Users' Mathboxes Mathbox for Jeff Hoffman < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ee7.2aOLD Structured version   Visualization version   GIF version

Theorem ee7.2aOLD 36494
Description: Lemma for Euclid's Elements, Book 7, proposition 2. The original mentions the smaller measure being 'continually subtracted' from the larger. Many authors interpret this phrase as 𝐴 mod 𝐵. Here, just one subtraction step is proved to preserve the gcdOLD. The rec function will be used in other proofs for iterated subtraction. (Contributed by Jeff Hoffman, 17-Jun-2008.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
ee7.2aOLD ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 < 𝐵 → gcdOLD (𝐴, 𝐵) = gcdOLD (𝐴, (𝐵𝐴))))

Proof of Theorem ee7.2aOLD
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 nndivsub 36490 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑥 ∈ ℕ) ∧ ((𝐴 / 𝑥) ∈ ℕ ∧ 𝐴 < 𝐵)) → ((𝐵 / 𝑥) ∈ ℕ ↔ ((𝐵𝐴) / 𝑥) ∈ ℕ))
21exp32 420 . . . . . . . . . . 11 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑥 ∈ ℕ) → ((𝐴 / 𝑥) ∈ ℕ → (𝐴 < 𝐵 → ((𝐵 / 𝑥) ∈ ℕ ↔ ((𝐵𝐴) / 𝑥) ∈ ℕ))))
32com23 86 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑥 ∈ ℕ) → (𝐴 < 𝐵 → ((𝐴 / 𝑥) ∈ ℕ → ((𝐵 / 𝑥) ∈ ℕ ↔ ((𝐵𝐴) / 𝑥) ∈ ℕ))))
433expia 1121 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝑥 ∈ ℕ → (𝐴 < 𝐵 → ((𝐴 / 𝑥) ∈ ℕ → ((𝐵 / 𝑥) ∈ ℕ ↔ ((𝐵𝐴) / 𝑥) ∈ ℕ)))))
54com23 86 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 < 𝐵 → (𝑥 ∈ ℕ → ((𝐴 / 𝑥) ∈ ℕ → ((𝐵 / 𝑥) ∈ ℕ ↔ ((𝐵𝐴) / 𝑥) ∈ ℕ)))))
65imp 406 . . . . . . 7 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝐴 < 𝐵) → (𝑥 ∈ ℕ → ((𝐴 / 𝑥) ∈ ℕ → ((𝐵 / 𝑥) ∈ ℕ ↔ ((𝐵𝐴) / 𝑥) ∈ ℕ))))
76imp 406 . . . . . 6 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝐴 < 𝐵) ∧ 𝑥 ∈ ℕ) → ((𝐴 / 𝑥) ∈ ℕ → ((𝐵 / 𝑥) ∈ ℕ ↔ ((𝐵𝐴) / 𝑥) ∈ ℕ)))
87pm5.32d 577 . . . . 5 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝐴 < 𝐵) ∧ 𝑥 ∈ ℕ) → (((𝐴 / 𝑥) ∈ ℕ ∧ (𝐵 / 𝑥) ∈ ℕ) ↔ ((𝐴 / 𝑥) ∈ ℕ ∧ ((𝐵𝐴) / 𝑥) ∈ ℕ)))
98rabbidva 3401 . . . 4 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝐴 < 𝐵) → {𝑥 ∈ ℕ ∣ ((𝐴 / 𝑥) ∈ ℕ ∧ (𝐵 / 𝑥) ∈ ℕ)} = {𝑥 ∈ ℕ ∣ ((𝐴 / 𝑥) ∈ ℕ ∧ ((𝐵𝐴) / 𝑥) ∈ ℕ)})
109supeq1d 9330 . . 3 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝐴 < 𝐵) → sup({𝑥 ∈ ℕ ∣ ((𝐴 / 𝑥) ∈ ℕ ∧ (𝐵 / 𝑥) ∈ ℕ)}, ℕ, < ) = sup({𝑥 ∈ ℕ ∣ ((𝐴 / 𝑥) ∈ ℕ ∧ ((𝐵𝐴) / 𝑥) ∈ ℕ)}, ℕ, < ))
11 df-gcdOLD 36493 . . 3 gcdOLD (𝐴, 𝐵) = sup({𝑥 ∈ ℕ ∣ ((𝐴 / 𝑥) ∈ ℕ ∧ (𝐵 / 𝑥) ∈ ℕ)}, ℕ, < )
12 df-gcdOLD 36493 . . 3 gcdOLD (𝐴, (𝐵𝐴)) = sup({𝑥 ∈ ℕ ∣ ((𝐴 / 𝑥) ∈ ℕ ∧ ((𝐵𝐴) / 𝑥) ∈ ℕ)}, ℕ, < )
1310, 11, 123eqtr4g 2791 . 2 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝐴 < 𝐵) → gcdOLD (𝐴, 𝐵) = gcdOLD (𝐴, (𝐵𝐴)))
1413ex 412 1 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 < 𝐵 → gcdOLD (𝐴, 𝐵) = gcdOLD (𝐴, (𝐵𝐴))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  {crab 3395   class class class wbr 5091  (class class class)co 7346  supcsup 9324   < clt 11143  cmin 11341   / cdiv 11771  cn 12122   gcdOLD cgcdOLD 36492
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-sup 9326  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-div 11772  df-nn 12123  df-gcdOLD 36493
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator