Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  isga Structured version   Visualization version   GIF version

Theorem isga 18489
 Description: The predicate "is a (left) group action." The group 𝐺 is said to act on the base set 𝑌 of the action, which is not assumed to have any special properties. There is a related notion of right group action, but as the Wikipedia article explains, it is not mathematically interesting. The way actions are usually thought of is that each element 𝑔 of 𝐺 is a permutation of the elements of 𝑌 (see gapm 18504). Since group theory was classically about symmetry groups, it is therefore likely that the notion of group action was useful even in early group theory. (Contributed by Jeff Hankins, 10-Aug-2009.) (Revised by Mario Carneiro, 13-Jan-2015.)
Hypotheses
Ref Expression
isga.1 𝑋 = (Base‘𝐺)
isga.2 + = (+g𝐺)
isga.3 0 = (0g𝐺)
Assertion
Ref Expression
isga ( ∈ (𝐺 GrpAct 𝑌) ↔ ((𝐺 ∈ Grp ∧ 𝑌 ∈ V) ∧ ( :(𝑋 × 𝑌)⟶𝑌 ∧ ∀𝑥𝑌 (( 0 𝑥) = 𝑥 ∧ ∀𝑦𝑋𝑧𝑋 ((𝑦 + 𝑧) 𝑥) = (𝑦 (𝑧 𝑥))))))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐺   𝑦,𝑋,𝑧   𝑥,𝑌,𝑦,𝑧   𝑥, ,𝑦,𝑧
Allowed substitution hints:   + (𝑥,𝑦,𝑧)   𝑋(𝑥)   0 (𝑥,𝑦,𝑧)

Proof of Theorem isga
Dummy variables 𝑔 𝑏 𝑚 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ga 18488 . . 3 GrpAct = (𝑔 ∈ Grp, 𝑠 ∈ V ↦ (Base‘𝑔) / 𝑏{𝑚 ∈ (𝑠m (𝑏 × 𝑠)) ∣ ∀𝑥𝑠 (((0g𝑔)𝑚𝑥) = 𝑥 ∧ ∀𝑦𝑏𝑧𝑏 ((𝑦(+g𝑔)𝑧)𝑚𝑥) = (𝑦𝑚(𝑧𝑚𝑥)))})
21elmpocl 7384 . 2 ( ∈ (𝐺 GrpAct 𝑌) → (𝐺 ∈ Grp ∧ 𝑌 ∈ V))
3 fvexd 6674 . . . . . . 7 ((𝑔 = 𝐺𝑠 = 𝑌) → (Base‘𝑔) ∈ V)
4 simplr 769 . . . . . . . . 9 (((𝑔 = 𝐺𝑠 = 𝑌) ∧ 𝑏 = (Base‘𝑔)) → 𝑠 = 𝑌)
5 id 22 . . . . . . . . . . 11 (𝑏 = (Base‘𝑔) → 𝑏 = (Base‘𝑔))
6 simpl 487 . . . . . . . . . . . . 13 ((𝑔 = 𝐺𝑠 = 𝑌) → 𝑔 = 𝐺)
76fveq2d 6663 . . . . . . . . . . . 12 ((𝑔 = 𝐺𝑠 = 𝑌) → (Base‘𝑔) = (Base‘𝐺))
8 isga.1 . . . . . . . . . . . 12 𝑋 = (Base‘𝐺)
97, 8eqtr4di 2812 . . . . . . . . . . 11 ((𝑔 = 𝐺𝑠 = 𝑌) → (Base‘𝑔) = 𝑋)
105, 9sylan9eqr 2816 . . . . . . . . . 10 (((𝑔 = 𝐺𝑠 = 𝑌) ∧ 𝑏 = (Base‘𝑔)) → 𝑏 = 𝑋)
1110, 4xpeq12d 5556 . . . . . . . . 9 (((𝑔 = 𝐺𝑠 = 𝑌) ∧ 𝑏 = (Base‘𝑔)) → (𝑏 × 𝑠) = (𝑋 × 𝑌))
124, 11oveq12d 7169 . . . . . . . 8 (((𝑔 = 𝐺𝑠 = 𝑌) ∧ 𝑏 = (Base‘𝑔)) → (𝑠m (𝑏 × 𝑠)) = (𝑌m (𝑋 × 𝑌)))
13 simpll 767 . . . . . . . . . . . . . 14 (((𝑔 = 𝐺𝑠 = 𝑌) ∧ 𝑏 = (Base‘𝑔)) → 𝑔 = 𝐺)
1413fveq2d 6663 . . . . . . . . . . . . 13 (((𝑔 = 𝐺𝑠 = 𝑌) ∧ 𝑏 = (Base‘𝑔)) → (0g𝑔) = (0g𝐺))
15 isga.3 . . . . . . . . . . . . 13 0 = (0g𝐺)
1614, 15eqtr4di 2812 . . . . . . . . . . . 12 (((𝑔 = 𝐺𝑠 = 𝑌) ∧ 𝑏 = (Base‘𝑔)) → (0g𝑔) = 0 )
1716oveq1d 7166 . . . . . . . . . . 11 (((𝑔 = 𝐺𝑠 = 𝑌) ∧ 𝑏 = (Base‘𝑔)) → ((0g𝑔)𝑚𝑥) = ( 0 𝑚𝑥))
1817eqeq1d 2761 . . . . . . . . . 10 (((𝑔 = 𝐺𝑠 = 𝑌) ∧ 𝑏 = (Base‘𝑔)) → (((0g𝑔)𝑚𝑥) = 𝑥 ↔ ( 0 𝑚𝑥) = 𝑥))
1913fveq2d 6663 . . . . . . . . . . . . . . . 16 (((𝑔 = 𝐺𝑠 = 𝑌) ∧ 𝑏 = (Base‘𝑔)) → (+g𝑔) = (+g𝐺))
20 isga.2 . . . . . . . . . . . . . . . 16 + = (+g𝐺)
2119, 20eqtr4di 2812 . . . . . . . . . . . . . . 15 (((𝑔 = 𝐺𝑠 = 𝑌) ∧ 𝑏 = (Base‘𝑔)) → (+g𝑔) = + )
2221oveqd 7168 . . . . . . . . . . . . . 14 (((𝑔 = 𝐺𝑠 = 𝑌) ∧ 𝑏 = (Base‘𝑔)) → (𝑦(+g𝑔)𝑧) = (𝑦 + 𝑧))
2322oveq1d 7166 . . . . . . . . . . . . 13 (((𝑔 = 𝐺𝑠 = 𝑌) ∧ 𝑏 = (Base‘𝑔)) → ((𝑦(+g𝑔)𝑧)𝑚𝑥) = ((𝑦 + 𝑧)𝑚𝑥))
2423eqeq1d 2761 . . . . . . . . . . . 12 (((𝑔 = 𝐺𝑠 = 𝑌) ∧ 𝑏 = (Base‘𝑔)) → (((𝑦(+g𝑔)𝑧)𝑚𝑥) = (𝑦𝑚(𝑧𝑚𝑥)) ↔ ((𝑦 + 𝑧)𝑚𝑥) = (𝑦𝑚(𝑧𝑚𝑥))))
2510, 24raleqbidv 3320 . . . . . . . . . . 11 (((𝑔 = 𝐺𝑠 = 𝑌) ∧ 𝑏 = (Base‘𝑔)) → (∀𝑧𝑏 ((𝑦(+g𝑔)𝑧)𝑚𝑥) = (𝑦𝑚(𝑧𝑚𝑥)) ↔ ∀𝑧𝑋 ((𝑦 + 𝑧)𝑚𝑥) = (𝑦𝑚(𝑧𝑚𝑥))))
2610, 25raleqbidv 3320 . . . . . . . . . 10 (((𝑔 = 𝐺𝑠 = 𝑌) ∧ 𝑏 = (Base‘𝑔)) → (∀𝑦𝑏𝑧𝑏 ((𝑦(+g𝑔)𝑧)𝑚𝑥) = (𝑦𝑚(𝑧𝑚𝑥)) ↔ ∀𝑦𝑋𝑧𝑋 ((𝑦 + 𝑧)𝑚𝑥) = (𝑦𝑚(𝑧𝑚𝑥))))
2718, 26anbi12d 634 . . . . . . . . 9 (((𝑔 = 𝐺𝑠 = 𝑌) ∧ 𝑏 = (Base‘𝑔)) → ((((0g𝑔)𝑚𝑥) = 𝑥 ∧ ∀𝑦𝑏𝑧𝑏 ((𝑦(+g𝑔)𝑧)𝑚𝑥) = (𝑦𝑚(𝑧𝑚𝑥))) ↔ (( 0 𝑚𝑥) = 𝑥 ∧ ∀𝑦𝑋𝑧𝑋 ((𝑦 + 𝑧)𝑚𝑥) = (𝑦𝑚(𝑧𝑚𝑥)))))
284, 27raleqbidv 3320 . . . . . . . 8 (((𝑔 = 𝐺𝑠 = 𝑌) ∧ 𝑏 = (Base‘𝑔)) → (∀𝑥𝑠 (((0g𝑔)𝑚𝑥) = 𝑥 ∧ ∀𝑦𝑏𝑧𝑏 ((𝑦(+g𝑔)𝑧)𝑚𝑥) = (𝑦𝑚(𝑧𝑚𝑥))) ↔ ∀𝑥𝑌 (( 0 𝑚𝑥) = 𝑥 ∧ ∀𝑦𝑋𝑧𝑋 ((𝑦 + 𝑧)𝑚𝑥) = (𝑦𝑚(𝑧𝑚𝑥)))))
2912, 28rabeqbidv 3399 . . . . . . 7 (((𝑔 = 𝐺𝑠 = 𝑌) ∧ 𝑏 = (Base‘𝑔)) → {𝑚 ∈ (𝑠m (𝑏 × 𝑠)) ∣ ∀𝑥𝑠 (((0g𝑔)𝑚𝑥) = 𝑥 ∧ ∀𝑦𝑏𝑧𝑏 ((𝑦(+g𝑔)𝑧)𝑚𝑥) = (𝑦𝑚(𝑧𝑚𝑥)))} = {𝑚 ∈ (𝑌m (𝑋 × 𝑌)) ∣ ∀𝑥𝑌 (( 0 𝑚𝑥) = 𝑥 ∧ ∀𝑦𝑋𝑧𝑋 ((𝑦 + 𝑧)𝑚𝑥) = (𝑦𝑚(𝑧𝑚𝑥)))})
303, 29csbied 3842 . . . . . 6 ((𝑔 = 𝐺𝑠 = 𝑌) → (Base‘𝑔) / 𝑏{𝑚 ∈ (𝑠m (𝑏 × 𝑠)) ∣ ∀𝑥𝑠 (((0g𝑔)𝑚𝑥) = 𝑥 ∧ ∀𝑦𝑏𝑧𝑏 ((𝑦(+g𝑔)𝑧)𝑚𝑥) = (𝑦𝑚(𝑧𝑚𝑥)))} = {𝑚 ∈ (𝑌m (𝑋 × 𝑌)) ∣ ∀𝑥𝑌 (( 0 𝑚𝑥) = 𝑥 ∧ ∀𝑦𝑋𝑧𝑋 ((𝑦 + 𝑧)𝑚𝑥) = (𝑦𝑚(𝑧𝑚𝑥)))})
31 ovex 7184 . . . . . . 7 (𝑌m (𝑋 × 𝑌)) ∈ V
3231rabex 5203 . . . . . 6 {𝑚 ∈ (𝑌m (𝑋 × 𝑌)) ∣ ∀𝑥𝑌 (( 0 𝑚𝑥) = 𝑥 ∧ ∀𝑦𝑋𝑧𝑋 ((𝑦 + 𝑧)𝑚𝑥) = (𝑦𝑚(𝑧𝑚𝑥)))} ∈ V
3330, 1, 32ovmpoa 7301 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑌 ∈ V) → (𝐺 GrpAct 𝑌) = {𝑚 ∈ (𝑌m (𝑋 × 𝑌)) ∣ ∀𝑥𝑌 (( 0 𝑚𝑥) = 𝑥 ∧ ∀𝑦𝑋𝑧𝑋 ((𝑦 + 𝑧)𝑚𝑥) = (𝑦𝑚(𝑧𝑚𝑥)))})
3433eleq2d 2838 . . . 4 ((𝐺 ∈ Grp ∧ 𝑌 ∈ V) → ( ∈ (𝐺 GrpAct 𝑌) ↔ ∈ {𝑚 ∈ (𝑌m (𝑋 × 𝑌)) ∣ ∀𝑥𝑌 (( 0 𝑚𝑥) = 𝑥 ∧ ∀𝑦𝑋𝑧𝑋 ((𝑦 + 𝑧)𝑚𝑥) = (𝑦𝑚(𝑧𝑚𝑥)))}))
35 oveq 7157 . . . . . . . 8 (𝑚 = → ( 0 𝑚𝑥) = ( 0 𝑥))
3635eqeq1d 2761 . . . . . . 7 (𝑚 = → (( 0 𝑚𝑥) = 𝑥 ↔ ( 0 𝑥) = 𝑥))
37 oveq 7157 . . . . . . . . 9 (𝑚 = → ((𝑦 + 𝑧)𝑚𝑥) = ((𝑦 + 𝑧) 𝑥))
38 oveq 7157 . . . . . . . . . 10 (𝑚 = → (𝑦𝑚(𝑧𝑚𝑥)) = (𝑦 (𝑧𝑚𝑥)))
39 oveq 7157 . . . . . . . . . . 11 (𝑚 = → (𝑧𝑚𝑥) = (𝑧 𝑥))
4039oveq2d 7167 . . . . . . . . . 10 (𝑚 = → (𝑦 (𝑧𝑚𝑥)) = (𝑦 (𝑧 𝑥)))
4138, 40eqtrd 2794 . . . . . . . . 9 (𝑚 = → (𝑦𝑚(𝑧𝑚𝑥)) = (𝑦 (𝑧 𝑥)))
4237, 41eqeq12d 2775 . . . . . . . 8 (𝑚 = → (((𝑦 + 𝑧)𝑚𝑥) = (𝑦𝑚(𝑧𝑚𝑥)) ↔ ((𝑦 + 𝑧) 𝑥) = (𝑦 (𝑧 𝑥))))
43422ralbidv 3129 . . . . . . 7 (𝑚 = → (∀𝑦𝑋𝑧𝑋 ((𝑦 + 𝑧)𝑚𝑥) = (𝑦𝑚(𝑧𝑚𝑥)) ↔ ∀𝑦𝑋𝑧𝑋 ((𝑦 + 𝑧) 𝑥) = (𝑦 (𝑧 𝑥))))
4436, 43anbi12d 634 . . . . . 6 (𝑚 = → ((( 0 𝑚𝑥) = 𝑥 ∧ ∀𝑦𝑋𝑧𝑋 ((𝑦 + 𝑧)𝑚𝑥) = (𝑦𝑚(𝑧𝑚𝑥))) ↔ (( 0 𝑥) = 𝑥 ∧ ∀𝑦𝑋𝑧𝑋 ((𝑦 + 𝑧) 𝑥) = (𝑦 (𝑧 𝑥)))))
4544ralbidv 3127 . . . . 5 (𝑚 = → (∀𝑥𝑌 (( 0 𝑚𝑥) = 𝑥 ∧ ∀𝑦𝑋𝑧𝑋 ((𝑦 + 𝑧)𝑚𝑥) = (𝑦𝑚(𝑧𝑚𝑥))) ↔ ∀𝑥𝑌 (( 0 𝑥) = 𝑥 ∧ ∀𝑦𝑋𝑧𝑋 ((𝑦 + 𝑧) 𝑥) = (𝑦 (𝑧 𝑥)))))
4645elrab 3603 . . . 4 ( ∈ {𝑚 ∈ (𝑌m (𝑋 × 𝑌)) ∣ ∀𝑥𝑌 (( 0 𝑚𝑥) = 𝑥 ∧ ∀𝑦𝑋𝑧𝑋 ((𝑦 + 𝑧)𝑚𝑥) = (𝑦𝑚(𝑧𝑚𝑥)))} ↔ ( ∈ (𝑌m (𝑋 × 𝑌)) ∧ ∀𝑥𝑌 (( 0 𝑥) = 𝑥 ∧ ∀𝑦𝑋𝑧𝑋 ((𝑦 + 𝑧) 𝑥) = (𝑦 (𝑧 𝑥)))))
4734, 46bitrdi 290 . . 3 ((𝐺 ∈ Grp ∧ 𝑌 ∈ V) → ( ∈ (𝐺 GrpAct 𝑌) ↔ ( ∈ (𝑌m (𝑋 × 𝑌)) ∧ ∀𝑥𝑌 (( 0 𝑥) = 𝑥 ∧ ∀𝑦𝑋𝑧𝑋 ((𝑦 + 𝑧) 𝑥) = (𝑦 (𝑧 𝑥))))))
48 simpr 489 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑌 ∈ V) → 𝑌 ∈ V)
498fvexi 6673 . . . . . 6 𝑋 ∈ V
50 xpexg 7472 . . . . . 6 ((𝑋 ∈ V ∧ 𝑌 ∈ V) → (𝑋 × 𝑌) ∈ V)
5149, 48, 50sylancr 591 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑌 ∈ V) → (𝑋 × 𝑌) ∈ V)
5248, 51elmapd 8431 . . . 4 ((𝐺 ∈ Grp ∧ 𝑌 ∈ V) → ( ∈ (𝑌m (𝑋 × 𝑌)) ↔ :(𝑋 × 𝑌)⟶𝑌))
5352anbi1d 633 . . 3 ((𝐺 ∈ Grp ∧ 𝑌 ∈ V) → (( ∈ (𝑌m (𝑋 × 𝑌)) ∧ ∀𝑥𝑌 (( 0 𝑥) = 𝑥 ∧ ∀𝑦𝑋𝑧𝑋 ((𝑦 + 𝑧) 𝑥) = (𝑦 (𝑧 𝑥)))) ↔ ( :(𝑋 × 𝑌)⟶𝑌 ∧ ∀𝑥𝑌 (( 0 𝑥) = 𝑥 ∧ ∀𝑦𝑋𝑧𝑋 ((𝑦 + 𝑧) 𝑥) = (𝑦 (𝑧 𝑥))))))
5447, 53bitrd 282 . 2 ((𝐺 ∈ Grp ∧ 𝑌 ∈ V) → ( ∈ (𝐺 GrpAct 𝑌) ↔ ( :(𝑋 × 𝑌)⟶𝑌 ∧ ∀𝑥𝑌 (( 0 𝑥) = 𝑥 ∧ ∀𝑦𝑋𝑧𝑋 ((𝑦 + 𝑧) 𝑥) = (𝑦 (𝑧 𝑥))))))
552, 54biadanii 822 1 ( ∈ (𝐺 GrpAct 𝑌) ↔ ((𝐺 ∈ Grp ∧ 𝑌 ∈ V) ∧ ( :(𝑋 × 𝑌)⟶𝑌 ∧ ∀𝑥𝑌 (( 0 𝑥) = 𝑥 ∧ ∀𝑦𝑋𝑧𝑋 ((𝑦 + 𝑧) 𝑥) = (𝑦 (𝑧 𝑥))))))
 Colors of variables: wff setvar class Syntax hints:   ↔ wb 209   ∧ wa 400   = wceq 1539   ∈ wcel 2112  ∀wral 3071  {crab 3075  Vcvv 3410  ⦋csb 3806   × cxp 5523  ⟶wf 6332  ‘cfv 6336  (class class class)co 7151   ↑m cmap 8417  Basecbs 16542  +gcplusg 16624  0gc0g 16772  Grpcgrp 18170   GrpAct cga 18487 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-sep 5170  ax-nul 5177  ax-pow 5235  ax-pr 5299  ax-un 7460 This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2902  df-ne 2953  df-ral 3076  df-rex 3077  df-rab 3080  df-v 3412  df-sbc 3698  df-csb 3807  df-dif 3862  df-un 3864  df-in 3866  df-ss 3876  df-nul 4227  df-if 4422  df-pw 4497  df-sn 4524  df-pr 4526  df-op 4530  df-uni 4800  df-br 5034  df-opab 5096  df-id 5431  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-iota 6295  df-fun 6338  df-fn 6339  df-f 6340  df-fv 6344  df-ov 7154  df-oprab 7155  df-mpo 7156  df-map 8419  df-ga 18488 This theorem is referenced by:  gagrp  18490  gaset  18491  gagrpid  18492  gaf  18493  gaass  18495  ga0  18496  gaid  18497  subgga  18498  gass  18499  gasubg  18500  lactghmga  18601  sylow1lem2  18792  sylow2blem2  18814  sylow3lem1  18820
 Copyright terms: Public domain W3C validator