| Metamath
Proof Explorer Theorem List (p. 192 of 497) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30845) |
(30846-32368) |
(32369-49617) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Syntax | csubg 19101 | Extend class notation with all subgroups of a group. |
| class SubGrp | ||
| Syntax | cnsg 19102 | Extend class notation with all normal subgroups of a group. |
| class NrmSGrp | ||
| Syntax | cqg 19103 | Quotient group equivalence class. |
| class ~QG | ||
| Definition | df-subg 19104* | Define a subgroup of a group as a set of elements that is a group in its own right. Equivalently (issubg2 19122), a subgroup is a subset of the group that is closed for the group internal operation (see subgcl 19117), contains the neutral element of the group (see subg0 19113) and contains the inverses for all of its elements (see subginvcl 19116). (Contributed by Mario Carneiro, 2-Dec-2014.) |
| ⊢ SubGrp = (𝑤 ∈ Grp ↦ {𝑠 ∈ 𝒫 (Base‘𝑤) ∣ (𝑤 ↾s 𝑠) ∈ Grp}) | ||
| Definition | df-nsg 19105* | Define the equivalence relation in a quotient ring or quotient group (where 𝑖 is a two-sided ideal or a normal subgroup). For non-normal subgroups this generates the left cosets. (Contributed by Mario Carneiro, 15-Jun-2015.) |
| ⊢ NrmSGrp = (𝑤 ∈ Grp ↦ {𝑠 ∈ (SubGrp‘𝑤) ∣ [(Base‘𝑤) / 𝑏][(+g‘𝑤) / 𝑝]∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 ((𝑥𝑝𝑦) ∈ 𝑠 ↔ (𝑦𝑝𝑥) ∈ 𝑠)}) | ||
| Definition | df-eqg 19106* | Define the equivalence relation in a group generated by a subgroup. More precisely, if 𝐺 is a group and 𝐻 is a subgroup, then 𝐺 ~QG 𝐻 is the equivalence relation on 𝐺 associated with the left cosets of 𝐻. A typical application of this definition is the construction of the quotient group (resp. ring) of a group (resp. ring) by a normal subgroup (resp. two-sided ideal). (Contributed by Mario Carneiro, 15-Jun-2015.) |
| ⊢ ~QG = (𝑟 ∈ V, 𝑖 ∈ V ↦ {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ (Base‘𝑟) ∧ (((invg‘𝑟)‘𝑥)(+g‘𝑟)𝑦) ∈ 𝑖)}) | ||
| Theorem | issubg 19107 | The subgroup predicate. (Contributed by Mario Carneiro, 2-Dec-2014.) |
| ⊢ 𝐵 = (Base‘𝐺) ⇒ ⊢ (𝑆 ∈ (SubGrp‘𝐺) ↔ (𝐺 ∈ Grp ∧ 𝑆 ⊆ 𝐵 ∧ (𝐺 ↾s 𝑆) ∈ Grp)) | ||
| Theorem | subgss 19108 | A subgroup is a subset. (Contributed by Mario Carneiro, 2-Dec-2014.) |
| ⊢ 𝐵 = (Base‘𝐺) ⇒ ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ⊆ 𝐵) | ||
| Theorem | subgid 19109 | A group is a subgroup of itself. (Contributed by Mario Carneiro, 7-Dec-2014.) |
| ⊢ 𝐵 = (Base‘𝐺) ⇒ ⊢ (𝐺 ∈ Grp → 𝐵 ∈ (SubGrp‘𝐺)) | ||
| Theorem | subggrp 19110 | A subgroup is a group. (Contributed by Mario Carneiro, 2-Dec-2014.) |
| ⊢ 𝐻 = (𝐺 ↾s 𝑆) ⇒ ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝐻 ∈ Grp) | ||
| Theorem | subgbas 19111 | The base of the restricted group in a subgroup. (Contributed by Mario Carneiro, 2-Dec-2014.) |
| ⊢ 𝐻 = (𝐺 ↾s 𝑆) ⇒ ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 = (Base‘𝐻)) | ||
| Theorem | subgrcl 19112 | Reverse closure for the subgroup predicate. (Contributed by Mario Carneiro, 2-Dec-2014.) |
| ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp) | ||
| Theorem | subg0 19113 | A subgroup of a group must have the same identity as the group. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 30-Apr-2015.) |
| ⊢ 𝐻 = (𝐺 ↾s 𝑆) & ⊢ 0 = (0g‘𝐺) ⇒ ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 0 = (0g‘𝐻)) | ||
| Theorem | subginv 19114 | The inverse of an element in a subgroup is the same as the inverse in the larger group. (Contributed by Mario Carneiro, 2-Dec-2014.) |
| ⊢ 𝐻 = (𝐺 ↾s 𝑆) & ⊢ 𝐼 = (invg‘𝐺) & ⊢ 𝐽 = (invg‘𝐻) ⇒ ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ 𝑆) → (𝐼‘𝑋) = (𝐽‘𝑋)) | ||
| Theorem | subg0cl 19115 | The group identity is an element of any subgroup. (Contributed by Mario Carneiro, 2-Dec-2014.) |
| ⊢ 0 = (0g‘𝐺) ⇒ ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 0 ∈ 𝑆) | ||
| Theorem | subginvcl 19116 | The inverse of an element is closed in a subgroup. (Contributed by Mario Carneiro, 2-Dec-2014.) |
| ⊢ 𝐼 = (invg‘𝐺) ⇒ ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ 𝑆) → (𝐼‘𝑋) ∈ 𝑆) | ||
| Theorem | subgcl 19117 | A subgroup is closed under group operation. (Contributed by Mario Carneiro, 2-Dec-2014.) |
| ⊢ + = (+g‘𝐺) ⇒ ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) → (𝑋 + 𝑌) ∈ 𝑆) | ||
| Theorem | subgsubcl 19118 | A subgroup is closed under group subtraction. (Contributed by Mario Carneiro, 18-Jan-2015.) |
| ⊢ − = (-g‘𝐺) ⇒ ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) → (𝑋 − 𝑌) ∈ 𝑆) | ||
| Theorem | subgsub 19119 | The subtraction of elements in a subgroup is the same as subtraction in the group. (Contributed by Mario Carneiro, 15-Jun-2015.) |
| ⊢ − = (-g‘𝐺) & ⊢ 𝐻 = (𝐺 ↾s 𝑆) & ⊢ 𝑁 = (-g‘𝐻) ⇒ ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) → (𝑋 − 𝑌) = (𝑋𝑁𝑌)) | ||
| Theorem | subgmulgcl 19120 | Closure of the group multiple (exponentiation) operation in a subgroup. (Contributed by Mario Carneiro, 13-Jan-2015.) |
| ⊢ · = (.g‘𝐺) ⇒ ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝑆) → (𝑁 · 𝑋) ∈ 𝑆) | ||
| Theorem | subgmulg 19121 | A group multiple is the same if evaluated in a subgroup. (Contributed by Mario Carneiro, 15-Jan-2015.) |
| ⊢ · = (.g‘𝐺) & ⊢ 𝐻 = (𝐺 ↾s 𝑆) & ⊢ ∙ = (.g‘𝐻) ⇒ ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝑆) → (𝑁 · 𝑋) = (𝑁 ∙ 𝑋)) | ||
| Theorem | issubg2 19122* | Characterize the subgroups of a group by closure properties. (Contributed by Mario Carneiro, 2-Dec-2014.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ 𝐼 = (invg‘𝐺) ⇒ ⊢ (𝐺 ∈ Grp → (𝑆 ∈ (SubGrp‘𝐺) ↔ (𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ∧ ∀𝑥 ∈ 𝑆 (∀𝑦 ∈ 𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼‘𝑥) ∈ 𝑆)))) | ||
| Theorem | issubgrpd2 19123* | Prove a subgroup by closure (definition version). (Contributed by Stefan O'Rear, 7-Dec-2014.) |
| ⊢ (𝜑 → 𝑆 = (𝐼 ↾s 𝐷)) & ⊢ (𝜑 → 0 = (0g‘𝐼)) & ⊢ (𝜑 → + = (+g‘𝐼)) & ⊢ (𝜑 → 𝐷 ⊆ (Base‘𝐼)) & ⊢ (𝜑 → 0 ∈ 𝐷) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷) → (𝑥 + 𝑦) ∈ 𝐷) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → ((invg‘𝐼)‘𝑥) ∈ 𝐷) & ⊢ (𝜑 → 𝐼 ∈ Grp) ⇒ ⊢ (𝜑 → 𝐷 ∈ (SubGrp‘𝐼)) | ||
| Theorem | issubgrpd 19124* | Prove a subgroup by closure. (Contributed by Stefan O'Rear, 7-Dec-2014.) |
| ⊢ (𝜑 → 𝑆 = (𝐼 ↾s 𝐷)) & ⊢ (𝜑 → 0 = (0g‘𝐼)) & ⊢ (𝜑 → + = (+g‘𝐼)) & ⊢ (𝜑 → 𝐷 ⊆ (Base‘𝐼)) & ⊢ (𝜑 → 0 ∈ 𝐷) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷) → (𝑥 + 𝑦) ∈ 𝐷) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → ((invg‘𝐼)‘𝑥) ∈ 𝐷) & ⊢ (𝜑 → 𝐼 ∈ Grp) ⇒ ⊢ (𝜑 → 𝑆 ∈ Grp) | ||
| Theorem | issubg3 19125* | A subgroup is a symmetric submonoid. (Contributed by Mario Carneiro, 7-Mar-2015.) |
| ⊢ 𝐼 = (invg‘𝐺) ⇒ ⊢ (𝐺 ∈ Grp → (𝑆 ∈ (SubGrp‘𝐺) ↔ (𝑆 ∈ (SubMnd‘𝐺) ∧ ∀𝑥 ∈ 𝑆 (𝐼‘𝑥) ∈ 𝑆))) | ||
| Theorem | issubg4 19126* | A subgroup is a nonempty subset of the group closed under subtraction. (Contributed by Mario Carneiro, 17-Sep-2015.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ − = (-g‘𝐺) ⇒ ⊢ (𝐺 ∈ Grp → (𝑆 ∈ (SubGrp‘𝐺) ↔ (𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥 − 𝑦) ∈ 𝑆))) | ||
| Theorem | grpissubg 19127 | If the base set of a group is contained in the base set of another group, and the group operation of the group is the restriction of the group operation of the other group to its base set, then the (base set of the) group is subgroup of the other group. (Contributed by AV, 14-Mar-2019.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝑆 = (Base‘𝐻) ⇒ ⊢ ((𝐺 ∈ Grp ∧ 𝐻 ∈ Grp) → ((𝑆 ⊆ 𝐵 ∧ (+g‘𝐻) = ((+g‘𝐺) ↾ (𝑆 × 𝑆))) → 𝑆 ∈ (SubGrp‘𝐺))) | ||
| Theorem | resgrpisgrp 19128 | If the base set of a group is contained in the base set of another group, and the group operation of the group is the restriction of the group operation of the other group to its base set, then the other group restricted to the base set of the group is a group. (Contributed by AV, 14-Mar-2019.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝑆 = (Base‘𝐻) ⇒ ⊢ ((𝐺 ∈ Grp ∧ 𝐻 ∈ Grp) → ((𝑆 ⊆ 𝐵 ∧ (+g‘𝐻) = ((+g‘𝐺) ↾ (𝑆 × 𝑆))) → (𝐺 ↾s 𝑆) ∈ Grp)) | ||
| Theorem | subgsubm 19129 | A subgroup is a submonoid. (Contributed by Mario Carneiro, 18-Jun-2015.) |
| ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ∈ (SubMnd‘𝐺)) | ||
| Theorem | subsubg 19130 | A subgroup of a subgroup is a subgroup. (Contributed by Mario Carneiro, 19-Jan-2015.) |
| ⊢ 𝐻 = (𝐺 ↾s 𝑆) ⇒ ⊢ (𝑆 ∈ (SubGrp‘𝐺) → (𝐴 ∈ (SubGrp‘𝐻) ↔ (𝐴 ∈ (SubGrp‘𝐺) ∧ 𝐴 ⊆ 𝑆))) | ||
| Theorem | subgint 19131 | The intersection of a nonempty collection of subgroups is a subgroup. (Contributed by Mario Carneiro, 7-Dec-2014.) |
| ⊢ ((𝑆 ⊆ (SubGrp‘𝐺) ∧ 𝑆 ≠ ∅) → ∩ 𝑆 ∈ (SubGrp‘𝐺)) | ||
| Theorem | 0subg 19132 | The zero subgroup of an arbitrary group. (Contributed by Stefan O'Rear, 10-Dec-2014.) (Proof shortened by SN, 31-Jan-2025.) |
| ⊢ 0 = (0g‘𝐺) ⇒ ⊢ (𝐺 ∈ Grp → { 0 } ∈ (SubGrp‘𝐺)) | ||
| Theorem | 0subgOLD 19133 | Obsolete version of 0subg 19132 as of 31-Jan-2025. (Contributed by Stefan O'Rear, 10-Dec-2014.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ 0 = (0g‘𝐺) ⇒ ⊢ (𝐺 ∈ Grp → { 0 } ∈ (SubGrp‘𝐺)) | ||
| Theorem | trivsubgd 19134 | The only subgroup of a trivial group is itself. (Contributed by Rohan Ridenour, 3-Aug-2023.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ Grp) & ⊢ (𝜑 → 𝐵 = { 0 }) & ⊢ (𝜑 → 𝐴 ∈ (SubGrp‘𝐺)) ⇒ ⊢ (𝜑 → 𝐴 = 𝐵) | ||
| Theorem | trivsubgsnd 19135 | The only subgroup of a trivial group is itself. (Contributed by Rohan Ridenour, 3-Aug-2023.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ Grp) & ⊢ (𝜑 → 𝐵 = { 0 }) ⇒ ⊢ (𝜑 → (SubGrp‘𝐺) = {𝐵}) | ||
| Theorem | isnsg 19136* | Property of being a normal subgroup. (Contributed by Mario Carneiro, 18-Jan-2015.) |
| ⊢ 𝑋 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) ⇒ ⊢ (𝑆 ∈ (NrmSGrp‘𝐺) ↔ (𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝑦 + 𝑥) ∈ 𝑆))) | ||
| Theorem | isnsg2 19137* | Weaken the condition of isnsg 19136 to only one side of the implication. (Contributed by Mario Carneiro, 18-Jan-2015.) |
| ⊢ 𝑋 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) ⇒ ⊢ (𝑆 ∈ (NrmSGrp‘𝐺) ↔ (𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝑥 + 𝑦) ∈ 𝑆 → (𝑦 + 𝑥) ∈ 𝑆))) | ||
| Theorem | nsgbi 19138 | Defining property of a normal subgroup. (Contributed by Mario Carneiro, 18-Jan-2015.) |
| ⊢ 𝑋 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) ⇒ ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝐴 + 𝐵) ∈ 𝑆 ↔ (𝐵 + 𝐴) ∈ 𝑆)) | ||
| Theorem | nsgsubg 19139 | A normal subgroup is a subgroup. (Contributed by Mario Carneiro, 18-Jan-2015.) |
| ⊢ (𝑆 ∈ (NrmSGrp‘𝐺) → 𝑆 ∈ (SubGrp‘𝐺)) | ||
| Theorem | nsgconj 19140 | The conjugation of an element of a normal subgroup is in the subgroup. (Contributed by Mario Carneiro, 4-Feb-2015.) |
| ⊢ 𝑋 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ − = (-g‘𝐺) ⇒ ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑆) → ((𝐴 + 𝐵) − 𝐴) ∈ 𝑆) | ||
| Theorem | isnsg3 19141* | A subgroup is normal iff the conjugation of all the elements of the subgroup is in the subgroup. (Contributed by Mario Carneiro, 18-Jan-2015.) |
| ⊢ 𝑋 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ − = (-g‘𝐺) ⇒ ⊢ (𝑆 ∈ (NrmSGrp‘𝐺) ↔ (𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑆 ((𝑥 + 𝑦) − 𝑥) ∈ 𝑆)) | ||
| Theorem | subgacs 19142 | Subgroups are an algebraic closure system. (Contributed by Stefan O'Rear, 4-Apr-2015.) (Revised by Mario Carneiro, 22-Aug-2015.) |
| ⊢ 𝐵 = (Base‘𝐺) ⇒ ⊢ (𝐺 ∈ Grp → (SubGrp‘𝐺) ∈ (ACS‘𝐵)) | ||
| Theorem | nsgacs 19143 | Normal subgroups form an algebraic closure system. (Contributed by Stefan O'Rear, 4-Sep-2015.) |
| ⊢ 𝐵 = (Base‘𝐺) ⇒ ⊢ (𝐺 ∈ Grp → (NrmSGrp‘𝐺) ∈ (ACS‘𝐵)) | ||
| Theorem | elnmz 19144* | Elementhood in the normalizer. (Contributed by Mario Carneiro, 18-Jan-2015.) |
| ⊢ 𝑁 = {𝑥 ∈ 𝑋 ∣ ∀𝑦 ∈ 𝑋 ((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝑦 + 𝑥) ∈ 𝑆)} ⇒ ⊢ (𝐴 ∈ 𝑁 ↔ (𝐴 ∈ 𝑋 ∧ ∀𝑧 ∈ 𝑋 ((𝐴 + 𝑧) ∈ 𝑆 ↔ (𝑧 + 𝐴) ∈ 𝑆))) | ||
| Theorem | nmzbi 19145* | Defining property of the normalizer. (Contributed by Mario Carneiro, 18-Jan-2015.) |
| ⊢ 𝑁 = {𝑥 ∈ 𝑋 ∣ ∀𝑦 ∈ 𝑋 ((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝑦 + 𝑥) ∈ 𝑆)} ⇒ ⊢ ((𝐴 ∈ 𝑁 ∧ 𝐵 ∈ 𝑋) → ((𝐴 + 𝐵) ∈ 𝑆 ↔ (𝐵 + 𝐴) ∈ 𝑆)) | ||
| Theorem | nmzsubg 19146* | The normalizer NG(S) of a subset 𝑆 of the group is a subgroup. (Contributed by Mario Carneiro, 18-Jan-2015.) |
| ⊢ 𝑁 = {𝑥 ∈ 𝑋 ∣ ∀𝑦 ∈ 𝑋 ((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝑦 + 𝑥) ∈ 𝑆)} & ⊢ 𝑋 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) ⇒ ⊢ (𝐺 ∈ Grp → 𝑁 ∈ (SubGrp‘𝐺)) | ||
| Theorem | ssnmz 19147* | A subgroup is a subset of its normalizer. (Contributed by Mario Carneiro, 18-Jan-2015.) |
| ⊢ 𝑁 = {𝑥 ∈ 𝑋 ∣ ∀𝑦 ∈ 𝑋 ((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝑦 + 𝑥) ∈ 𝑆)} & ⊢ 𝑋 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) ⇒ ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ⊆ 𝑁) | ||
| Theorem | isnsg4 19148* | A subgroup is normal iff its normalizer is the entire group. (Contributed by Mario Carneiro, 18-Jan-2015.) |
| ⊢ 𝑁 = {𝑥 ∈ 𝑋 ∣ ∀𝑦 ∈ 𝑋 ((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝑦 + 𝑥) ∈ 𝑆)} & ⊢ 𝑋 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) ⇒ ⊢ (𝑆 ∈ (NrmSGrp‘𝐺) ↔ (𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 = 𝑋)) | ||
| Theorem | nmznsg 19149* | Any subgroup is a normal subgroup of its normalizer. (Contributed by Mario Carneiro, 19-Jan-2015.) |
| ⊢ 𝑁 = {𝑥 ∈ 𝑋 ∣ ∀𝑦 ∈ 𝑋 ((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝑦 + 𝑥) ∈ 𝑆)} & ⊢ 𝑋 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ 𝐻 = (𝐺 ↾s 𝑁) ⇒ ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ∈ (NrmSGrp‘𝐻)) | ||
| Theorem | 0nsg 19150 | The zero subgroup is normal. (Contributed by Mario Carneiro, 4-Feb-2015.) |
| ⊢ 0 = (0g‘𝐺) ⇒ ⊢ (𝐺 ∈ Grp → { 0 } ∈ (NrmSGrp‘𝐺)) | ||
| Theorem | nsgid 19151 | The whole group is a normal subgroup of itself. (Contributed by Mario Carneiro, 4-Feb-2015.) |
| ⊢ 𝐵 = (Base‘𝐺) ⇒ ⊢ (𝐺 ∈ Grp → 𝐵 ∈ (NrmSGrp‘𝐺)) | ||
| Theorem | 0idnsgd 19152 | The whole group and the zero subgroup are normal subgroups of a group. (Contributed by Rohan Ridenour, 3-Aug-2023.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ Grp) ⇒ ⊢ (𝜑 → {{ 0 }, 𝐵} ⊆ (NrmSGrp‘𝐺)) | ||
| Theorem | trivnsgd 19153 | The only normal subgroup of a trivial group is itself. (Contributed by Rohan Ridenour, 3-Aug-2023.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ Grp) & ⊢ (𝜑 → 𝐵 = { 0 }) ⇒ ⊢ (𝜑 → (NrmSGrp‘𝐺) = {𝐵}) | ||
| Theorem | triv1nsgd 19154 | A trivial group has exactly one normal subgroup. (Contributed by Rohan Ridenour, 3-Aug-2023.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ Grp) & ⊢ (𝜑 → 𝐵 = { 0 }) ⇒ ⊢ (𝜑 → (NrmSGrp‘𝐺) ≈ 1o) | ||
| Theorem | 1nsgtrivd 19155 | A group with exactly one normal subgroup is trivial. (Contributed by Rohan Ridenour, 3-Aug-2023.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ Grp) & ⊢ (𝜑 → (NrmSGrp‘𝐺) ≈ 1o) ⇒ ⊢ (𝜑 → 𝐵 = { 0 }) | ||
| Theorem | releqg 19156 | The left coset equivalence relation is a relation. (Contributed by Mario Carneiro, 14-Jun-2015.) |
| ⊢ 𝑅 = (𝐺 ~QG 𝑆) ⇒ ⊢ Rel 𝑅 | ||
| Theorem | eqgfval 19157* | Value of the subgroup left coset equivalence relation. (Contributed by Mario Carneiro, 15-Jan-2015.) |
| ⊢ 𝑋 = (Base‘𝐺) & ⊢ 𝑁 = (invg‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ 𝑅 = (𝐺 ~QG 𝑆) ⇒ ⊢ ((𝐺 ∈ 𝑉 ∧ 𝑆 ⊆ 𝑋) → 𝑅 = {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝑋 ∧ ((𝑁‘𝑥) + 𝑦) ∈ 𝑆)}) | ||
| Theorem | eqgval 19158 | Value of the subgroup left coset equivalence relation. (Contributed by Mario Carneiro, 15-Jan-2015.) (Revised by Mario Carneiro, 14-Jun-2015.) |
| ⊢ 𝑋 = (Base‘𝐺) & ⊢ 𝑁 = (invg‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ 𝑅 = (𝐺 ~QG 𝑆) ⇒ ⊢ ((𝐺 ∈ 𝑉 ∧ 𝑆 ⊆ 𝑋) → (𝐴𝑅𝐵 ↔ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ ((𝑁‘𝐴) + 𝐵) ∈ 𝑆))) | ||
| Theorem | eqger 19159 | The subgroup coset equivalence relation is an equivalence relation. (Contributed by Mario Carneiro, 13-Jan-2015.) |
| ⊢ 𝑋 = (Base‘𝐺) & ⊢ ∼ = (𝐺 ~QG 𝑌) ⇒ ⊢ (𝑌 ∈ (SubGrp‘𝐺) → ∼ Er 𝑋) | ||
| Theorem | eqglact 19160* | A left coset can be expressed as the image of a left action. (Contributed by Mario Carneiro, 20-Sep-2015.) |
| ⊢ 𝑋 = (Base‘𝐺) & ⊢ ∼ = (𝐺 ~QG 𝑌) & ⊢ + = (+g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Grp ∧ 𝑌 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋) → [𝐴] ∼ = ((𝑥 ∈ 𝑋 ↦ (𝐴 + 𝑥)) “ 𝑌)) | ||
| Theorem | eqgid 19161 | The left coset containing the identity is the original subgroup. (Contributed by Mario Carneiro, 20-Sep-2015.) |
| ⊢ 𝑋 = (Base‘𝐺) & ⊢ ∼ = (𝐺 ~QG 𝑌) & ⊢ 0 = (0g‘𝐺) ⇒ ⊢ (𝑌 ∈ (SubGrp‘𝐺) → [ 0 ] ∼ = 𝑌) | ||
| Theorem | eqgen 19162 | Each coset is equipotent to the subgroup itself (which is also the coset containing the identity). (Contributed by Mario Carneiro, 20-Sep-2015.) |
| ⊢ 𝑋 = (Base‘𝐺) & ⊢ ∼ = (𝐺 ~QG 𝑌) ⇒ ⊢ ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ (𝑋 / ∼ )) → 𝑌 ≈ 𝐴) | ||
| Theorem | eqgcpbl 19163 | The subgroup coset equivalence relation is compatible with addition when the subgroup is normal. (Contributed by Mario Carneiro, 14-Jun-2015.) |
| ⊢ 𝑋 = (Base‘𝐺) & ⊢ ∼ = (𝐺 ~QG 𝑌) & ⊢ + = (+g‘𝐺) ⇒ ⊢ (𝑌 ∈ (NrmSGrp‘𝐺) → ((𝐴 ∼ 𝐶 ∧ 𝐵 ∼ 𝐷) → (𝐴 + 𝐵) ∼ (𝐶 + 𝐷))) | ||
| Theorem | eqg0el 19164 | Equivalence class of a quotient group for a subgroup. (Contributed by Thierry Arnoux, 15-Jan-2024.) |
| ⊢ ∼ = (𝐺 ~QG 𝐻) ⇒ ⊢ ((𝐺 ∈ Grp ∧ 𝐻 ∈ (SubGrp‘𝐺)) → ([𝑋] ∼ = 𝐻 ↔ 𝑋 ∈ 𝐻)) | ||
| Theorem | quselbas 19165* | Membership in the base set of a quotient group. (Contributed by AV, 1-Mar-2025.) |
| ⊢ ∼ = (𝐺 ~QG 𝑆) & ⊢ 𝑈 = (𝐺 /s ∼ ) & ⊢ 𝐵 = (Base‘𝐺) ⇒ ⊢ ((𝐺 ∈ 𝑉 ∧ 𝑋 ∈ 𝑊) → (𝑋 ∈ (Base‘𝑈) ↔ ∃𝑥 ∈ 𝐵 𝑋 = [𝑥] ∼ )) | ||
| Theorem | quseccl0 19166 | Closure of the quotient map for a quotient group. (Contributed by Mario Carneiro, 18-Sep-2015.) Generalization of quseccl 19168 for arbitrary sets 𝐺. (Revised by AV, 24-Feb-2025.) |
| ⊢ ∼ = (𝐺 ~QG 𝑆) & ⊢ 𝐻 = (𝐺 /s ∼ ) & ⊢ 𝐶 = (Base‘𝐺) & ⊢ 𝐵 = (Base‘𝐻) ⇒ ⊢ ((𝐺 ∈ 𝑉 ∧ 𝑋 ∈ 𝐶) → [𝑋] ∼ ∈ 𝐵) | ||
| Theorem | qusgrp 19167 | If 𝑌 is a normal subgroup of 𝐺, then 𝐻 = 𝐺 / 𝑌 is a group, called the quotient of 𝐺 by 𝑌. (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by Mario Carneiro, 12-Aug-2015.) |
| ⊢ 𝐻 = (𝐺 /s (𝐺 ~QG 𝑆)) ⇒ ⊢ (𝑆 ∈ (NrmSGrp‘𝐺) → 𝐻 ∈ Grp) | ||
| Theorem | quseccl 19168 | Closure of the quotient map for a quotient group. (Contributed by Mario Carneiro, 18-Sep-2015.) (Proof shortened by AV, 9-Mar-2025.) |
| ⊢ 𝐻 = (𝐺 /s (𝐺 ~QG 𝑆)) & ⊢ 𝑉 = (Base‘𝐺) & ⊢ 𝐵 = (Base‘𝐻) ⇒ ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑋 ∈ 𝑉) → [𝑋](𝐺 ~QG 𝑆) ∈ 𝐵) | ||
| Theorem | qusadd 19169 | Value of the group operation in a quotient group. (Contributed by Mario Carneiro, 18-Sep-2015.) |
| ⊢ 𝐻 = (𝐺 /s (𝐺 ~QG 𝑆)) & ⊢ 𝑉 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ ✚ = (+g‘𝐻) ⇒ ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → ([𝑋](𝐺 ~QG 𝑆) ✚ [𝑌](𝐺 ~QG 𝑆)) = [(𝑋 + 𝑌)](𝐺 ~QG 𝑆)) | ||
| Theorem | qus0 19170 | Value of the group identity operation in a quotient group. (Contributed by Mario Carneiro, 18-Sep-2015.) |
| ⊢ 𝐻 = (𝐺 /s (𝐺 ~QG 𝑆)) & ⊢ 0 = (0g‘𝐺) ⇒ ⊢ (𝑆 ∈ (NrmSGrp‘𝐺) → [ 0 ](𝐺 ~QG 𝑆) = (0g‘𝐻)) | ||
| Theorem | qusinv 19171 | Value of the group inverse operation in a quotient group. (Contributed by Mario Carneiro, 18-Sep-2015.) |
| ⊢ 𝐻 = (𝐺 /s (𝐺 ~QG 𝑆)) & ⊢ 𝑉 = (Base‘𝐺) & ⊢ 𝐼 = (invg‘𝐺) & ⊢ 𝑁 = (invg‘𝐻) ⇒ ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑋 ∈ 𝑉) → (𝑁‘[𝑋](𝐺 ~QG 𝑆)) = [(𝐼‘𝑋)](𝐺 ~QG 𝑆)) | ||
| Theorem | qussub 19172 | Value of the group subtraction operation in a quotient group. (Contributed by Mario Carneiro, 18-Sep-2015.) |
| ⊢ 𝐻 = (𝐺 /s (𝐺 ~QG 𝑆)) & ⊢ 𝑉 = (Base‘𝐺) & ⊢ − = (-g‘𝐺) & ⊢ 𝑁 = (-g‘𝐻) ⇒ ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → ([𝑋](𝐺 ~QG 𝑆)𝑁[𝑌](𝐺 ~QG 𝑆)) = [(𝑋 − 𝑌)](𝐺 ~QG 𝑆)) | ||
| Theorem | ecqusaddd 19173 | Addition of equivalence classes in a quotient group. (Contributed by AV, 25-Feb-2025.) |
| ⊢ (𝜑 → 𝐼 ∈ (NrmSGrp‘𝑅)) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ ∼ = (𝑅 ~QG 𝐼) & ⊢ 𝑄 = (𝑅 /s ∼ ) ⇒ ⊢ ((𝜑 ∧ (𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵)) → [(𝐴(+g‘𝑅)𝐶)] ∼ = ([𝐴] ∼ (+g‘𝑄)[𝐶] ∼ )) | ||
| Theorem | ecqusaddcl 19174 | Closure of the addition in a quotient group. (Contributed by AV, 24-Feb-2025.) |
| ⊢ (𝜑 → 𝐼 ∈ (NrmSGrp‘𝑅)) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ ∼ = (𝑅 ~QG 𝐼) & ⊢ 𝑄 = (𝑅 /s ∼ ) ⇒ ⊢ ((𝜑 ∧ (𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵)) → ([𝐴] ∼ (+g‘𝑄)[𝐶] ∼ ) ∈ (Base‘𝑄)) | ||
| Theorem | lagsubg2 19175 | Lagrange's theorem for finite groups. Call the "order" of a group the cardinal number of the basic set of the group, and "index of a subgroup" the cardinal number of the set of left (or right, this is the same) cosets of this subgroup. Then the order of the group is the (cardinal) product of the order of any of its subgroups by the index of this subgroup. (Contributed by Mario Carneiro, 11-Jul-2014.) (Revised by Mario Carneiro, 12-Aug-2015.) |
| ⊢ 𝑋 = (Base‘𝐺) & ⊢ ∼ = (𝐺 ~QG 𝑌) & ⊢ (𝜑 → 𝑌 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → 𝑋 ∈ Fin) ⇒ ⊢ (𝜑 → (♯‘𝑋) = ((♯‘(𝑋 / ∼ )) · (♯‘𝑌))) | ||
| Theorem | lagsubg 19176 | Lagrange's theorem for Groups: the order of any subgroup of a finite group is a divisor of the order of the group. This is Metamath 100 proof #71. (Contributed by Mario Carneiro, 11-Jul-2014.) (Revised by Mario Carneiro, 12-Aug-2015.) |
| ⊢ 𝑋 = (Base‘𝐺) ⇒ ⊢ ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin) → (♯‘𝑌) ∥ (♯‘𝑋)) | ||
| Theorem | eqg0subg 19177 | The coset equivalence relation for the trivial (zero) subgroup of a group is the identity relation restricted to the base set of the group. (Contributed by AV, 25-Feb-2025.) |
| ⊢ 0 = (0g‘𝐺) & ⊢ 𝑆 = { 0 } & ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝑅 = (𝐺 ~QG 𝑆) ⇒ ⊢ (𝐺 ∈ Grp → 𝑅 = ( I ↾ 𝐵)) | ||
| Theorem | eqg0subgecsn 19178 | The equivalence classes modulo the coset equivalence relation for the trivial (zero) subgroup of a group are singletons. (Contributed by AV, 26-Feb-2025.) |
| ⊢ 0 = (0g‘𝐺) & ⊢ 𝑆 = { 0 } & ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝑅 = (𝐺 ~QG 𝑆) ⇒ ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → [𝑋]𝑅 = {𝑋}) | ||
| Theorem | qus0subgbas 19179* | The base set of a quotient of a group by the trivial (zero) subgroup. (Contributed by AV, 26-Feb-2025.) |
| ⊢ 0 = (0g‘𝐺) & ⊢ 𝑆 = { 0 } & ⊢ ∼ = (𝐺 ~QG 𝑆) & ⊢ 𝑈 = (𝐺 /s ∼ ) & ⊢ 𝐵 = (Base‘𝐺) ⇒ ⊢ (𝐺 ∈ Grp → (Base‘𝑈) = {𝑢 ∣ ∃𝑥 ∈ 𝐵 𝑢 = {𝑥}}) | ||
| Theorem | qus0subgadd 19180* | The addition in a quotient of a group by the trivial (zero) subgroup. (Contributed by AV, 26-Feb-2025.) |
| ⊢ 0 = (0g‘𝐺) & ⊢ 𝑆 = { 0 } & ⊢ ∼ = (𝐺 ~QG 𝑆) & ⊢ 𝑈 = (𝐺 /s ∼ ) & ⊢ 𝐵 = (Base‘𝐺) ⇒ ⊢ (𝐺 ∈ Grp → ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ({𝑎} (+g‘𝑈){𝑏}) = {(𝑎(+g‘𝐺)𝑏)}) | ||
This section contains some preliminary results about cyclic monoids and groups before the class CycGrp of cyclic groups (see df-cyg 19857) is defined in the context of Abelian groups. | ||
| Theorem | cycsubmel 19181* | Characterization of an element of the set of nonnegative integer powers of an element 𝐴. Although this theorem holds for any class 𝐺, the definition of 𝐹 is only meaningful if 𝐺 is a monoid or at least a unital magma. (Contributed by AV, 28-Dec-2023.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ · = (.g‘𝐺) & ⊢ 𝐹 = (𝑥 ∈ ℕ0 ↦ (𝑥 · 𝐴)) & ⊢ 𝐶 = ran 𝐹 ⇒ ⊢ (𝑋 ∈ 𝐶 ↔ ∃𝑖 ∈ ℕ0 𝑋 = (𝑖 · 𝐴)) | ||
| Theorem | cycsubmcl 19182* | The set of nonnegative integer powers of an element 𝐴 contains 𝐴. Although this theorem holds for any class 𝐺, the definition of 𝐹 is only meaningful if 𝐺 is a monoid or at least a unital magma. (Contributed by AV, 28-Dec-2023.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ · = (.g‘𝐺) & ⊢ 𝐹 = (𝑥 ∈ ℕ0 ↦ (𝑥 · 𝐴)) & ⊢ 𝐶 = ran 𝐹 ⇒ ⊢ (𝐴 ∈ 𝐵 → 𝐴 ∈ 𝐶) | ||
| Theorem | cycsubm 19183* | The set of nonnegative integer powers of an element 𝐴 of a monoid forms a submonoid containing 𝐴 (see cycsubmcl 19182), called the cyclic monoid generated by the element 𝐴. This corresponds to the statement in [Lang] p. 6. (Contributed by AV, 28-Dec-2023.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ · = (.g‘𝐺) & ⊢ 𝐹 = (𝑥 ∈ ℕ0 ↦ (𝑥 · 𝐴)) & ⊢ 𝐶 = ran 𝐹 ⇒ ⊢ ((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝐵) → 𝐶 ∈ (SubMnd‘𝐺)) | ||
| Theorem | cyccom 19184* | Condition for an operation to be commutative. Lemma for cycsubmcom 19185 and cygabl 19870. Formerly part of proof for cygabl 19870. (Contributed by Mario Carneiro, 21-Apr-2016.) (Revised by AV, 20-Jan-2024.) |
| ⊢ (𝜑 → ∀𝑐 ∈ 𝐶 ∃𝑥 ∈ 𝑍 𝑐 = (𝑥 · 𝐴)) & ⊢ (𝜑 → ∀𝑚 ∈ 𝑍 ∀𝑛 ∈ 𝑍 ((𝑚 + 𝑛) · 𝐴) = ((𝑚 · 𝐴) + (𝑛 · 𝐴))) & ⊢ (𝜑 → 𝑋 ∈ 𝐶) & ⊢ (𝜑 → 𝑌 ∈ 𝐶) & ⊢ (𝜑 → 𝑍 ⊆ ℂ) ⇒ ⊢ (𝜑 → (𝑋 + 𝑌) = (𝑌 + 𝑋)) | ||
| Theorem | cycsubmcom 19185* | The operation of a monoid is commutative over the set of nonnegative integer powers of an element 𝐴 of the monoid. (Contributed by AV, 20-Jan-2024.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ · = (.g‘𝐺) & ⊢ 𝐹 = (𝑥 ∈ ℕ0 ↦ (𝑥 · 𝐴)) & ⊢ 𝐶 = ran 𝐹 & ⊢ + = (+g‘𝐺) ⇒ ⊢ (((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝐵) ∧ (𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶)) → (𝑋 + 𝑌) = (𝑌 + 𝑋)) | ||
| Theorem | cycsubggend 19186* | The cyclic subgroup generated by 𝐴 includes its generator. Although this theorem holds for any class 𝐺, the definition of 𝐹 is only meaningful if 𝐺 is a group. (Contributed by Rohan Ridenour, 3-Aug-2023.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ · = (.g‘𝐺) & ⊢ 𝐹 = (𝑛 ∈ ℤ ↦ (𝑛 · 𝐴)) & ⊢ (𝜑 → 𝐴 ∈ 𝐵) ⇒ ⊢ (𝜑 → 𝐴 ∈ ran 𝐹) | ||
| Theorem | cycsubgcl 19187* | The set of integer powers of an element 𝐴 of a group forms a subgroup containing 𝐴, called the cyclic group generated by the element 𝐴. (Contributed by Mario Carneiro, 13-Jan-2015.) |
| ⊢ 𝑋 = (Base‘𝐺) & ⊢ · = (.g‘𝐺) & ⊢ 𝐹 = (𝑥 ∈ ℤ ↦ (𝑥 · 𝐴)) ⇒ ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → (ran 𝐹 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ran 𝐹)) | ||
| Theorem | cycsubgss 19188* | The cyclic subgroup generated by an element 𝐴 is a subset of any subgroup containing 𝐴. (Contributed by Mario Carneiro, 13-Jan-2015.) |
| ⊢ 𝑋 = (Base‘𝐺) & ⊢ · = (.g‘𝐺) & ⊢ 𝐹 = (𝑥 ∈ ℤ ↦ (𝑥 · 𝐴)) ⇒ ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑆) → ran 𝐹 ⊆ 𝑆) | ||
| Theorem | cycsubg 19189* | The cyclic group generated by 𝐴 is the smallest subgroup containing 𝐴. (Contributed by Mario Carneiro, 13-Jan-2015.) |
| ⊢ 𝑋 = (Base‘𝐺) & ⊢ · = (.g‘𝐺) & ⊢ 𝐹 = (𝑥 ∈ ℤ ↦ (𝑥 · 𝐴)) ⇒ ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → ran 𝐹 = ∩ {𝑠 ∈ (SubGrp‘𝐺) ∣ 𝐴 ∈ 𝑠}) | ||
| Theorem | cycsubgcld 19190* | The cyclic subgroup generated by 𝐴 is a subgroup. Deduction related to cycsubgcl 19187. (Contributed by Rohan Ridenour, 3-Aug-2023.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ · = (.g‘𝐺) & ⊢ 𝐹 = (𝑛 ∈ ℤ ↦ (𝑛 · 𝐴)) & ⊢ (𝜑 → 𝐺 ∈ Grp) & ⊢ (𝜑 → 𝐴 ∈ 𝐵) ⇒ ⊢ (𝜑 → ran 𝐹 ∈ (SubGrp‘𝐺)) | ||
| Theorem | cycsubg2 19191* | The subgroup generated by an element is exhausted by its multiples. (Contributed by Stefan O'Rear, 6-Sep-2015.) |
| ⊢ 𝑋 = (Base‘𝐺) & ⊢ · = (.g‘𝐺) & ⊢ 𝐹 = (𝑥 ∈ ℤ ↦ (𝑥 · 𝐴)) & ⊢ 𝐾 = (mrCls‘(SubGrp‘𝐺)) ⇒ ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → (𝐾‘{𝐴}) = ran 𝐹) | ||
| Theorem | cycsubg2cl 19192 | Any multiple of an element is contained in the generated cyclic subgroup. (Contributed by Stefan O'Rear, 12-Sep-2015.) |
| ⊢ 𝑋 = (Base‘𝐺) & ⊢ · = (.g‘𝐺) & ⊢ 𝐾 = (mrCls‘(SubGrp‘𝐺)) ⇒ ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) → (𝑁 · 𝐴) ∈ (𝐾‘{𝐴})) | ||
| Syntax | cghm 19193 | Extend class notation with the generator of group hom-sets. |
| class GrpHom | ||
| Definition | df-ghm 19194* | A homomorphism of groups is a map between two structures which preserves the group operation. Requiring both sides to be groups simplifies most theorems at the cost of complicating the theorem which pushes forward a group structure. (Contributed by Stefan O'Rear, 31-Dec-2014.) |
| ⊢ GrpHom = (𝑠 ∈ Grp, 𝑡 ∈ Grp ↦ {𝑔 ∣ [(Base‘𝑠) / 𝑤](𝑔:𝑤⟶(Base‘𝑡) ∧ ∀𝑥 ∈ 𝑤 ∀𝑦 ∈ 𝑤 (𝑔‘(𝑥(+g‘𝑠)𝑦)) = ((𝑔‘𝑥)(+g‘𝑡)(𝑔‘𝑦)))}) | ||
| Theorem | reldmghm 19195 | Lemma for group homomorphisms. (Contributed by Stefan O'Rear, 31-Dec-2014.) |
| ⊢ Rel dom GrpHom | ||
| Theorem | isghm 19196* | Property of being a homomorphism of groups. (Contributed by Stefan O'Rear, 31-Dec-2014.) (Proof shortened by SN, 5-Jun-2025.) |
| ⊢ 𝑋 = (Base‘𝑆) & ⊢ 𝑌 = (Base‘𝑇) & ⊢ + = (+g‘𝑆) & ⊢ ⨣ = (+g‘𝑇) ⇒ ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) ↔ ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) ∧ (𝐹:𝑋⟶𝑌 ∧ ∀𝑢 ∈ 𝑋 ∀𝑣 ∈ 𝑋 (𝐹‘(𝑢 + 𝑣)) = ((𝐹‘𝑢) ⨣ (𝐹‘𝑣))))) | ||
| Theorem | isghmOLD 19197* | Obsolete version of isghm 19196 as of 5-Jun-2025. (Contributed by Stefan O'Rear, 31-Dec-2014.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ 𝑋 = (Base‘𝑆) & ⊢ 𝑌 = (Base‘𝑇) & ⊢ + = (+g‘𝑆) & ⊢ ⨣ = (+g‘𝑇) ⇒ ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) ↔ ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) ∧ (𝐹:𝑋⟶𝑌 ∧ ∀𝑢 ∈ 𝑋 ∀𝑣 ∈ 𝑋 (𝐹‘(𝑢 + 𝑣)) = ((𝐹‘𝑢) ⨣ (𝐹‘𝑣))))) | ||
| Theorem | isghm3 19198* | Property of a group homomorphism, similar to ismhm 18761. (Contributed by Mario Carneiro, 7-Mar-2015.) |
| ⊢ 𝑋 = (Base‘𝑆) & ⊢ 𝑌 = (Base‘𝑇) & ⊢ + = (+g‘𝑆) & ⊢ ⨣ = (+g‘𝑇) ⇒ ⊢ ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) → (𝐹 ∈ (𝑆 GrpHom 𝑇) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑢 ∈ 𝑋 ∀𝑣 ∈ 𝑋 (𝐹‘(𝑢 + 𝑣)) = ((𝐹‘𝑢) ⨣ (𝐹‘𝑣))))) | ||
| Theorem | ghmgrp1 19199 | A group homomorphism is only defined when the domain is a group. (Contributed by Stefan O'Rear, 31-Dec-2014.) |
| ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝑆 ∈ Grp) | ||
| Theorem | ghmgrp2 19200 | A group homomorphism is only defined when the codomain is a group. (Contributed by Stefan O'Rear, 31-Dec-2014.) |
| ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝑇 ∈ Grp) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |