻 = {𝑢 ∈ 𝑋 ∣ (𝑢 ⊕ 𝐾) = 𝐾} & ⊢ 𝑁 = {𝑥 ∈ 𝑋 ∣ ∀𝑦 ∈ 𝑋 ((𝑥 + 𝑦) ∈ 𝐾 ↔ (𝑦 + 𝑥) ∈ 𝐾)} ⇒ ⊢ (𝜑 → (♯‘(𝑃 pSyl 𝐺)) ∥ ((♯‘𝑋) / (𝑃↑(𝑃 pCnt (♯‘𝑋))))) | ||
Theorem | sylow3lem5 19151* | Lemma for sylow3 19153, second part. Reduce the group action of sylow3lem1 19147 to a given Sylow subgroup. (Contributed by Mario Carneiro, 19-Jan-2015.) |
⊢ 𝑋 = (Base‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ Grp) & ⊢ (𝜑 → 𝑋 ∈ Fin) & ⊢ (𝜑 → 𝑃 ∈ ℙ) & ⊢ + = (+g‘𝐺) & ⊢ − = (-g‘𝐺) & ⊢ (𝜑 → 𝐾 ∈ (𝑃 pSyl 𝐺)) & ⊢ ⊕ = (𝑥 ∈ 𝐾, 𝑦 ∈ (𝑃 pSyl 𝐺) ↦ ran (𝑧 ∈ 𝑦 ↦ ((𝑥 + 𝑧) − 𝑥))) ⇒ ⊢ (𝜑 → ⊕ ∈ ((𝐺 ↾s 𝐾) GrpAct (𝑃 pSyl 𝐺))) | ||
Theorem | sylow3lem6 19152* | Lemma for sylow3 19153, second part. Using the lemma sylow2a 19139, show that the number of sylow subgroups is equivalent mod 𝑃 to the number of fixed points under the group action. But 𝐾 is the unique element of the set of Sylow subgroups that is fixed under the group action, so there is exactly one fixed point and so ((♯‘(𝑃 pSyl 𝐺)) mod 𝑃) = 1. (Contributed by Mario Carneiro, 19-Jan-2015.) |
⊢ 𝑋 = (Base‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ Grp) & ⊢ (𝜑 → 𝑋 ∈ Fin) & ⊢ (𝜑 → 𝑃 ∈ ℙ) & ⊢ + = (+g‘𝐺) & ⊢ − = (-g‘𝐺) & ⊢ (𝜑 → 𝐾 ∈ (𝑃 pSyl 𝐺)) & ⊢ ⊕ = (𝑥 ∈ 𝐾, 𝑦 ∈ (𝑃 pSyl 𝐺) ↦ ran (𝑧 ∈ 𝑦 ↦ ((𝑥 + 𝑧) − 𝑥))) & ⊢ 𝑁 = {𝑥 ∈ 𝑋 ∣ ∀𝑦 ∈ 𝑋 ((𝑥 + 𝑦) ∈ 𝑠 ↔ (𝑦 + 𝑥) ∈ 𝑠)} ⇒ ⊢ (𝜑 → ((♯‘(𝑃 pSyl 𝐺)) mod 𝑃) = 1) | ||
Theorem | sylow3 19153 | Sylow's third theorem. The number of Sylow subgroups is a divisor of ∣ 𝐺 ∣ / 𝑑, where 𝑑 is the common order of a Sylow subgroup, and is equivalent to 1 mod 𝑃. This is part of Metamath 100 proof #72. (Contributed by Mario Carneiro, 19-Jan-2015.) |
⊢ 𝑋 = (Base‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ Grp) & ⊢ (𝜑 → 𝑋 ∈ Fin) & ⊢ (𝜑 → 𝑃 ∈ ℙ) & ⊢ 𝑁 = (♯‘(𝑃 pSyl 𝐺)) ⇒ ⊢ (𝜑 → (𝑁 ∥ ((♯‘𝑋) / (𝑃↑(𝑃 pCnt (♯‘𝑋)))) ∧ (𝑁 mod 𝑃) = 1)) | ||
Syntax | clsm 19154 | Extend class notation with subgroup sum. |
class LSSum | ||
Syntax | cpj1 19155 | Extend class notation with left projection. |
class proj1 | ||
Definition | df-lsm 19156* | Define subgroup sum (inner direct product of subgroups). (Contributed by NM, 28-Jan-2014.) |
⊢ LSSum = (𝑤 ∈ V ↦ (𝑡 ∈ 𝒫 (Base‘𝑤), 𝑢 ∈ 𝒫 (Base‘𝑤) ↦ ran (𝑥 ∈ 𝑡, 𝑦 ∈ 𝑢 ↦ (𝑥(+g‘𝑤)𝑦)))) | ||
Definition | df-pj1 19157* | Define the left projection function, which takes two subgroups 𝑡, 𝑢 with trivial intersection and returns a function mapping the elements of the subgroup sum 𝑡 + 𝑢 to their projections onto 𝑡. (The other projection function can be obtained by swapping the roles of 𝑡 and 𝑢.) (Contributed by Mario Carneiro, 15-Oct-2015.) |
⊢ proj1 = (𝑤 ∈ V ↦ (𝑡 ∈ 𝒫 (Base‘𝑤), 𝑢 ∈ 𝒫 (Base‘𝑤) ↦ (𝑧 ∈ (𝑡(LSSum‘𝑤)𝑢) ↦ (℩𝑥 ∈ 𝑡 ∃𝑦 ∈ 𝑢 𝑧 = (𝑥(+g‘𝑤)𝑦))))) | ||
Theorem | lsmfval 19158* | The subgroup sum function (for a group or vector space). (Contributed by NM, 28-Jan-2014.) (Revised by Mario Carneiro, 19-Apr-2016.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ ⊕ = (LSSum‘𝐺) ⇒ ⊢ (𝐺 ∈ 𝑉 → ⊕ = (𝑡 ∈ 𝒫 𝐵, 𝑢 ∈ 𝒫 𝐵 ↦ ran (𝑥 ∈ 𝑡, 𝑦 ∈ 𝑢 ↦ (𝑥 + 𝑦)))) | ||
Theorem | lsmvalx 19159* | Subspace sum value (for a group or vector space). Extended domain version of lsmval 19168. (Contributed by NM, 28-Jan-2014.) (Revised by Mario Carneiro, 19-Apr-2016.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ ⊕ = (LSSum‘𝐺) ⇒ ⊢ ((𝐺 ∈ 𝑉 ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) → (𝑇 ⊕ 𝑈) = ran (𝑥 ∈ 𝑇, 𝑦 ∈ 𝑈 ↦ (𝑥 + 𝑦))) | ||
Theorem | lsmelvalx 19160* | Subspace sum membership (for a group or vector space). Extended domain version of lsmelval 19169. (Contributed by NM, 28-Jan-2014.) (Revised by Mario Carneiro, 19-Apr-2016.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ ⊕ = (LSSum‘𝐺) ⇒ ⊢ ((𝐺 ∈ 𝑉 ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) → (𝑋 ∈ (𝑇 ⊕ 𝑈) ↔ ∃𝑦 ∈ 𝑇 ∃𝑧 ∈ 𝑈 𝑋 = (𝑦 + 𝑧))) | ||
Theorem | lsmelvalix 19161 | Subspace sum membership (for a group or vector space). (Contributed by NM, 4-Feb-2014.) (Revised by Mario Carneiro, 19-Apr-2016.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ ⊕ = (LSSum‘𝐺) ⇒ ⊢ (((𝐺 ∈ 𝑉 ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) ∧ (𝑋 ∈ 𝑇 ∧ 𝑌 ∈ 𝑈)) → (𝑋 + 𝑌) ∈ (𝑇 ⊕ 𝑈)) | ||
Theorem | oppglsm 19162 | The subspace sum operation in the opposite group. (Contributed by Mario Carneiro, 19-Apr-2016.) (Proof shortened by AV, 2-Mar-2024.) |
⊢ 𝑂 = (oppg‘𝐺) & ⊢ ⊕ = (LSSum‘𝐺) ⇒ ⊢ (𝑇(LSSum‘𝑂)𝑈) = (𝑈 ⊕ 𝑇) | ||
Theorem | lsmssv 19163 | Subgroup sum is a subset of the base. (Contributed by Mario Carneiro, 19-Apr-2016.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ ⊕ = (LSSum‘𝐺) ⇒ ⊢ ((𝐺 ∈ Mnd ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) → (𝑇 ⊕ 𝑈) ⊆ 𝐵) | ||
Theorem | lsmless1x 19164 | Subset implies subgroup sum subset (extended domain version). (Contributed by NM, 22-Feb-2014.) (Revised by Mario Carneiro, 19-Apr-2016.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ ⊕ = (LSSum‘𝐺) ⇒ ⊢ (((𝐺 ∈ 𝑉 ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) ∧ 𝑅 ⊆ 𝑇) → (𝑅 ⊕ 𝑈) ⊆ (𝑇 ⊕ 𝑈)) | ||
Theorem | lsmless2x 19165 | Subset implies subgroup sum subset (extended domain version). (Contributed by NM, 25-Feb-2014.) (Revised by Mario Carneiro, 19-Apr-2016.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ ⊕ = (LSSum‘𝐺) ⇒ ⊢ (((𝐺 ∈ 𝑉 ∧ 𝑅 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) ∧ 𝑇 ⊆ 𝑈) → (𝑅 ⊕ 𝑇) ⊆ (𝑅 ⊕ 𝑈)) | ||
Theorem | lsmub1x 19166 | Subgroup sum is an upper bound of its arguments. (Contributed by Mario Carneiro, 19-Apr-2016.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ ⊕ = (LSSum‘𝐺) ⇒ ⊢ ((𝑇 ⊆ 𝐵 ∧ 𝑈 ∈ (SubMnd‘𝐺)) → 𝑇 ⊆ (𝑇 ⊕ 𝑈)) | ||
Theorem | lsmub2x 19167 | Subgroup sum is an upper bound of its arguments. (Contributed by NM, 6-Feb-2014.) (Revised by Mario Carneiro, 19-Apr-2016.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ ⊕ = (LSSum‘𝐺) ⇒ ⊢ ((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ⊆ 𝐵) → 𝑈 ⊆ (𝑇 ⊕ 𝑈)) | ||
Theorem | lsmval 19168* | Subgroup sum value (for a left module or left vector space). (Contributed by NM, 4-Feb-2014.) (Revised by Mario Carneiro, 19-Apr-2016.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ ⊕ = (LSSum‘𝐺) ⇒ ⊢ ((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) → (𝑇 ⊕ 𝑈) = ran (𝑥 ∈ 𝑇, 𝑦 ∈ 𝑈 ↦ (𝑥 + 𝑦))) | ||
Theorem | lsmelval 19169* | Subgroup sum membership (for a left module or left vector space). (Contributed by NM, 4-Feb-2014.) (Revised by Mario Carneiro, 19-Apr-2016.) |
⊢ + = (+g‘𝐺) & ⊢ ⊕ = (LSSum‘𝐺) ⇒ ⊢ ((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) → (𝑋 ∈ (𝑇 ⊕ 𝑈) ↔ ∃𝑦 ∈ 𝑇 ∃𝑧 ∈ 𝑈 𝑋 = (𝑦 + 𝑧))) | ||
Theorem | lsmelvali 19170 | Subgroup sum membership (for a left module or left vector space). (Contributed by NM, 4-Feb-2014.) (Revised by Mario Carneiro, 19-Apr-2016.) |
⊢ + = (+g‘𝐺) & ⊢ ⊕ = (LSSum‘𝐺) ⇒ ⊢ (((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ (𝑋 ∈ 𝑇 ∧ 𝑌 ∈ 𝑈)) → (𝑋 + 𝑌) ∈ (𝑇 ⊕ 𝑈)) | ||
Theorem | lsmelvalm 19171* | Subgroup sum membership analogue of lsmelval 19169 using vector subtraction. TODO: any way to shorten proof? (Contributed by NM, 16-Mar-2015.) (Revised by Mario Carneiro, 19-Apr-2016.) |
⊢ − = (-g‘𝐺) & ⊢ ⊕ = (LSSum‘𝐺) & ⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) ⇒ ⊢ (𝜑 → (𝑋 ∈ (𝑇 ⊕ 𝑈) ↔ ∃𝑦 ∈ 𝑇 ∃𝑧 ∈ 𝑈 𝑋 = (𝑦 − 𝑧))) | ||
Theorem | lsmelvalmi 19172 | Membership of vector subtraction in subgroup sum. (Contributed by NM, 27-Apr-2015.) (Revised by Mario Carneiro, 19-Apr-2016.) |
⊢ − = (-g‘𝐺) & ⊢ ⊕ = (LSSum‘𝐺) & ⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → 𝑋 ∈ 𝑇) & ⊢ (𝜑 → 𝑌 ∈ 𝑈) ⇒ ⊢ (𝜑 → (𝑋 − 𝑌) ∈ (𝑇 ⊕ 𝑈)) | ||
Theorem | lsmsubm 19173 | The sum of two commuting submonoids is a submonoid. (Contributed by Mario Carneiro, 19-Apr-2016.) |
⊢ ⊕ = (LSSum‘𝐺) & ⊢ 𝑍 = (Cntz‘𝐺) ⇒ ⊢ ((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ∈ (SubMnd‘𝐺) ∧ 𝑇 ⊆ (𝑍‘𝑈)) → (𝑇 ⊕ 𝑈) ∈ (SubMnd‘𝐺)) | ||
Theorem | lsmsubg 19174 | The sum of two commuting subgroups is a subgroup. (Contributed by Mario Carneiro, 19-Apr-2016.) |
⊢ ⊕ = (LSSum‘𝐺) & ⊢ 𝑍 = (Cntz‘𝐺) ⇒ ⊢ ((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ (𝑍‘𝑈)) → (𝑇 ⊕ 𝑈) ∈ (SubGrp‘𝐺)) | ||
Theorem | lsmcom2 19175 | Subgroup sum commutes. (Contributed by Mario Carneiro, 22-Apr-2016.) |
⊢ ⊕ = (LSSum‘𝐺) & ⊢ 𝑍 = (Cntz‘𝐺) ⇒ ⊢ ((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ (𝑍‘𝑈)) → (𝑇 ⊕ 𝑈) = (𝑈 ⊕ 𝑇)) | ||
Theorem | smndlsmidm 19176 | The direct product is idempotent for submonoids. (Contributed by AV, 27-Dec-2023.) |
⊢ ⊕ = (LSSum‘𝐺) ⇒ ⊢ (𝑈 ∈ (SubMnd‘𝐺) → (𝑈 ⊕ 𝑈) = 𝑈) | ||
Theorem | lsmub1 19177 | Subgroup sum is an upper bound of its arguments. (Contributed by NM, 6-Feb-2014.) (Revised by Mario Carneiro, 19-Apr-2016.) |
⊢ ⊕ = (LSSum‘𝐺) ⇒ ⊢ ((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) → 𝑇 ⊆ (𝑇 ⊕ 𝑈)) | ||
Theorem | lsmub2 19178 | Subgroup sum is an upper bound of its arguments. (Contributed by NM, 6-Feb-2014.) (Revised by Mario Carneiro, 19-Apr-2016.) |
⊢ ⊕ = (LSSum‘𝐺) ⇒ ⊢ ((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) → 𝑈 ⊆ (𝑇 ⊕ 𝑈)) | ||
Theorem | lsmunss 19179 | Union of subgroups is a subset of subgroup sum. (Contributed by NM, 6-Feb-2014.) (Proof shortened by Mario Carneiro, 21-Jun-2014.) |
⊢ ⊕ = (LSSum‘𝐺) ⇒ ⊢ ((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) → (𝑇 ∪ 𝑈) ⊆ (𝑇 ⊕ 𝑈)) | ||
Theorem | lsmless1 19180 | Subset implies subgroup sum subset. (Contributed by NM, 6-Feb-2014.) (Revised by Mario Carneiro, 19-Apr-2016.) |
⊢ ⊕ = (LSSum‘𝐺) ⇒ ⊢ ((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑆 ⊆ 𝑇) → (𝑆 ⊕ 𝑈) ⊆ (𝑇 ⊕ 𝑈)) | ||
Theorem | lsmless2 19181 | Subset implies subgroup sum subset. (Contributed by NM, 25-Feb-2014.) (Revised by Mario Carneiro, 19-Apr-2016.) |
⊢ ⊕ = (LSSum‘𝐺) ⇒ ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ 𝑈) → (𝑆 ⊕ 𝑇) ⊆ (𝑆 ⊕ 𝑈)) | ||
Theorem | lsmless12 19182 | Subset implies subgroup sum subset. (Contributed by NM, 14-Jan-2015.) (Revised by Mario Carneiro, 19-Apr-2016.) |
⊢ ⊕ = (LSSum‘𝐺) ⇒ ⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ (𝑅 ⊆ 𝑆 ∧ 𝑇 ⊆ 𝑈)) → (𝑅 ⊕ 𝑇) ⊆ (𝑆 ⊕ 𝑈)) | ||
Theorem | lsmidm 19183 | Subgroup sum is idempotent. (Contributed by NM, 6-Feb-2014.) (Revised by Mario Carneiro, 21-Jun-2014.) (Proof shortened by AV, 27-Dec-2023.) |
⊢ ⊕ = (LSSum‘𝐺) ⇒ ⊢ (𝑈 ∈ (SubGrp‘𝐺) → (𝑈 ⊕ 𝑈) = 𝑈) | ||
Theorem | lsmidmOLD 19184 | Obsolete proof of lsmidm 19183 as of 13-Jan-2024. Subgroup sum is idempotent. (Contributed by NM, 6-Feb-2014.) (Revised by Mario Carneiro, 21-Jun-2014.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ ⊕ = (LSSum‘𝐺) ⇒ ⊢ (𝑈 ∈ (SubGrp‘𝐺) → (𝑈 ⊕ 𝑈) = 𝑈) | ||
Theorem | lsmlub 19185 | The least upper bound property of subgroup sum. (Contributed by NM, 6-Feb-2014.) (Revised by Mario Carneiro, 21-Jun-2014.) |
⊢ ⊕ = (LSSum‘𝐺) ⇒ ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) → ((𝑆 ⊆ 𝑈 ∧ 𝑇 ⊆ 𝑈) ↔ (𝑆 ⊕ 𝑇) ⊆ 𝑈)) | ||
Theorem | lsmss1 19186 | Subgroup sum with a subset. (Contributed by NM, 27-Mar-2014.) (Revised by Mario Carneiro, 19-Apr-2016.) |
⊢ ⊕ = (LSSum‘𝐺) ⇒ ⊢ ((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ 𝑈) → (𝑇 ⊕ 𝑈) = 𝑈) | ||
Theorem | lsmss1b 19187 | Subgroup sum with a subset. (Contributed by NM, 10-Jan-2015.) (Revised by Mario Carneiro, 19-Apr-2016.) |
⊢ ⊕ = (LSSum‘𝐺) ⇒ ⊢ ((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) → (𝑇 ⊆ 𝑈 ↔ (𝑇 ⊕ 𝑈) = 𝑈)) | ||
Theorem | lsmss2 19188 | Subgroup sum with a subset. (Contributed by NM, 27-Mar-2014.) (Revised by Mario Carneiro, 19-Apr-2016.) |
⊢ ⊕ = (LSSum‘𝐺) ⇒ ⊢ ((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑈 ⊆ 𝑇) → (𝑇 ⊕ 𝑈) = 𝑇) | ||
Theorem | lsmss2b 19189 | Subgroup sum with a subset. (Contributed by NM, 10-Jan-2015.) (Revised by Mario Carneiro, 19-Apr-2016.) |
⊢ ⊕ = (LSSum‘𝐺) ⇒ ⊢ ((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) → (𝑈 ⊆ 𝑇 ↔ (𝑇 ⊕ 𝑈) = 𝑇)) | ||
Theorem | lsmass 19190 | Subgroup sum is associative. (Contributed by NM, 2-Mar-2014.) (Revised by Mario Carneiro, 19-Apr-2016.) |
⊢ ⊕ = (LSSum‘𝐺) ⇒ ⊢ ((𝑅 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) → ((𝑅 ⊕ 𝑇) ⊕ 𝑈) = (𝑅 ⊕ (𝑇 ⊕ 𝑈))) | ||
Theorem | mndlsmidm 19191 | Subgroup sum is idempotent for monoids. This corresponds to the observation in [Lang] p. 6. (Contributed by AV, 27-Dec-2023.) |
⊢ ⊕ = (LSSum‘𝐺) & ⊢ 𝐵 = (Base‘𝐺) ⇒ ⊢ (𝐺 ∈ Mnd → (𝐵 ⊕ 𝐵) = 𝐵) | ||
Theorem | lsm01 19192 | Subgroup sum with the zero subgroup. (Contributed by NM, 27-Mar-2014.) (Revised by Mario Carneiro, 19-Apr-2016.) |
⊢ 0 = (0g‘𝐺) & ⊢ ⊕ = (LSSum‘𝐺) ⇒ ⊢ (𝑋 ∈ (SubGrp‘𝐺) → (𝑋 ⊕ { 0 }) = 𝑋) | ||
Theorem | lsm02 19193 | Subgroup sum with the zero subgroup. (Contributed by NM, 27-Mar-2014.) (Revised by Mario Carneiro, 19-Apr-2016.) |
⊢ 0 = (0g‘𝐺) & ⊢ ⊕ = (LSSum‘𝐺) ⇒ ⊢ (𝑋 ∈ (SubGrp‘𝐺) → ({ 0 } ⊕ 𝑋) = 𝑋) | ||
Theorem | subglsm 19194 | The subgroup sum evaluated within a subgroup. (Contributed by Mario Carneiro, 27-Apr-2016.) |
⊢ 𝐻 = (𝐺 ↾s 𝑆) & ⊢ ⊕ = (LSSum‘𝐺) & ⊢ 𝐴 = (LSSum‘𝐻) ⇒ ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ 𝑆 ∧ 𝑈 ⊆ 𝑆) → (𝑇 ⊕ 𝑈) = (𝑇𝐴𝑈)) | ||
Theorem | lssnle 19195 | Equivalent expressions for "not less than". (chnlei 29748 analog.) (Contributed by NM, 10-Jan-2015.) (Revised by Mario Carneiro, 19-Apr-2016.) |
⊢ ⊕ = (LSSum‘𝐺) & ⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) ⇒ ⊢ (𝜑 → (¬ 𝑈 ⊆ 𝑇 ↔ 𝑇 ⊊ (𝑇 ⊕ 𝑈))) | ||
Theorem | lsmmod 19196 | The modular law holds for subgroup sum. Similar to part of Theorem 16.9 of [MaedaMaeda] p. 70. (Contributed by NM, 2-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2016.) |
⊢ ⊕ = (LSSum‘𝐺) ⇒ ⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆 ⊆ 𝑈) → (𝑆 ⊕ (𝑇 ∩ 𝑈)) = ((𝑆 ⊕ 𝑇) ∩ 𝑈)) | ||
Theorem | lsmmod2 19197 | Modular law dual for subgroup sum. Similar to part of Theorem 16.9 of [MaedaMaeda] p. 70. (Contributed by NM, 8-Jan-2015.) (Revised by Mario Carneiro, 21-Apr-2016.) |
⊢ ⊕ = (LSSum‘𝐺) ⇒ ⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑈 ⊆ 𝑆) → (𝑆 ∩ (𝑇 ⊕ 𝑈)) = ((𝑆 ∩ 𝑇) ⊕ 𝑈)) | ||
Theorem | lsmpropd 19198* | If two structures have the same components (properties), they have the same subspace structure. (Contributed by Mario Carneiro, 29-Jun-2015.) (Revised by AV, 25-Apr-2024.) |
⊢ (𝜑 → 𝐵 = (Base‘𝐾)) & ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦)) & ⊢ (𝜑 → 𝐾 ∈ 𝑉) & ⊢ (𝜑 → 𝐿 ∈ 𝑊) ⇒ ⊢ (𝜑 → (LSSum‘𝐾) = (LSSum‘𝐿)) | ||
Theorem | cntzrecd 19199 | Commute the "subgroups commute" predicate. (Contributed by Mario Carneiro, 21-Apr-2016.) |
⊢ 𝑍 = (Cntz‘𝐺) & ⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → 𝑇 ⊆ (𝑍‘𝑈)) ⇒ ⊢ (𝜑 → 𝑈 ⊆ (𝑍‘𝑇)) | ||
Theorem | lsmcntz 19200 | The "subgroups commute" predicate applied to a subgroup sum. (Contributed by Mario Carneiro, 21-Apr-2016.) |
⊢ ⊕ = (LSSum‘𝐺) & ⊢ (𝜑 → 𝑆 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) & ⊢ 𝑍 = (Cntz‘𝐺) ⇒ ⊢ (𝜑 → ((𝑆 ⊕ 𝑇) ⊆ (𝑍‘𝑈) ↔ (𝑆 ⊆ (𝑍‘𝑈) ∧ 𝑇 ⊆ (𝑍‘𝑈)))) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |