Step | Hyp | Ref
| Expression |
1 | | df-ga 18811 |
. . 3
⊢ GrpAct =
(𝑔 ∈ Grp, 𝑠 ∈ V ↦
⦋(Base‘𝑔) / 𝑏⦌{𝑚 ∈ (𝑠 ↑m (𝑏 × 𝑠)) ∣ ∀𝑥 ∈ 𝑠 (((0g‘𝑔)𝑚𝑥) = 𝑥 ∧ ∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 ((𝑦(+g‘𝑔)𝑧)𝑚𝑥) = (𝑦𝑚(𝑧𝑚𝑥)))}) |
2 | 1 | elmpocl 7489 |
. 2
⊢ ( ⊕ ∈
(𝐺 GrpAct 𝑌) → (𝐺 ∈ Grp ∧ 𝑌 ∈ V)) |
3 | | fvexd 6771 |
. . . . . . 7
⊢ ((𝑔 = 𝐺 ∧ 𝑠 = 𝑌) → (Base‘𝑔) ∈ V) |
4 | | simplr 765 |
. . . . . . . . 9
⊢ (((𝑔 = 𝐺 ∧ 𝑠 = 𝑌) ∧ 𝑏 = (Base‘𝑔)) → 𝑠 = 𝑌) |
5 | | id 22 |
. . . . . . . . . . 11
⊢ (𝑏 = (Base‘𝑔) → 𝑏 = (Base‘𝑔)) |
6 | | simpl 482 |
. . . . . . . . . . . . 13
⊢ ((𝑔 = 𝐺 ∧ 𝑠 = 𝑌) → 𝑔 = 𝐺) |
7 | 6 | fveq2d 6760 |
. . . . . . . . . . . 12
⊢ ((𝑔 = 𝐺 ∧ 𝑠 = 𝑌) → (Base‘𝑔) = (Base‘𝐺)) |
8 | | isga.1 |
. . . . . . . . . . . 12
⊢ 𝑋 = (Base‘𝐺) |
9 | 7, 8 | eqtr4di 2797 |
. . . . . . . . . . 11
⊢ ((𝑔 = 𝐺 ∧ 𝑠 = 𝑌) → (Base‘𝑔) = 𝑋) |
10 | 5, 9 | sylan9eqr 2801 |
. . . . . . . . . 10
⊢ (((𝑔 = 𝐺 ∧ 𝑠 = 𝑌) ∧ 𝑏 = (Base‘𝑔)) → 𝑏 = 𝑋) |
11 | 10, 4 | xpeq12d 5611 |
. . . . . . . . 9
⊢ (((𝑔 = 𝐺 ∧ 𝑠 = 𝑌) ∧ 𝑏 = (Base‘𝑔)) → (𝑏 × 𝑠) = (𝑋 × 𝑌)) |
12 | 4, 11 | oveq12d 7273 |
. . . . . . . 8
⊢ (((𝑔 = 𝐺 ∧ 𝑠 = 𝑌) ∧ 𝑏 = (Base‘𝑔)) → (𝑠 ↑m (𝑏 × 𝑠)) = (𝑌 ↑m (𝑋 × 𝑌))) |
13 | | simpll 763 |
. . . . . . . . . . . . . 14
⊢ (((𝑔 = 𝐺 ∧ 𝑠 = 𝑌) ∧ 𝑏 = (Base‘𝑔)) → 𝑔 = 𝐺) |
14 | 13 | fveq2d 6760 |
. . . . . . . . . . . . 13
⊢ (((𝑔 = 𝐺 ∧ 𝑠 = 𝑌) ∧ 𝑏 = (Base‘𝑔)) → (0g‘𝑔) = (0g‘𝐺)) |
15 | | isga.3 |
. . . . . . . . . . . . 13
⊢ 0 =
(0g‘𝐺) |
16 | 14, 15 | eqtr4di 2797 |
. . . . . . . . . . . 12
⊢ (((𝑔 = 𝐺 ∧ 𝑠 = 𝑌) ∧ 𝑏 = (Base‘𝑔)) → (0g‘𝑔) = 0 ) |
17 | 16 | oveq1d 7270 |
. . . . . . . . . . 11
⊢ (((𝑔 = 𝐺 ∧ 𝑠 = 𝑌) ∧ 𝑏 = (Base‘𝑔)) → ((0g‘𝑔)𝑚𝑥) = ( 0 𝑚𝑥)) |
18 | 17 | eqeq1d 2740 |
. . . . . . . . . 10
⊢ (((𝑔 = 𝐺 ∧ 𝑠 = 𝑌) ∧ 𝑏 = (Base‘𝑔)) → (((0g‘𝑔)𝑚𝑥) = 𝑥 ↔ ( 0 𝑚𝑥) = 𝑥)) |
19 | 13 | fveq2d 6760 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑔 = 𝐺 ∧ 𝑠 = 𝑌) ∧ 𝑏 = (Base‘𝑔)) → (+g‘𝑔) = (+g‘𝐺)) |
20 | | isga.2 |
. . . . . . . . . . . . . . . 16
⊢ + =
(+g‘𝐺) |
21 | 19, 20 | eqtr4di 2797 |
. . . . . . . . . . . . . . 15
⊢ (((𝑔 = 𝐺 ∧ 𝑠 = 𝑌) ∧ 𝑏 = (Base‘𝑔)) → (+g‘𝑔) = + ) |
22 | 21 | oveqd 7272 |
. . . . . . . . . . . . . 14
⊢ (((𝑔 = 𝐺 ∧ 𝑠 = 𝑌) ∧ 𝑏 = (Base‘𝑔)) → (𝑦(+g‘𝑔)𝑧) = (𝑦 + 𝑧)) |
23 | 22 | oveq1d 7270 |
. . . . . . . . . . . . 13
⊢ (((𝑔 = 𝐺 ∧ 𝑠 = 𝑌) ∧ 𝑏 = (Base‘𝑔)) → ((𝑦(+g‘𝑔)𝑧)𝑚𝑥) = ((𝑦 + 𝑧)𝑚𝑥)) |
24 | 23 | eqeq1d 2740 |
. . . . . . . . . . . 12
⊢ (((𝑔 = 𝐺 ∧ 𝑠 = 𝑌) ∧ 𝑏 = (Base‘𝑔)) → (((𝑦(+g‘𝑔)𝑧)𝑚𝑥) = (𝑦𝑚(𝑧𝑚𝑥)) ↔ ((𝑦 + 𝑧)𝑚𝑥) = (𝑦𝑚(𝑧𝑚𝑥)))) |
25 | 10, 24 | raleqbidv 3327 |
. . . . . . . . . . 11
⊢ (((𝑔 = 𝐺 ∧ 𝑠 = 𝑌) ∧ 𝑏 = (Base‘𝑔)) → (∀𝑧 ∈ 𝑏 ((𝑦(+g‘𝑔)𝑧)𝑚𝑥) = (𝑦𝑚(𝑧𝑚𝑥)) ↔ ∀𝑧 ∈ 𝑋 ((𝑦 + 𝑧)𝑚𝑥) = (𝑦𝑚(𝑧𝑚𝑥)))) |
26 | 10, 25 | raleqbidv 3327 |
. . . . . . . . . 10
⊢ (((𝑔 = 𝐺 ∧ 𝑠 = 𝑌) ∧ 𝑏 = (Base‘𝑔)) → (∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 ((𝑦(+g‘𝑔)𝑧)𝑚𝑥) = (𝑦𝑚(𝑧𝑚𝑥)) ↔ ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 ((𝑦 + 𝑧)𝑚𝑥) = (𝑦𝑚(𝑧𝑚𝑥)))) |
27 | 18, 26 | anbi12d 630 |
. . . . . . . . 9
⊢ (((𝑔 = 𝐺 ∧ 𝑠 = 𝑌) ∧ 𝑏 = (Base‘𝑔)) → ((((0g‘𝑔)𝑚𝑥) = 𝑥 ∧ ∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 ((𝑦(+g‘𝑔)𝑧)𝑚𝑥) = (𝑦𝑚(𝑧𝑚𝑥))) ↔ (( 0 𝑚𝑥) = 𝑥 ∧ ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 ((𝑦 + 𝑧)𝑚𝑥) = (𝑦𝑚(𝑧𝑚𝑥))))) |
28 | 4, 27 | raleqbidv 3327 |
. . . . . . . 8
⊢ (((𝑔 = 𝐺 ∧ 𝑠 = 𝑌) ∧ 𝑏 = (Base‘𝑔)) → (∀𝑥 ∈ 𝑠 (((0g‘𝑔)𝑚𝑥) = 𝑥 ∧ ∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 ((𝑦(+g‘𝑔)𝑧)𝑚𝑥) = (𝑦𝑚(𝑧𝑚𝑥))) ↔ ∀𝑥 ∈ 𝑌 (( 0 𝑚𝑥) = 𝑥 ∧ ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 ((𝑦 + 𝑧)𝑚𝑥) = (𝑦𝑚(𝑧𝑚𝑥))))) |
29 | 12, 28 | rabeqbidv 3410 |
. . . . . . 7
⊢ (((𝑔 = 𝐺 ∧ 𝑠 = 𝑌) ∧ 𝑏 = (Base‘𝑔)) → {𝑚 ∈ (𝑠 ↑m (𝑏 × 𝑠)) ∣ ∀𝑥 ∈ 𝑠 (((0g‘𝑔)𝑚𝑥) = 𝑥 ∧ ∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 ((𝑦(+g‘𝑔)𝑧)𝑚𝑥) = (𝑦𝑚(𝑧𝑚𝑥)))} = {𝑚 ∈ (𝑌 ↑m (𝑋 × 𝑌)) ∣ ∀𝑥 ∈ 𝑌 (( 0 𝑚𝑥) = 𝑥 ∧ ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 ((𝑦 + 𝑧)𝑚𝑥) = (𝑦𝑚(𝑧𝑚𝑥)))}) |
30 | 3, 29 | csbied 3866 |
. . . . . 6
⊢ ((𝑔 = 𝐺 ∧ 𝑠 = 𝑌) → ⦋(Base‘𝑔) / 𝑏⦌{𝑚 ∈ (𝑠 ↑m (𝑏 × 𝑠)) ∣ ∀𝑥 ∈ 𝑠 (((0g‘𝑔)𝑚𝑥) = 𝑥 ∧ ∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 ((𝑦(+g‘𝑔)𝑧)𝑚𝑥) = (𝑦𝑚(𝑧𝑚𝑥)))} = {𝑚 ∈ (𝑌 ↑m (𝑋 × 𝑌)) ∣ ∀𝑥 ∈ 𝑌 (( 0 𝑚𝑥) = 𝑥 ∧ ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 ((𝑦 + 𝑧)𝑚𝑥) = (𝑦𝑚(𝑧𝑚𝑥)))}) |
31 | | ovex 7288 |
. . . . . . 7
⊢ (𝑌 ↑m (𝑋 × 𝑌)) ∈ V |
32 | 31 | rabex 5251 |
. . . . . 6
⊢ {𝑚 ∈ (𝑌 ↑m (𝑋 × 𝑌)) ∣ ∀𝑥 ∈ 𝑌 (( 0 𝑚𝑥) = 𝑥 ∧ ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 ((𝑦 + 𝑧)𝑚𝑥) = (𝑦𝑚(𝑧𝑚𝑥)))} ∈ V |
33 | 30, 1, 32 | ovmpoa 7406 |
. . . . 5
⊢ ((𝐺 ∈ Grp ∧ 𝑌 ∈ V) → (𝐺 GrpAct 𝑌) = {𝑚 ∈ (𝑌 ↑m (𝑋 × 𝑌)) ∣ ∀𝑥 ∈ 𝑌 (( 0 𝑚𝑥) = 𝑥 ∧ ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 ((𝑦 + 𝑧)𝑚𝑥) = (𝑦𝑚(𝑧𝑚𝑥)))}) |
34 | 33 | eleq2d 2824 |
. . . 4
⊢ ((𝐺 ∈ Grp ∧ 𝑌 ∈ V) → ( ⊕ ∈
(𝐺 GrpAct 𝑌) ↔ ⊕ ∈ {𝑚 ∈ (𝑌 ↑m (𝑋 × 𝑌)) ∣ ∀𝑥 ∈ 𝑌 (( 0 𝑚𝑥) = 𝑥 ∧ ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 ((𝑦 + 𝑧)𝑚𝑥) = (𝑦𝑚(𝑧𝑚𝑥)))})) |
35 | | oveq 7261 |
. . . . . . . 8
⊢ (𝑚 = ⊕ → ( 0 𝑚𝑥) = ( 0 ⊕ 𝑥)) |
36 | 35 | eqeq1d 2740 |
. . . . . . 7
⊢ (𝑚 = ⊕ → (( 0 𝑚𝑥) = 𝑥 ↔ ( 0 ⊕ 𝑥) = 𝑥)) |
37 | | oveq 7261 |
. . . . . . . . 9
⊢ (𝑚 = ⊕ → ((𝑦 + 𝑧)𝑚𝑥) = ((𝑦 + 𝑧) ⊕ 𝑥)) |
38 | | oveq 7261 |
. . . . . . . . . 10
⊢ (𝑚 = ⊕ → (𝑦𝑚(𝑧𝑚𝑥)) = (𝑦 ⊕ (𝑧𝑚𝑥))) |
39 | | oveq 7261 |
. . . . . . . . . . 11
⊢ (𝑚 = ⊕ → (𝑧𝑚𝑥) = (𝑧 ⊕ 𝑥)) |
40 | 39 | oveq2d 7271 |
. . . . . . . . . 10
⊢ (𝑚 = ⊕ → (𝑦 ⊕ (𝑧𝑚𝑥)) = (𝑦 ⊕ (𝑧 ⊕ 𝑥))) |
41 | 38, 40 | eqtrd 2778 |
. . . . . . . . 9
⊢ (𝑚 = ⊕ → (𝑦𝑚(𝑧𝑚𝑥)) = (𝑦 ⊕ (𝑧 ⊕ 𝑥))) |
42 | 37, 41 | eqeq12d 2754 |
. . . . . . . 8
⊢ (𝑚 = ⊕ → (((𝑦 + 𝑧)𝑚𝑥) = (𝑦𝑚(𝑧𝑚𝑥)) ↔ ((𝑦 + 𝑧) ⊕ 𝑥) = (𝑦 ⊕ (𝑧 ⊕ 𝑥)))) |
43 | 42 | 2ralbidv 3122 |
. . . . . . 7
⊢ (𝑚 = ⊕ →
(∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 ((𝑦 + 𝑧)𝑚𝑥) = (𝑦𝑚(𝑧𝑚𝑥)) ↔ ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 ((𝑦 + 𝑧) ⊕ 𝑥) = (𝑦 ⊕ (𝑧 ⊕ 𝑥)))) |
44 | 36, 43 | anbi12d 630 |
. . . . . 6
⊢ (𝑚 = ⊕ → ((( 0 𝑚𝑥) = 𝑥 ∧ ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 ((𝑦 + 𝑧)𝑚𝑥) = (𝑦𝑚(𝑧𝑚𝑥))) ↔ (( 0 ⊕ 𝑥) = 𝑥 ∧ ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 ((𝑦 + 𝑧) ⊕ 𝑥) = (𝑦 ⊕ (𝑧 ⊕ 𝑥))))) |
45 | 44 | ralbidv 3120 |
. . . . 5
⊢ (𝑚 = ⊕ →
(∀𝑥 ∈ 𝑌 (( 0 𝑚𝑥) = 𝑥 ∧ ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 ((𝑦 + 𝑧)𝑚𝑥) = (𝑦𝑚(𝑧𝑚𝑥))) ↔ ∀𝑥 ∈ 𝑌 (( 0 ⊕ 𝑥) = 𝑥 ∧ ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 ((𝑦 + 𝑧) ⊕ 𝑥) = (𝑦 ⊕ (𝑧 ⊕ 𝑥))))) |
46 | 45 | elrab 3617 |
. . . 4
⊢ ( ⊕ ∈
{𝑚 ∈ (𝑌 ↑m (𝑋 × 𝑌)) ∣ ∀𝑥 ∈ 𝑌 (( 0 𝑚𝑥) = 𝑥 ∧ ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 ((𝑦 + 𝑧)𝑚𝑥) = (𝑦𝑚(𝑧𝑚𝑥)))} ↔ ( ⊕ ∈ (𝑌 ↑m (𝑋 × 𝑌)) ∧ ∀𝑥 ∈ 𝑌 (( 0 ⊕ 𝑥) = 𝑥 ∧ ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 ((𝑦 + 𝑧) ⊕ 𝑥) = (𝑦 ⊕ (𝑧 ⊕ 𝑥))))) |
47 | 34, 46 | bitrdi 286 |
. . 3
⊢ ((𝐺 ∈ Grp ∧ 𝑌 ∈ V) → ( ⊕ ∈
(𝐺 GrpAct 𝑌) ↔ ( ⊕ ∈ (𝑌 ↑m (𝑋 × 𝑌)) ∧ ∀𝑥 ∈ 𝑌 (( 0 ⊕ 𝑥) = 𝑥 ∧ ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 ((𝑦 + 𝑧) ⊕ 𝑥) = (𝑦 ⊕ (𝑧 ⊕ 𝑥)))))) |
48 | | simpr 484 |
. . . . 5
⊢ ((𝐺 ∈ Grp ∧ 𝑌 ∈ V) → 𝑌 ∈ V) |
49 | 8 | fvexi 6770 |
. . . . . 6
⊢ 𝑋 ∈ V |
50 | | xpexg 7578 |
. . . . . 6
⊢ ((𝑋 ∈ V ∧ 𝑌 ∈ V) → (𝑋 × 𝑌) ∈ V) |
51 | 49, 48, 50 | sylancr 586 |
. . . . 5
⊢ ((𝐺 ∈ Grp ∧ 𝑌 ∈ V) → (𝑋 × 𝑌) ∈ V) |
52 | 48, 51 | elmapd 8587 |
. . . 4
⊢ ((𝐺 ∈ Grp ∧ 𝑌 ∈ V) → ( ⊕ ∈
(𝑌 ↑m
(𝑋 × 𝑌)) ↔ ⊕ :(𝑋 × 𝑌)⟶𝑌)) |
53 | 52 | anbi1d 629 |
. . 3
⊢ ((𝐺 ∈ Grp ∧ 𝑌 ∈ V) → (( ⊕ ∈
(𝑌 ↑m
(𝑋 × 𝑌)) ∧ ∀𝑥 ∈ 𝑌 (( 0 ⊕ 𝑥) = 𝑥 ∧ ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 ((𝑦 + 𝑧) ⊕ 𝑥) = (𝑦 ⊕ (𝑧 ⊕ 𝑥)))) ↔ ( ⊕ :(𝑋 × 𝑌)⟶𝑌 ∧ ∀𝑥 ∈ 𝑌 (( 0 ⊕ 𝑥) = 𝑥 ∧ ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 ((𝑦 + 𝑧) ⊕ 𝑥) = (𝑦 ⊕ (𝑧 ⊕ 𝑥)))))) |
54 | 47, 53 | bitrd 278 |
. 2
⊢ ((𝐺 ∈ Grp ∧ 𝑌 ∈ V) → ( ⊕ ∈
(𝐺 GrpAct 𝑌) ↔ ( ⊕ :(𝑋 × 𝑌)⟶𝑌 ∧ ∀𝑥 ∈ 𝑌 (( 0 ⊕ 𝑥) = 𝑥 ∧ ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 ((𝑦 + 𝑧) ⊕ 𝑥) = (𝑦 ⊕ (𝑧 ⊕ 𝑥)))))) |
55 | 2, 54 | biadanii 818 |
1
⊢ ( ⊕ ∈
(𝐺 GrpAct 𝑌) ↔ ((𝐺 ∈ Grp ∧ 𝑌 ∈ V) ∧ ( ⊕ :(𝑋 × 𝑌)⟶𝑌 ∧ ∀𝑥 ∈ 𝑌 (( 0 ⊕ 𝑥) = 𝑥 ∧ ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 ((𝑦 + 𝑧) ⊕ 𝑥) = (𝑦 ⊕ (𝑧 ⊕ 𝑥)))))) |