| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | df-ga 19309 | . . 3
⊢  GrpAct =
(𝑔 ∈ Grp, 𝑠 ∈ V ↦
⦋(Base‘𝑔) / 𝑏⦌{𝑚 ∈ (𝑠 ↑m (𝑏 × 𝑠)) ∣ ∀𝑥 ∈ 𝑠 (((0g‘𝑔)𝑚𝑥) = 𝑥 ∧ ∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 ((𝑦(+g‘𝑔)𝑧)𝑚𝑥) = (𝑦𝑚(𝑧𝑚𝑥)))}) | 
| 2 | 1 | elmpocl 7675 | . 2
⊢ ( ⊕ ∈
(𝐺 GrpAct 𝑌) → (𝐺 ∈ Grp ∧ 𝑌 ∈ V)) | 
| 3 |  | fvexd 6920 | . . . . . . 7
⊢ ((𝑔 = 𝐺 ∧ 𝑠 = 𝑌) → (Base‘𝑔) ∈ V) | 
| 4 |  | simplr 768 | . . . . . . . . 9
⊢ (((𝑔 = 𝐺 ∧ 𝑠 = 𝑌) ∧ 𝑏 = (Base‘𝑔)) → 𝑠 = 𝑌) | 
| 5 |  | id 22 | . . . . . . . . . . 11
⊢ (𝑏 = (Base‘𝑔) → 𝑏 = (Base‘𝑔)) | 
| 6 |  | simpl 482 | . . . . . . . . . . . . 13
⊢ ((𝑔 = 𝐺 ∧ 𝑠 = 𝑌) → 𝑔 = 𝐺) | 
| 7 | 6 | fveq2d 6909 | . . . . . . . . . . . 12
⊢ ((𝑔 = 𝐺 ∧ 𝑠 = 𝑌) → (Base‘𝑔) = (Base‘𝐺)) | 
| 8 |  | isga.1 | . . . . . . . . . . . 12
⊢ 𝑋 = (Base‘𝐺) | 
| 9 | 7, 8 | eqtr4di 2794 | . . . . . . . . . . 11
⊢ ((𝑔 = 𝐺 ∧ 𝑠 = 𝑌) → (Base‘𝑔) = 𝑋) | 
| 10 | 5, 9 | sylan9eqr 2798 | . . . . . . . . . 10
⊢ (((𝑔 = 𝐺 ∧ 𝑠 = 𝑌) ∧ 𝑏 = (Base‘𝑔)) → 𝑏 = 𝑋) | 
| 11 | 10, 4 | xpeq12d 5715 | . . . . . . . . 9
⊢ (((𝑔 = 𝐺 ∧ 𝑠 = 𝑌) ∧ 𝑏 = (Base‘𝑔)) → (𝑏 × 𝑠) = (𝑋 × 𝑌)) | 
| 12 | 4, 11 | oveq12d 7450 | . . . . . . . 8
⊢ (((𝑔 = 𝐺 ∧ 𝑠 = 𝑌) ∧ 𝑏 = (Base‘𝑔)) → (𝑠 ↑m (𝑏 × 𝑠)) = (𝑌 ↑m (𝑋 × 𝑌))) | 
| 13 |  | simpll 766 | . . . . . . . . . . . . . 14
⊢ (((𝑔 = 𝐺 ∧ 𝑠 = 𝑌) ∧ 𝑏 = (Base‘𝑔)) → 𝑔 = 𝐺) | 
| 14 | 13 | fveq2d 6909 | . . . . . . . . . . . . 13
⊢ (((𝑔 = 𝐺 ∧ 𝑠 = 𝑌) ∧ 𝑏 = (Base‘𝑔)) → (0g‘𝑔) = (0g‘𝐺)) | 
| 15 |  | isga.3 | . . . . . . . . . . . . 13
⊢  0 =
(0g‘𝐺) | 
| 16 | 14, 15 | eqtr4di 2794 | . . . . . . . . . . . 12
⊢ (((𝑔 = 𝐺 ∧ 𝑠 = 𝑌) ∧ 𝑏 = (Base‘𝑔)) → (0g‘𝑔) = 0 ) | 
| 17 | 16 | oveq1d 7447 | . . . . . . . . . . 11
⊢ (((𝑔 = 𝐺 ∧ 𝑠 = 𝑌) ∧ 𝑏 = (Base‘𝑔)) → ((0g‘𝑔)𝑚𝑥) = ( 0 𝑚𝑥)) | 
| 18 | 17 | eqeq1d 2738 | . . . . . . . . . 10
⊢ (((𝑔 = 𝐺 ∧ 𝑠 = 𝑌) ∧ 𝑏 = (Base‘𝑔)) → (((0g‘𝑔)𝑚𝑥) = 𝑥 ↔ ( 0 𝑚𝑥) = 𝑥)) | 
| 19 | 13 | fveq2d 6909 | . . . . . . . . . . . . . . . 16
⊢ (((𝑔 = 𝐺 ∧ 𝑠 = 𝑌) ∧ 𝑏 = (Base‘𝑔)) → (+g‘𝑔) = (+g‘𝐺)) | 
| 20 |  | isga.2 | . . . . . . . . . . . . . . . 16
⊢  + =
(+g‘𝐺) | 
| 21 | 19, 20 | eqtr4di 2794 | . . . . . . . . . . . . . . 15
⊢ (((𝑔 = 𝐺 ∧ 𝑠 = 𝑌) ∧ 𝑏 = (Base‘𝑔)) → (+g‘𝑔) = + ) | 
| 22 | 21 | oveqd 7449 | . . . . . . . . . . . . . 14
⊢ (((𝑔 = 𝐺 ∧ 𝑠 = 𝑌) ∧ 𝑏 = (Base‘𝑔)) → (𝑦(+g‘𝑔)𝑧) = (𝑦 + 𝑧)) | 
| 23 | 22 | oveq1d 7447 | . . . . . . . . . . . . 13
⊢ (((𝑔 = 𝐺 ∧ 𝑠 = 𝑌) ∧ 𝑏 = (Base‘𝑔)) → ((𝑦(+g‘𝑔)𝑧)𝑚𝑥) = ((𝑦 + 𝑧)𝑚𝑥)) | 
| 24 | 23 | eqeq1d 2738 | . . . . . . . . . . . 12
⊢ (((𝑔 = 𝐺 ∧ 𝑠 = 𝑌) ∧ 𝑏 = (Base‘𝑔)) → (((𝑦(+g‘𝑔)𝑧)𝑚𝑥) = (𝑦𝑚(𝑧𝑚𝑥)) ↔ ((𝑦 + 𝑧)𝑚𝑥) = (𝑦𝑚(𝑧𝑚𝑥)))) | 
| 25 | 10, 24 | raleqbidv 3345 | . . . . . . . . . . 11
⊢ (((𝑔 = 𝐺 ∧ 𝑠 = 𝑌) ∧ 𝑏 = (Base‘𝑔)) → (∀𝑧 ∈ 𝑏 ((𝑦(+g‘𝑔)𝑧)𝑚𝑥) = (𝑦𝑚(𝑧𝑚𝑥)) ↔ ∀𝑧 ∈ 𝑋 ((𝑦 + 𝑧)𝑚𝑥) = (𝑦𝑚(𝑧𝑚𝑥)))) | 
| 26 | 10, 25 | raleqbidv 3345 | . . . . . . . . . 10
⊢ (((𝑔 = 𝐺 ∧ 𝑠 = 𝑌) ∧ 𝑏 = (Base‘𝑔)) → (∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 ((𝑦(+g‘𝑔)𝑧)𝑚𝑥) = (𝑦𝑚(𝑧𝑚𝑥)) ↔ ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 ((𝑦 + 𝑧)𝑚𝑥) = (𝑦𝑚(𝑧𝑚𝑥)))) | 
| 27 | 18, 26 | anbi12d 632 | . . . . . . . . 9
⊢ (((𝑔 = 𝐺 ∧ 𝑠 = 𝑌) ∧ 𝑏 = (Base‘𝑔)) → ((((0g‘𝑔)𝑚𝑥) = 𝑥 ∧ ∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 ((𝑦(+g‘𝑔)𝑧)𝑚𝑥) = (𝑦𝑚(𝑧𝑚𝑥))) ↔ (( 0 𝑚𝑥) = 𝑥 ∧ ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 ((𝑦 + 𝑧)𝑚𝑥) = (𝑦𝑚(𝑧𝑚𝑥))))) | 
| 28 | 4, 27 | raleqbidv 3345 | . . . . . . . 8
⊢ (((𝑔 = 𝐺 ∧ 𝑠 = 𝑌) ∧ 𝑏 = (Base‘𝑔)) → (∀𝑥 ∈ 𝑠 (((0g‘𝑔)𝑚𝑥) = 𝑥 ∧ ∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 ((𝑦(+g‘𝑔)𝑧)𝑚𝑥) = (𝑦𝑚(𝑧𝑚𝑥))) ↔ ∀𝑥 ∈ 𝑌 (( 0 𝑚𝑥) = 𝑥 ∧ ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 ((𝑦 + 𝑧)𝑚𝑥) = (𝑦𝑚(𝑧𝑚𝑥))))) | 
| 29 | 12, 28 | rabeqbidv 3454 | . . . . . . 7
⊢ (((𝑔 = 𝐺 ∧ 𝑠 = 𝑌) ∧ 𝑏 = (Base‘𝑔)) → {𝑚 ∈ (𝑠 ↑m (𝑏 × 𝑠)) ∣ ∀𝑥 ∈ 𝑠 (((0g‘𝑔)𝑚𝑥) = 𝑥 ∧ ∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 ((𝑦(+g‘𝑔)𝑧)𝑚𝑥) = (𝑦𝑚(𝑧𝑚𝑥)))} = {𝑚 ∈ (𝑌 ↑m (𝑋 × 𝑌)) ∣ ∀𝑥 ∈ 𝑌 (( 0 𝑚𝑥) = 𝑥 ∧ ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 ((𝑦 + 𝑧)𝑚𝑥) = (𝑦𝑚(𝑧𝑚𝑥)))}) | 
| 30 | 3, 29 | csbied 3934 | . . . . . 6
⊢ ((𝑔 = 𝐺 ∧ 𝑠 = 𝑌) → ⦋(Base‘𝑔) / 𝑏⦌{𝑚 ∈ (𝑠 ↑m (𝑏 × 𝑠)) ∣ ∀𝑥 ∈ 𝑠 (((0g‘𝑔)𝑚𝑥) = 𝑥 ∧ ∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 ((𝑦(+g‘𝑔)𝑧)𝑚𝑥) = (𝑦𝑚(𝑧𝑚𝑥)))} = {𝑚 ∈ (𝑌 ↑m (𝑋 × 𝑌)) ∣ ∀𝑥 ∈ 𝑌 (( 0 𝑚𝑥) = 𝑥 ∧ ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 ((𝑦 + 𝑧)𝑚𝑥) = (𝑦𝑚(𝑧𝑚𝑥)))}) | 
| 31 |  | ovex 7465 | . . . . . . 7
⊢ (𝑌 ↑m (𝑋 × 𝑌)) ∈ V | 
| 32 | 31 | rabex 5338 | . . . . . 6
⊢ {𝑚 ∈ (𝑌 ↑m (𝑋 × 𝑌)) ∣ ∀𝑥 ∈ 𝑌 (( 0 𝑚𝑥) = 𝑥 ∧ ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 ((𝑦 + 𝑧)𝑚𝑥) = (𝑦𝑚(𝑧𝑚𝑥)))} ∈ V | 
| 33 | 30, 1, 32 | ovmpoa 7589 | . . . . 5
⊢ ((𝐺 ∈ Grp ∧ 𝑌 ∈ V) → (𝐺 GrpAct 𝑌) = {𝑚 ∈ (𝑌 ↑m (𝑋 × 𝑌)) ∣ ∀𝑥 ∈ 𝑌 (( 0 𝑚𝑥) = 𝑥 ∧ ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 ((𝑦 + 𝑧)𝑚𝑥) = (𝑦𝑚(𝑧𝑚𝑥)))}) | 
| 34 | 33 | eleq2d 2826 | . . . 4
⊢ ((𝐺 ∈ Grp ∧ 𝑌 ∈ V) → ( ⊕ ∈
(𝐺 GrpAct 𝑌) ↔ ⊕ ∈ {𝑚 ∈ (𝑌 ↑m (𝑋 × 𝑌)) ∣ ∀𝑥 ∈ 𝑌 (( 0 𝑚𝑥) = 𝑥 ∧ ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 ((𝑦 + 𝑧)𝑚𝑥) = (𝑦𝑚(𝑧𝑚𝑥)))})) | 
| 35 |  | oveq 7438 | . . . . . . . 8
⊢ (𝑚 = ⊕ → ( 0 𝑚𝑥) = ( 0 ⊕ 𝑥)) | 
| 36 | 35 | eqeq1d 2738 | . . . . . . 7
⊢ (𝑚 = ⊕ → (( 0 𝑚𝑥) = 𝑥 ↔ ( 0 ⊕ 𝑥) = 𝑥)) | 
| 37 |  | oveq 7438 | . . . . . . . . 9
⊢ (𝑚 = ⊕ → ((𝑦 + 𝑧)𝑚𝑥) = ((𝑦 + 𝑧) ⊕ 𝑥)) | 
| 38 |  | oveq 7438 | . . . . . . . . . 10
⊢ (𝑚 = ⊕ → (𝑦𝑚(𝑧𝑚𝑥)) = (𝑦 ⊕ (𝑧𝑚𝑥))) | 
| 39 |  | oveq 7438 | . . . . . . . . . . 11
⊢ (𝑚 = ⊕ → (𝑧𝑚𝑥) = (𝑧 ⊕ 𝑥)) | 
| 40 | 39 | oveq2d 7448 | . . . . . . . . . 10
⊢ (𝑚 = ⊕ → (𝑦 ⊕ (𝑧𝑚𝑥)) = (𝑦 ⊕ (𝑧 ⊕ 𝑥))) | 
| 41 | 38, 40 | eqtrd 2776 | . . . . . . . . 9
⊢ (𝑚 = ⊕ → (𝑦𝑚(𝑧𝑚𝑥)) = (𝑦 ⊕ (𝑧 ⊕ 𝑥))) | 
| 42 | 37, 41 | eqeq12d 2752 | . . . . . . . 8
⊢ (𝑚 = ⊕ → (((𝑦 + 𝑧)𝑚𝑥) = (𝑦𝑚(𝑧𝑚𝑥)) ↔ ((𝑦 + 𝑧) ⊕ 𝑥) = (𝑦 ⊕ (𝑧 ⊕ 𝑥)))) | 
| 43 | 42 | 2ralbidv 3220 | . . . . . . 7
⊢ (𝑚 = ⊕ →
(∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 ((𝑦 + 𝑧)𝑚𝑥) = (𝑦𝑚(𝑧𝑚𝑥)) ↔ ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 ((𝑦 + 𝑧) ⊕ 𝑥) = (𝑦 ⊕ (𝑧 ⊕ 𝑥)))) | 
| 44 | 36, 43 | anbi12d 632 | . . . . . 6
⊢ (𝑚 = ⊕ → ((( 0 𝑚𝑥) = 𝑥 ∧ ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 ((𝑦 + 𝑧)𝑚𝑥) = (𝑦𝑚(𝑧𝑚𝑥))) ↔ (( 0 ⊕ 𝑥) = 𝑥 ∧ ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 ((𝑦 + 𝑧) ⊕ 𝑥) = (𝑦 ⊕ (𝑧 ⊕ 𝑥))))) | 
| 45 | 44 | ralbidv 3177 | . . . . 5
⊢ (𝑚 = ⊕ →
(∀𝑥 ∈ 𝑌 (( 0 𝑚𝑥) = 𝑥 ∧ ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 ((𝑦 + 𝑧)𝑚𝑥) = (𝑦𝑚(𝑧𝑚𝑥))) ↔ ∀𝑥 ∈ 𝑌 (( 0 ⊕ 𝑥) = 𝑥 ∧ ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 ((𝑦 + 𝑧) ⊕ 𝑥) = (𝑦 ⊕ (𝑧 ⊕ 𝑥))))) | 
| 46 | 45 | elrab 3691 | . . . 4
⊢ ( ⊕ ∈
{𝑚 ∈ (𝑌 ↑m (𝑋 × 𝑌)) ∣ ∀𝑥 ∈ 𝑌 (( 0 𝑚𝑥) = 𝑥 ∧ ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 ((𝑦 + 𝑧)𝑚𝑥) = (𝑦𝑚(𝑧𝑚𝑥)))} ↔ ( ⊕ ∈ (𝑌 ↑m (𝑋 × 𝑌)) ∧ ∀𝑥 ∈ 𝑌 (( 0 ⊕ 𝑥) = 𝑥 ∧ ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 ((𝑦 + 𝑧) ⊕ 𝑥) = (𝑦 ⊕ (𝑧 ⊕ 𝑥))))) | 
| 47 | 34, 46 | bitrdi 287 | . . 3
⊢ ((𝐺 ∈ Grp ∧ 𝑌 ∈ V) → ( ⊕ ∈
(𝐺 GrpAct 𝑌) ↔ ( ⊕ ∈ (𝑌 ↑m (𝑋 × 𝑌)) ∧ ∀𝑥 ∈ 𝑌 (( 0 ⊕ 𝑥) = 𝑥 ∧ ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 ((𝑦 + 𝑧) ⊕ 𝑥) = (𝑦 ⊕ (𝑧 ⊕ 𝑥)))))) | 
| 48 |  | simpr 484 | . . . . 5
⊢ ((𝐺 ∈ Grp ∧ 𝑌 ∈ V) → 𝑌 ∈ V) | 
| 49 | 8 | fvexi 6919 | . . . . . 6
⊢ 𝑋 ∈ V | 
| 50 |  | xpexg 7771 | . . . . . 6
⊢ ((𝑋 ∈ V ∧ 𝑌 ∈ V) → (𝑋 × 𝑌) ∈ V) | 
| 51 | 49, 48, 50 | sylancr 587 | . . . . 5
⊢ ((𝐺 ∈ Grp ∧ 𝑌 ∈ V) → (𝑋 × 𝑌) ∈ V) | 
| 52 | 48, 51 | elmapd 8881 | . . . 4
⊢ ((𝐺 ∈ Grp ∧ 𝑌 ∈ V) → ( ⊕ ∈
(𝑌 ↑m
(𝑋 × 𝑌)) ↔ ⊕ :(𝑋 × 𝑌)⟶𝑌)) | 
| 53 | 52 | anbi1d 631 | . . 3
⊢ ((𝐺 ∈ Grp ∧ 𝑌 ∈ V) → (( ⊕ ∈
(𝑌 ↑m
(𝑋 × 𝑌)) ∧ ∀𝑥 ∈ 𝑌 (( 0 ⊕ 𝑥) = 𝑥 ∧ ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 ((𝑦 + 𝑧) ⊕ 𝑥) = (𝑦 ⊕ (𝑧 ⊕ 𝑥)))) ↔ ( ⊕ :(𝑋 × 𝑌)⟶𝑌 ∧ ∀𝑥 ∈ 𝑌 (( 0 ⊕ 𝑥) = 𝑥 ∧ ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 ((𝑦 + 𝑧) ⊕ 𝑥) = (𝑦 ⊕ (𝑧 ⊕ 𝑥)))))) | 
| 54 | 47, 53 | bitrd 279 | . 2
⊢ ((𝐺 ∈ Grp ∧ 𝑌 ∈ V) → ( ⊕ ∈
(𝐺 GrpAct 𝑌) ↔ ( ⊕ :(𝑋 × 𝑌)⟶𝑌 ∧ ∀𝑥 ∈ 𝑌 (( 0 ⊕ 𝑥) = 𝑥 ∧ ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 ((𝑦 + 𝑧) ⊕ 𝑥) = (𝑦 ⊕ (𝑧 ⊕ 𝑥)))))) | 
| 55 | 2, 54 | biadanii 821 | 1
⊢ ( ⊕ ∈
(𝐺 GrpAct 𝑌) ↔ ((𝐺 ∈ Grp ∧ 𝑌 ∈ V) ∧ ( ⊕ :(𝑋 × 𝑌)⟶𝑌 ∧ ∀𝑥 ∈ 𝑌 (( 0 ⊕ 𝑥) = 𝑥 ∧ ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 ((𝑦 + 𝑧) ⊕ 𝑥) = (𝑦 ⊕ (𝑧 ⊕ 𝑥)))))) |