| Mathbox for Jeff Hoffman |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ee7.2aOLD | Structured version Visualization version GIF version | ||
| Description: Lemma for Euclid's Elements, Book 7, proposition 2. The original mentions the smaller measure being 'continually subtracted' from the larger. Many authors interpret this phrase as 𝐴 mod 𝐵. Here, just one subtraction step is proved to preserve the gcdOLD. The rec function will be used in other proofs for iterated subtraction. (Contributed by Jeff Hoffman, 17-Jun-2008.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| ee7.2aOLD | ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 < 𝐵 → gcdOLD (𝐴, 𝐵) = gcdOLD (𝐴, (𝐵 − 𝐴)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nndivsub 36458 | . . . . . . . . . . . 12 ⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑥 ∈ ℕ) ∧ ((𝐴 / 𝑥) ∈ ℕ ∧ 𝐴 < 𝐵)) → ((𝐵 / 𝑥) ∈ ℕ ↔ ((𝐵 − 𝐴) / 𝑥) ∈ ℕ)) | |
| 2 | 1 | exp32 420 | . . . . . . . . . . 11 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑥 ∈ ℕ) → ((𝐴 / 𝑥) ∈ ℕ → (𝐴 < 𝐵 → ((𝐵 / 𝑥) ∈ ℕ ↔ ((𝐵 − 𝐴) / 𝑥) ∈ ℕ)))) |
| 3 | 2 | com23 86 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑥 ∈ ℕ) → (𝐴 < 𝐵 → ((𝐴 / 𝑥) ∈ ℕ → ((𝐵 / 𝑥) ∈ ℕ ↔ ((𝐵 − 𝐴) / 𝑥) ∈ ℕ)))) |
| 4 | 3 | 3expia 1122 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝑥 ∈ ℕ → (𝐴 < 𝐵 → ((𝐴 / 𝑥) ∈ ℕ → ((𝐵 / 𝑥) ∈ ℕ ↔ ((𝐵 − 𝐴) / 𝑥) ∈ ℕ))))) |
| 5 | 4 | com23 86 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 < 𝐵 → (𝑥 ∈ ℕ → ((𝐴 / 𝑥) ∈ ℕ → ((𝐵 / 𝑥) ∈ ℕ ↔ ((𝐵 − 𝐴) / 𝑥) ∈ ℕ))))) |
| 6 | 5 | imp 406 | . . . . . . 7 ⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝐴 < 𝐵) → (𝑥 ∈ ℕ → ((𝐴 / 𝑥) ∈ ℕ → ((𝐵 / 𝑥) ∈ ℕ ↔ ((𝐵 − 𝐴) / 𝑥) ∈ ℕ)))) |
| 7 | 6 | imp 406 | . . . . . 6 ⊢ ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝐴 < 𝐵) ∧ 𝑥 ∈ ℕ) → ((𝐴 / 𝑥) ∈ ℕ → ((𝐵 / 𝑥) ∈ ℕ ↔ ((𝐵 − 𝐴) / 𝑥) ∈ ℕ))) |
| 8 | 7 | pm5.32d 577 | . . . . 5 ⊢ ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝐴 < 𝐵) ∧ 𝑥 ∈ ℕ) → (((𝐴 / 𝑥) ∈ ℕ ∧ (𝐵 / 𝑥) ∈ ℕ) ↔ ((𝐴 / 𝑥) ∈ ℕ ∧ ((𝐵 − 𝐴) / 𝑥) ∈ ℕ))) |
| 9 | 8 | rabbidva 3443 | . . . 4 ⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝐴 < 𝐵) → {𝑥 ∈ ℕ ∣ ((𝐴 / 𝑥) ∈ ℕ ∧ (𝐵 / 𝑥) ∈ ℕ)} = {𝑥 ∈ ℕ ∣ ((𝐴 / 𝑥) ∈ ℕ ∧ ((𝐵 − 𝐴) / 𝑥) ∈ ℕ)}) |
| 10 | 9 | supeq1d 9486 | . . 3 ⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝐴 < 𝐵) → sup({𝑥 ∈ ℕ ∣ ((𝐴 / 𝑥) ∈ ℕ ∧ (𝐵 / 𝑥) ∈ ℕ)}, ℕ, < ) = sup({𝑥 ∈ ℕ ∣ ((𝐴 / 𝑥) ∈ ℕ ∧ ((𝐵 − 𝐴) / 𝑥) ∈ ℕ)}, ℕ, < )) |
| 11 | df-gcdOLD 36461 | . . 3 ⊢ gcdOLD (𝐴, 𝐵) = sup({𝑥 ∈ ℕ ∣ ((𝐴 / 𝑥) ∈ ℕ ∧ (𝐵 / 𝑥) ∈ ℕ)}, ℕ, < ) | |
| 12 | df-gcdOLD 36461 | . . 3 ⊢ gcdOLD (𝐴, (𝐵 − 𝐴)) = sup({𝑥 ∈ ℕ ∣ ((𝐴 / 𝑥) ∈ ℕ ∧ ((𝐵 − 𝐴) / 𝑥) ∈ ℕ)}, ℕ, < ) | |
| 13 | 10, 11, 12 | 3eqtr4g 2802 | . 2 ⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝐴 < 𝐵) → gcdOLD (𝐴, 𝐵) = gcdOLD (𝐴, (𝐵 − 𝐴))) |
| 14 | 13 | ex 412 | 1 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 < 𝐵 → gcdOLD (𝐴, 𝐵) = gcdOLD (𝐴, (𝐵 − 𝐴)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 = wceq 1540 ∈ wcel 2108 {crab 3436 class class class wbr 5143 (class class class)co 7431 supcsup 9480 < clt 11295 − cmin 11492 / cdiv 11920 ℕcn 12266 gcdOLD cgcdOLD 36460 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-er 8745 df-en 8986 df-dom 8987 df-sdom 8988 df-sup 9482 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-div 11921 df-nn 12267 df-gcdOLD 36461 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |