Users' Mathboxes Mathbox for Jeff Hoffman < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ee7.2aOLD Structured version   Visualization version   GIF version

Theorem ee7.2aOLD 33811
Description: Lemma for Euclid's Elements, Book 7, proposition 2. The original mentions the smaller measure being 'continually subtracted' from the larger. Many authors interpret this phrase as 𝐴 mod 𝐵. Here, just one subtraction step is proved to preserve the gcdOLD. The rec function will be used in other proofs for iterated subtraction. (Contributed by Jeff Hoffman, 17-Jun-2008.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
ee7.2aOLD ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 < 𝐵 → gcdOLD (𝐴, 𝐵) = gcdOLD (𝐴, (𝐵𝐴))))

Proof of Theorem ee7.2aOLD
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 nndivsub 33807 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑥 ∈ ℕ) ∧ ((𝐴 / 𝑥) ∈ ℕ ∧ 𝐴 < 𝐵)) → ((𝐵 / 𝑥) ∈ ℕ ↔ ((𝐵𝐴) / 𝑥) ∈ ℕ))
21exp32 423 . . . . . . . . . . 11 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑥 ∈ ℕ) → ((𝐴 / 𝑥) ∈ ℕ → (𝐴 < 𝐵 → ((𝐵 / 𝑥) ∈ ℕ ↔ ((𝐵𝐴) / 𝑥) ∈ ℕ))))
32com23 86 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑥 ∈ ℕ) → (𝐴 < 𝐵 → ((𝐴 / 𝑥) ∈ ℕ → ((𝐵 / 𝑥) ∈ ℕ ↔ ((𝐵𝐴) / 𝑥) ∈ ℕ))))
433expia 1117 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝑥 ∈ ℕ → (𝐴 < 𝐵 → ((𝐴 / 𝑥) ∈ ℕ → ((𝐵 / 𝑥) ∈ ℕ ↔ ((𝐵𝐴) / 𝑥) ∈ ℕ)))))
54com23 86 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 < 𝐵 → (𝑥 ∈ ℕ → ((𝐴 / 𝑥) ∈ ℕ → ((𝐵 / 𝑥) ∈ ℕ ↔ ((𝐵𝐴) / 𝑥) ∈ ℕ)))))
65imp 409 . . . . . . 7 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝐴 < 𝐵) → (𝑥 ∈ ℕ → ((𝐴 / 𝑥) ∈ ℕ → ((𝐵 / 𝑥) ∈ ℕ ↔ ((𝐵𝐴) / 𝑥) ∈ ℕ))))
76imp 409 . . . . . 6 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝐴 < 𝐵) ∧ 𝑥 ∈ ℕ) → ((𝐴 / 𝑥) ∈ ℕ → ((𝐵 / 𝑥) ∈ ℕ ↔ ((𝐵𝐴) / 𝑥) ∈ ℕ)))
87pm5.32d 579 . . . . 5 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝐴 < 𝐵) ∧ 𝑥 ∈ ℕ) → (((𝐴 / 𝑥) ∈ ℕ ∧ (𝐵 / 𝑥) ∈ ℕ) ↔ ((𝐴 / 𝑥) ∈ ℕ ∧ ((𝐵𝐴) / 𝑥) ∈ ℕ)))
98rabbidva 3480 . . . 4 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝐴 < 𝐵) → {𝑥 ∈ ℕ ∣ ((𝐴 / 𝑥) ∈ ℕ ∧ (𝐵 / 𝑥) ∈ ℕ)} = {𝑥 ∈ ℕ ∣ ((𝐴 / 𝑥) ∈ ℕ ∧ ((𝐵𝐴) / 𝑥) ∈ ℕ)})
109supeq1d 8912 . . 3 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝐴 < 𝐵) → sup({𝑥 ∈ ℕ ∣ ((𝐴 / 𝑥) ∈ ℕ ∧ (𝐵 / 𝑥) ∈ ℕ)}, ℕ, < ) = sup({𝑥 ∈ ℕ ∣ ((𝐴 / 𝑥) ∈ ℕ ∧ ((𝐵𝐴) / 𝑥) ∈ ℕ)}, ℕ, < ))
11 df-gcdOLD 33810 . . 3 gcdOLD (𝐴, 𝐵) = sup({𝑥 ∈ ℕ ∣ ((𝐴 / 𝑥) ∈ ℕ ∧ (𝐵 / 𝑥) ∈ ℕ)}, ℕ, < )
12 df-gcdOLD 33810 . . 3 gcdOLD (𝐴, (𝐵𝐴)) = sup({𝑥 ∈ ℕ ∣ ((𝐴 / 𝑥) ∈ ℕ ∧ ((𝐵𝐴) / 𝑥) ∈ ℕ)}, ℕ, < )
1310, 11, 123eqtr4g 2883 . 2 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝐴 < 𝐵) → gcdOLD (𝐴, 𝐵) = gcdOLD (𝐴, (𝐵𝐴)))
1413ex 415 1 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 < 𝐵 → gcdOLD (𝐴, 𝐵) = gcdOLD (𝐴, (𝐵𝐴))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  {crab 3144   class class class wbr 5068  (class class class)co 7158  supcsup 8906   < clt 10677  cmin 10872   / cdiv 11299  cn 11640   gcdOLD cgcdOLD 33809
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-sup 8908  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-gcdOLD 33810
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator