Users' Mathboxes Mathbox for Jeff Hoffman < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ee7.2aOLD Structured version   Visualization version   GIF version

Theorem ee7.2aOLD 36434
Description: Lemma for Euclid's Elements, Book 7, proposition 2. The original mentions the smaller measure being 'continually subtracted' from the larger. Many authors interpret this phrase as 𝐴 mod 𝐵. Here, just one subtraction step is proved to preserve the gcdOLD. The rec function will be used in other proofs for iterated subtraction. (Contributed by Jeff Hoffman, 17-Jun-2008.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
ee7.2aOLD ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 < 𝐵 → gcdOLD (𝐴, 𝐵) = gcdOLD (𝐴, (𝐵𝐴))))

Proof of Theorem ee7.2aOLD
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 nndivsub 36430 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑥 ∈ ℕ) ∧ ((𝐴 / 𝑥) ∈ ℕ ∧ 𝐴 < 𝐵)) → ((𝐵 / 𝑥) ∈ ℕ ↔ ((𝐵𝐴) / 𝑥) ∈ ℕ))
21exp32 420 . . . . . . . . . . 11 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑥 ∈ ℕ) → ((𝐴 / 𝑥) ∈ ℕ → (𝐴 < 𝐵 → ((𝐵 / 𝑥) ∈ ℕ ↔ ((𝐵𝐴) / 𝑥) ∈ ℕ))))
32com23 86 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑥 ∈ ℕ) → (𝐴 < 𝐵 → ((𝐴 / 𝑥) ∈ ℕ → ((𝐵 / 𝑥) ∈ ℕ ↔ ((𝐵𝐴) / 𝑥) ∈ ℕ))))
433expia 1121 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝑥 ∈ ℕ → (𝐴 < 𝐵 → ((𝐴 / 𝑥) ∈ ℕ → ((𝐵 / 𝑥) ∈ ℕ ↔ ((𝐵𝐴) / 𝑥) ∈ ℕ)))))
54com23 86 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 < 𝐵 → (𝑥 ∈ ℕ → ((𝐴 / 𝑥) ∈ ℕ → ((𝐵 / 𝑥) ∈ ℕ ↔ ((𝐵𝐴) / 𝑥) ∈ ℕ)))))
65imp 406 . . . . . . 7 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝐴 < 𝐵) → (𝑥 ∈ ℕ → ((𝐴 / 𝑥) ∈ ℕ → ((𝐵 / 𝑥) ∈ ℕ ↔ ((𝐵𝐴) / 𝑥) ∈ ℕ))))
76imp 406 . . . . . 6 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝐴 < 𝐵) ∧ 𝑥 ∈ ℕ) → ((𝐴 / 𝑥) ∈ ℕ → ((𝐵 / 𝑥) ∈ ℕ ↔ ((𝐵𝐴) / 𝑥) ∈ ℕ)))
87pm5.32d 577 . . . . 5 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝐴 < 𝐵) ∧ 𝑥 ∈ ℕ) → (((𝐴 / 𝑥) ∈ ℕ ∧ (𝐵 / 𝑥) ∈ ℕ) ↔ ((𝐴 / 𝑥) ∈ ℕ ∧ ((𝐵𝐴) / 𝑥) ∈ ℕ)))
98rabbidva 3403 . . . 4 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝐴 < 𝐵) → {𝑥 ∈ ℕ ∣ ((𝐴 / 𝑥) ∈ ℕ ∧ (𝐵 / 𝑥) ∈ ℕ)} = {𝑥 ∈ ℕ ∣ ((𝐴 / 𝑥) ∈ ℕ ∧ ((𝐵𝐴) / 𝑥) ∈ ℕ)})
109supeq1d 9355 . . 3 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝐴 < 𝐵) → sup({𝑥 ∈ ℕ ∣ ((𝐴 / 𝑥) ∈ ℕ ∧ (𝐵 / 𝑥) ∈ ℕ)}, ℕ, < ) = sup({𝑥 ∈ ℕ ∣ ((𝐴 / 𝑥) ∈ ℕ ∧ ((𝐵𝐴) / 𝑥) ∈ ℕ)}, ℕ, < ))
11 df-gcdOLD 36433 . . 3 gcdOLD (𝐴, 𝐵) = sup({𝑥 ∈ ℕ ∣ ((𝐴 / 𝑥) ∈ ℕ ∧ (𝐵 / 𝑥) ∈ ℕ)}, ℕ, < )
12 df-gcdOLD 36433 . . 3 gcdOLD (𝐴, (𝐵𝐴)) = sup({𝑥 ∈ ℕ ∣ ((𝐴 / 𝑥) ∈ ℕ ∧ ((𝐵𝐴) / 𝑥) ∈ ℕ)}, ℕ, < )
1310, 11, 123eqtr4g 2789 . 2 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝐴 < 𝐵) → gcdOLD (𝐴, 𝐵) = gcdOLD (𝐴, (𝐵𝐴)))
1413ex 412 1 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 < 𝐵 → gcdOLD (𝐴, 𝐵) = gcdOLD (𝐴, (𝐵𝐴))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  {crab 3396   class class class wbr 5095  (class class class)co 7353  supcsup 9349   < clt 11168  cmin 11365   / cdiv 11795  cn 12146   gcdOLD cgcdOLD 36432
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-sup 9351  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-gcdOLD 36433
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator