Mathbox for Jeff Hoffman |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ee7.2aOLD | Structured version Visualization version GIF version |
Description: Lemma for Euclid's Elements, Book 7, proposition 2. The original mentions the smaller measure being 'continually subtracted' from the larger. Many authors interpret this phrase as 𝐴 mod 𝐵. Here, just one subtraction step is proved to preserve the gcdOLD. The rec function will be used in other proofs for iterated subtraction. (Contributed by Jeff Hoffman, 17-Jun-2008.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ee7.2aOLD | ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 < 𝐵 → gcdOLD (𝐴, 𝐵) = gcdOLD (𝐴, (𝐵 − 𝐴)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nndivsub 34691 | . . . . . . . . . . . 12 ⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑥 ∈ ℕ) ∧ ((𝐴 / 𝑥) ∈ ℕ ∧ 𝐴 < 𝐵)) → ((𝐵 / 𝑥) ∈ ℕ ↔ ((𝐵 − 𝐴) / 𝑥) ∈ ℕ)) | |
2 | 1 | exp32 422 | . . . . . . . . . . 11 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑥 ∈ ℕ) → ((𝐴 / 𝑥) ∈ ℕ → (𝐴 < 𝐵 → ((𝐵 / 𝑥) ∈ ℕ ↔ ((𝐵 − 𝐴) / 𝑥) ∈ ℕ)))) |
3 | 2 | com23 86 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑥 ∈ ℕ) → (𝐴 < 𝐵 → ((𝐴 / 𝑥) ∈ ℕ → ((𝐵 / 𝑥) ∈ ℕ ↔ ((𝐵 − 𝐴) / 𝑥) ∈ ℕ)))) |
4 | 3 | 3expia 1121 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝑥 ∈ ℕ → (𝐴 < 𝐵 → ((𝐴 / 𝑥) ∈ ℕ → ((𝐵 / 𝑥) ∈ ℕ ↔ ((𝐵 − 𝐴) / 𝑥) ∈ ℕ))))) |
5 | 4 | com23 86 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 < 𝐵 → (𝑥 ∈ ℕ → ((𝐴 / 𝑥) ∈ ℕ → ((𝐵 / 𝑥) ∈ ℕ ↔ ((𝐵 − 𝐴) / 𝑥) ∈ ℕ))))) |
6 | 5 | imp 408 | . . . . . . 7 ⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝐴 < 𝐵) → (𝑥 ∈ ℕ → ((𝐴 / 𝑥) ∈ ℕ → ((𝐵 / 𝑥) ∈ ℕ ↔ ((𝐵 − 𝐴) / 𝑥) ∈ ℕ)))) |
7 | 6 | imp 408 | . . . . . 6 ⊢ ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝐴 < 𝐵) ∧ 𝑥 ∈ ℕ) → ((𝐴 / 𝑥) ∈ ℕ → ((𝐵 / 𝑥) ∈ ℕ ↔ ((𝐵 − 𝐴) / 𝑥) ∈ ℕ))) |
8 | 7 | pm5.32d 578 | . . . . 5 ⊢ ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝐴 < 𝐵) ∧ 𝑥 ∈ ℕ) → (((𝐴 / 𝑥) ∈ ℕ ∧ (𝐵 / 𝑥) ∈ ℕ) ↔ ((𝐴 / 𝑥) ∈ ℕ ∧ ((𝐵 − 𝐴) / 𝑥) ∈ ℕ))) |
9 | 8 | rabbidva 3420 | . . . 4 ⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝐴 < 𝐵) → {𝑥 ∈ ℕ ∣ ((𝐴 / 𝑥) ∈ ℕ ∧ (𝐵 / 𝑥) ∈ ℕ)} = {𝑥 ∈ ℕ ∣ ((𝐴 / 𝑥) ∈ ℕ ∧ ((𝐵 − 𝐴) / 𝑥) ∈ ℕ)}) |
10 | 9 | supeq1d 9249 | . . 3 ⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝐴 < 𝐵) → sup({𝑥 ∈ ℕ ∣ ((𝐴 / 𝑥) ∈ ℕ ∧ (𝐵 / 𝑥) ∈ ℕ)}, ℕ, < ) = sup({𝑥 ∈ ℕ ∣ ((𝐴 / 𝑥) ∈ ℕ ∧ ((𝐵 − 𝐴) / 𝑥) ∈ ℕ)}, ℕ, < )) |
11 | df-gcdOLD 34694 | . . 3 ⊢ gcdOLD (𝐴, 𝐵) = sup({𝑥 ∈ ℕ ∣ ((𝐴 / 𝑥) ∈ ℕ ∧ (𝐵 / 𝑥) ∈ ℕ)}, ℕ, < ) | |
12 | df-gcdOLD 34694 | . . 3 ⊢ gcdOLD (𝐴, (𝐵 − 𝐴)) = sup({𝑥 ∈ ℕ ∣ ((𝐴 / 𝑥) ∈ ℕ ∧ ((𝐵 − 𝐴) / 𝑥) ∈ ℕ)}, ℕ, < ) | |
13 | 10, 11, 12 | 3eqtr4g 2801 | . 2 ⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝐴 < 𝐵) → gcdOLD (𝐴, 𝐵) = gcdOLD (𝐴, (𝐵 − 𝐴))) |
14 | 13 | ex 414 | 1 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 < 𝐵 → gcdOLD (𝐴, 𝐵) = gcdOLD (𝐴, (𝐵 − 𝐴)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 ∧ w3a 1087 = wceq 1539 ∈ wcel 2104 {crab 3284 class class class wbr 5081 (class class class)co 7307 supcsup 9243 < clt 11055 − cmin 11251 / cdiv 11678 ℕcn 12019 gcdOLD cgcdOLD 34693 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 ax-resscn 10974 ax-1cn 10975 ax-icn 10976 ax-addcl 10977 ax-addrcl 10978 ax-mulcl 10979 ax-mulrcl 10980 ax-mulcom 10981 ax-addass 10982 ax-mulass 10983 ax-distr 10984 ax-i2m1 10985 ax-1ne0 10986 ax-1rid 10987 ax-rnegex 10988 ax-rrecex 10989 ax-cnre 10990 ax-pre-lttri 10991 ax-pre-lttrn 10992 ax-pre-ltadd 10993 ax-pre-mulgt0 10994 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3285 df-reu 3286 df-rab 3287 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-tr 5199 df-id 5500 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-we 5557 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-pred 6217 df-ord 6284 df-on 6285 df-lim 6286 df-suc 6287 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-riota 7264 df-ov 7310 df-oprab 7311 df-mpo 7312 df-om 7745 df-2nd 7864 df-frecs 8128 df-wrecs 8159 df-recs 8233 df-rdg 8272 df-er 8529 df-en 8765 df-dom 8766 df-sdom 8767 df-sup 9245 df-pnf 11057 df-mnf 11058 df-xr 11059 df-ltxr 11060 df-le 11061 df-sub 11253 df-neg 11254 df-div 11679 df-nn 12020 df-gcdOLD 34694 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |