Detailed syntax breakdown of Definition df-gcdOLD
Step | Hyp | Ref
| Expression |
1 | | cA |
. . 3
class 𝐴 |
2 | | cB |
. . 3
class 𝐵 |
3 | 1, 2 | cgcdOLD 34648 |
. 2
class
gcdOLD (𝐴, 𝐵) |
4 | | vx |
. . . . . . . 8
setvar 𝑥 |
5 | 4 | cv 1538 |
. . . . . . 7
class 𝑥 |
6 | | cdiv 11632 |
. . . . . . 7
class
/ |
7 | 1, 5, 6 | co 7275 |
. . . . . 6
class (𝐴 / 𝑥) |
8 | | cn 11973 |
. . . . . 6
class
ℕ |
9 | 7, 8 | wcel 2106 |
. . . . 5
wff (𝐴 / 𝑥) ∈ ℕ |
10 | 2, 5, 6 | co 7275 |
. . . . . 6
class (𝐵 / 𝑥) |
11 | 10, 8 | wcel 2106 |
. . . . 5
wff (𝐵 / 𝑥) ∈ ℕ |
12 | 9, 11 | wa 396 |
. . . 4
wff ((𝐴 / 𝑥) ∈ ℕ ∧ (𝐵 / 𝑥) ∈ ℕ) |
13 | 12, 4, 8 | crab 3068 |
. . 3
class {𝑥 ∈ ℕ ∣ ((𝐴 / 𝑥) ∈ ℕ ∧ (𝐵 / 𝑥) ∈ ℕ)} |
14 | | clt 11009 |
. . 3
class
< |
15 | 13, 8, 14 | csup 9199 |
. 2
class
sup({𝑥 ∈
ℕ ∣ ((𝐴 / 𝑥) ∈ ℕ ∧ (𝐵 / 𝑥) ∈ ℕ)}, ℕ, <
) |
16 | 3, 15 | wceq 1539 |
1
wff
gcdOLD (𝐴, 𝐵) = sup({𝑥 ∈ ℕ ∣ ((𝐴 / 𝑥) ∈ ℕ ∧ (𝐵 / 𝑥) ∈ ℕ)}, ℕ, <
) |