| Metamath
Proof Explorer Theorem List (p. 349 of 500) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30900) |
(30901-32423) |
(32424-49930) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | bnj923 34801 | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| ⊢ 𝐷 = (ω ∖ {∅}) ⇒ ⊢ (𝑛 ∈ 𝐷 → 𝑛 ∈ ω) | ||
| Theorem | bnj927 34802 | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| ⊢ 𝐺 = (𝑓 ∪ {〈𝑛, 𝐶〉}) & ⊢ 𝐶 ∈ V ⇒ ⊢ ((𝑝 = suc 𝑛 ∧ 𝑓 Fn 𝑛) → 𝐺 Fn 𝑝) | ||
| Theorem | bnj931 34803 | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| ⊢ 𝐴 = (𝐵 ∪ 𝐶) ⇒ ⊢ 𝐵 ⊆ 𝐴 | ||
| Theorem | bnj937 34804* | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| ⊢ (𝜑 → ∃𝑥𝜓) ⇒ ⊢ (𝜑 → 𝜓) | ||
| Theorem | bnj941 34805 | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| ⊢ 𝐺 = (𝑓 ∪ {〈𝑛, 𝐶〉}) ⇒ ⊢ (𝐶 ∈ V → ((𝑝 = suc 𝑛 ∧ 𝑓 Fn 𝑛) → 𝐺 Fn 𝑝)) | ||
| Theorem | bnj945 34806 | Technical lemma for bnj69 35043. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| ⊢ 𝐺 = (𝑓 ∪ {〈𝑛, 𝐶〉}) ⇒ ⊢ ((𝐶 ∈ V ∧ 𝑓 Fn 𝑛 ∧ 𝑝 = suc 𝑛 ∧ 𝐴 ∈ 𝑛) → (𝐺‘𝐴) = (𝑓‘𝐴)) | ||
| Theorem | bnj946 34807 | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| ⊢ (𝜑 ↔ ∀𝑥 ∈ 𝐴 𝜓) ⇒ ⊢ (𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜓)) | ||
| Theorem | bnj951 34808 | ∧-manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| ⊢ (𝜏 → 𝜑) & ⊢ (𝜏 → 𝜓) & ⊢ (𝜏 → 𝜒) & ⊢ (𝜏 → 𝜃) ⇒ ⊢ (𝜏 → (𝜑 ∧ 𝜓 ∧ 𝜒 ∧ 𝜃)) | ||
| Theorem | bnj956 34809 | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| ⊢ (𝐴 = 𝐵 → ∀𝑥 𝐴 = 𝐵) ⇒ ⊢ (𝐴 = 𝐵 → ∪ 𝑥 ∈ 𝐴 𝐶 = ∪ 𝑥 ∈ 𝐵 𝐶) | ||
| Theorem | bnj976 34810* | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| ⊢ (𝜒 ↔ (𝑁 ∈ 𝐷 ∧ 𝑓 Fn 𝑁 ∧ 𝜑 ∧ 𝜓)) & ⊢ (𝜑′ ↔ [𝐺 / 𝑓]𝜑) & ⊢ (𝜓′ ↔ [𝐺 / 𝑓]𝜓) & ⊢ (𝜒′ ↔ [𝐺 / 𝑓]𝜒) & ⊢ 𝐺 ∈ V ⇒ ⊢ (𝜒′ ↔ (𝑁 ∈ 𝐷 ∧ 𝐺 Fn 𝑁 ∧ 𝜑′ ∧ 𝜓′)) | ||
| Theorem | bnj982 34811 | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| ⊢ (𝜑 → ∀𝑥𝜑) & ⊢ (𝜓 → ∀𝑥𝜓) & ⊢ (𝜒 → ∀𝑥𝜒) & ⊢ (𝜃 → ∀𝑥𝜃) ⇒ ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒 ∧ 𝜃) → ∀𝑥(𝜑 ∧ 𝜓 ∧ 𝜒 ∧ 𝜃)) | ||
| Theorem | bnj1019 34812* | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| ⊢ (∃𝑝(𝜃 ∧ 𝜒 ∧ 𝜏 ∧ 𝜂) ↔ (𝜃 ∧ 𝜒 ∧ 𝜂 ∧ ∃𝑝𝜏)) | ||
| Theorem | bnj1023 34813 | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| ⊢ ∃𝑥(𝜑 → 𝜓) & ⊢ (𝜓 → 𝜒) ⇒ ⊢ ∃𝑥(𝜑 → 𝜒) | ||
| Theorem | bnj1095 34814 | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| ⊢ (𝜑 ↔ ∀𝑥 ∈ 𝐴 𝜓) ⇒ ⊢ (𝜑 → ∀𝑥𝜑) | ||
| Theorem | bnj1096 34815* | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| ⊢ (𝜑 → ∀𝑥𝜑) & ⊢ (𝜓 ↔ (𝜒 ∧ 𝜃 ∧ 𝜏 ∧ 𝜑)) ⇒ ⊢ (𝜓 → ∀𝑥𝜓) | ||
| Theorem | bnj1098 34816* | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| ⊢ 𝐷 = (ω ∖ {∅}) ⇒ ⊢ ∃𝑗((𝑖 ≠ ∅ ∧ 𝑖 ∈ 𝑛 ∧ 𝑛 ∈ 𝐷) → (𝑗 ∈ 𝑛 ∧ 𝑖 = suc 𝑗)) | ||
| Theorem | bnj1101 34817 | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| ⊢ ∃𝑥(𝜑 → 𝜓) & ⊢ (𝜒 → 𝜑) ⇒ ⊢ ∃𝑥(𝜒 → 𝜓) | ||
| Theorem | bnj1113 34818* | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| ⊢ (𝐴 = 𝐵 → 𝐶 = 𝐷) ⇒ ⊢ (𝐴 = 𝐵 → ∪ 𝑥 ∈ 𝐶 𝐸 = ∪ 𝑥 ∈ 𝐷 𝐸) | ||
| Theorem | bnj1109 34819 | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| ⊢ ∃𝑥((𝐴 ≠ 𝐵 ∧ 𝜑) → 𝜓) & ⊢ ((𝐴 = 𝐵 ∧ 𝜑) → 𝜓) ⇒ ⊢ ∃𝑥(𝜑 → 𝜓) | ||
| Theorem | bnj1131 34820 | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| ⊢ (𝜑 → ∀𝑥𝜑) & ⊢ ∃𝑥𝜑 ⇒ ⊢ 𝜑 | ||
| Theorem | bnj1138 34821 | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| ⊢ 𝐴 = (𝐵 ∪ 𝐶) ⇒ ⊢ (𝑋 ∈ 𝐴 ↔ (𝑋 ∈ 𝐵 ∨ 𝑋 ∈ 𝐶)) | ||
| Theorem | bnj1142 34822 | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| ⊢ (𝜑 → ∀𝑥(𝑥 ∈ 𝐴 → 𝜓)) ⇒ ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝜓) | ||
| Theorem | bnj1143 34823* | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| ⊢ ∪ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐵 | ||
| Theorem | bnj1146 34824* | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| ⊢ (𝑦 ∈ 𝐴 → ∀𝑥 𝑦 ∈ 𝐴) ⇒ ⊢ ∪ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐵 | ||
| Theorem | bnj1149 34825 | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| ⊢ (𝜑 → 𝐴 ∈ V) & ⊢ (𝜑 → 𝐵 ∈ V) ⇒ ⊢ (𝜑 → (𝐴 ∪ 𝐵) ∈ V) | ||
| Theorem | bnj1185 34826* | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| ⊢ (𝜑 → ∃𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝐵 ¬ 𝑤𝑅𝑧) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥) | ||
| Theorem | bnj1196 34827 | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝜓) ⇒ ⊢ (𝜑 → ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜓)) | ||
| Theorem | bnj1198 34828 | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| ⊢ (𝜑 → ∃𝑥𝜓) & ⊢ (𝜓′ ↔ 𝜓) ⇒ ⊢ (𝜑 → ∃𝑥𝜓′) | ||
| Theorem | bnj1209 34829* | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| ⊢ (𝜒 → ∃𝑥 ∈ 𝐵 𝜑) & ⊢ (𝜃 ↔ (𝜒 ∧ 𝑥 ∈ 𝐵 ∧ 𝜑)) ⇒ ⊢ (𝜒 → ∃𝑥𝜃) | ||
| Theorem | bnj1211 34830 | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝜓) ⇒ ⊢ (𝜑 → ∀𝑥(𝑥 ∈ 𝐴 → 𝜓)) | ||
| Theorem | bnj1213 34831 | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| ⊢ 𝐴 ⊆ 𝐵 & ⊢ (𝜃 → 𝑥 ∈ 𝐴) ⇒ ⊢ (𝜃 → 𝑥 ∈ 𝐵) | ||
| Theorem | bnj1212 34832* | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| ⊢ 𝐵 = {𝑥 ∈ 𝐴 ∣ 𝜑} & ⊢ (𝜃 ↔ (𝜒 ∧ 𝑥 ∈ 𝐵 ∧ 𝜏)) ⇒ ⊢ (𝜃 → 𝑥 ∈ 𝐴) | ||
| Theorem | bnj1219 34833 | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| ⊢ (𝜒 ↔ (𝜑 ∧ 𝜓 ∧ 𝜁)) & ⊢ (𝜃 ↔ (𝜒 ∧ 𝜏 ∧ 𝜂)) ⇒ ⊢ (𝜃 → 𝜓) | ||
| Theorem | bnj1224 34834 | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| ⊢ ¬ (𝜃 ∧ 𝜏 ∧ 𝜂) ⇒ ⊢ ((𝜃 ∧ 𝜏) → ¬ 𝜂) | ||
| Theorem | bnj1230 34835* | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| ⊢ 𝐵 = {𝑥 ∈ 𝐴 ∣ 𝜑} ⇒ ⊢ (𝑦 ∈ 𝐵 → ∀𝑥 𝑦 ∈ 𝐵) | ||
| Theorem | bnj1232 34836 | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒 ∧ 𝜃 ∧ 𝜏)) ⇒ ⊢ (𝜑 → 𝜓) | ||
| Theorem | bnj1235 34837 | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒 ∧ 𝜃 ∧ 𝜏)) ⇒ ⊢ (𝜑 → 𝜒) | ||
| Theorem | bnj1239 34838 | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| ⊢ (∃𝑥 ∈ 𝐴 (𝜓 ∧ 𝜒) → ∃𝑥 ∈ 𝐴 𝜓) | ||
| Theorem | bnj1238 34839 | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| ⊢ (𝜑 ↔ ∃𝑥 ∈ 𝐴 (𝜓 ∧ 𝜒)) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝜓) | ||
| Theorem | bnj1241 34840 | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| ⊢ (𝜑 → 𝐴 ⊆ 𝐵) & ⊢ (𝜓 → 𝐶 = 𝐴) ⇒ ⊢ ((𝜑 ∧ 𝜓) → 𝐶 ⊆ 𝐵) | ||
| Theorem | bnj1247 34841 | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒 ∧ 𝜃 ∧ 𝜏)) ⇒ ⊢ (𝜑 → 𝜃) | ||
| Theorem | bnj1254 34842 | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒 ∧ 𝜃 ∧ 𝜏)) ⇒ ⊢ (𝜑 → 𝜏) | ||
| Theorem | bnj1262 34843 | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| ⊢ 𝐴 ⊆ 𝐵 & ⊢ (𝜑 → 𝐶 = 𝐴) ⇒ ⊢ (𝜑 → 𝐶 ⊆ 𝐵) | ||
| Theorem | bnj1266 34844 | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| ⊢ (𝜒 → ∃𝑥(𝜑 ∧ 𝜓)) ⇒ ⊢ (𝜒 → ∃𝑥𝜓) | ||
| Theorem | bnj1265 34845* | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝜓) ⇒ ⊢ (𝜑 → 𝜓) | ||
| Theorem | bnj1275 34846 | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| ⊢ (𝜑 → ∃𝑥(𝜓 ∧ 𝜒)) & ⊢ (𝜑 → ∀𝑥𝜑) ⇒ ⊢ (𝜑 → ∃𝑥(𝜑 ∧ 𝜓 ∧ 𝜒)) | ||
| Theorem | bnj1276 34847 | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| ⊢ (𝜑 → ∀𝑥𝜑) & ⊢ (𝜓 → ∀𝑥𝜓) & ⊢ (𝜒 → ∀𝑥𝜒) & ⊢ (𝜃 ↔ (𝜑 ∧ 𝜓 ∧ 𝜒)) ⇒ ⊢ (𝜃 → ∀𝑥𝜃) | ||
| Theorem | bnj1292 34848 | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| ⊢ 𝐴 = (𝐵 ∩ 𝐶) ⇒ ⊢ 𝐴 ⊆ 𝐵 | ||
| Theorem | bnj1293 34849 | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| ⊢ 𝐴 = (𝐵 ∩ 𝐶) ⇒ ⊢ 𝐴 ⊆ 𝐶 | ||
| Theorem | bnj1294 34850 | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝜓) & ⊢ (𝜑 → 𝑥 ∈ 𝐴) ⇒ ⊢ (𝜑 → 𝜓) | ||
| Theorem | bnj1299 34851 | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (𝜓 ∧ 𝜒)) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝜓) | ||
| Theorem | bnj1304 34852 | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| ⊢ (𝜑 → ∃𝑥𝜓) & ⊢ (𝜓 → 𝜒) & ⊢ (𝜓 → ¬ 𝜒) ⇒ ⊢ ¬ 𝜑 | ||
| Theorem | bnj1316 34853* | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| ⊢ (𝑦 ∈ 𝐴 → ∀𝑥 𝑦 ∈ 𝐴) & ⊢ (𝑦 ∈ 𝐵 → ∀𝑥 𝑦 ∈ 𝐵) ⇒ ⊢ (𝐴 = 𝐵 → ∪ 𝑥 ∈ 𝐴 𝐶 = ∪ 𝑥 ∈ 𝐵 𝐶) | ||
| Theorem | bnj1317 34854* | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| ⊢ 𝐴 = {𝑥 ∣ 𝜑} ⇒ ⊢ (𝑦 ∈ 𝐴 → ∀𝑥 𝑦 ∈ 𝐴) | ||
| Theorem | bnj1322 34855 | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| ⊢ (𝐴 = 𝐵 → (𝐴 ∩ 𝐵) = 𝐴) | ||
| Theorem | bnj1340 34856 | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| ⊢ (𝜓 → ∃𝑥𝜃) & ⊢ (𝜒 ↔ (𝜓 ∧ 𝜃)) & ⊢ (𝜓 → ∀𝑥𝜓) ⇒ ⊢ (𝜓 → ∃𝑥𝜒) | ||
| Theorem | bnj1345 34857 | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| ⊢ (𝜑 → ∃𝑥(𝜓 ∧ 𝜒)) & ⊢ (𝜃 ↔ (𝜑 ∧ 𝜓 ∧ 𝜒)) & ⊢ (𝜑 → ∀𝑥𝜑) ⇒ ⊢ (𝜑 → ∃𝑥𝜃) | ||
| Theorem | bnj1350 34858* | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| ⊢ (𝜒 → ∀𝑥𝜒) ⇒ ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → ∀𝑥(𝜑 ∧ 𝜓 ∧ 𝜒)) | ||
| Theorem | bnj1351 34859* | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| ⊢ (𝜑 → ∀𝑥𝜑) ⇒ ⊢ ((𝜑 ∧ 𝜓) → ∀𝑥(𝜑 ∧ 𝜓)) | ||
| Theorem | bnj1352 34860* | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| ⊢ (𝜓 → ∀𝑥𝜓) ⇒ ⊢ ((𝜑 ∧ 𝜓) → ∀𝑥(𝜑 ∧ 𝜓)) | ||
| Theorem | bnj1361 34861* | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| ⊢ (𝜑 → ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) ⇒ ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | ||
| Theorem | bnj1366 34862* | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (Proof shortened by Mario Carneiro, 22-Dec-2016.) (New usage is discouraged.) |
| ⊢ (𝜓 ↔ (𝐴 ∈ V ∧ ∀𝑥 ∈ 𝐴 ∃!𝑦𝜑 ∧ 𝐵 = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝜑})) ⇒ ⊢ (𝜓 → 𝐵 ∈ V) | ||
| Theorem | bnj1379 34863* | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| ⊢ (𝜑 ↔ ∀𝑓 ∈ 𝐴 Fun 𝑓) & ⊢ 𝐷 = (dom 𝑓 ∩ dom 𝑔) & ⊢ (𝜓 ↔ (𝜑 ∧ ∀𝑓 ∈ 𝐴 ∀𝑔 ∈ 𝐴 (𝑓 ↾ 𝐷) = (𝑔 ↾ 𝐷))) & ⊢ (𝜒 ↔ (𝜓 ∧ 〈𝑥, 𝑦〉 ∈ ∪ 𝐴 ∧ 〈𝑥, 𝑧〉 ∈ ∪ 𝐴)) & ⊢ (𝜃 ↔ (𝜒 ∧ 𝑓 ∈ 𝐴 ∧ 〈𝑥, 𝑦〉 ∈ 𝑓)) & ⊢ (𝜏 ↔ (𝜃 ∧ 𝑔 ∈ 𝐴 ∧ 〈𝑥, 𝑧〉 ∈ 𝑔)) ⇒ ⊢ (𝜓 → Fun ∪ 𝐴) | ||
| Theorem | bnj1383 34864* | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| ⊢ (𝜑 ↔ ∀𝑓 ∈ 𝐴 Fun 𝑓) & ⊢ 𝐷 = (dom 𝑓 ∩ dom 𝑔) & ⊢ (𝜓 ↔ (𝜑 ∧ ∀𝑓 ∈ 𝐴 ∀𝑔 ∈ 𝐴 (𝑓 ↾ 𝐷) = (𝑔 ↾ 𝐷))) ⇒ ⊢ (𝜓 → Fun ∪ 𝐴) | ||
| Theorem | bnj1385 34865* | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| ⊢ (𝜑 ↔ ∀𝑓 ∈ 𝐴 Fun 𝑓) & ⊢ 𝐷 = (dom 𝑓 ∩ dom 𝑔) & ⊢ (𝜓 ↔ (𝜑 ∧ ∀𝑓 ∈ 𝐴 ∀𝑔 ∈ 𝐴 (𝑓 ↾ 𝐷) = (𝑔 ↾ 𝐷))) & ⊢ (𝑥 ∈ 𝐴 → ∀𝑓 𝑥 ∈ 𝐴) & ⊢ (𝜑′ ↔ ∀ℎ ∈ 𝐴 Fun ℎ) & ⊢ 𝐸 = (dom ℎ ∩ dom 𝑔) & ⊢ (𝜓′ ↔ (𝜑′ ∧ ∀ℎ ∈ 𝐴 ∀𝑔 ∈ 𝐴 (ℎ ↾ 𝐸) = (𝑔 ↾ 𝐸))) ⇒ ⊢ (𝜓 → Fun ∪ 𝐴) | ||
| Theorem | bnj1386 34866* | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| ⊢ (𝜑 ↔ ∀𝑓 ∈ 𝐴 Fun 𝑓) & ⊢ 𝐷 = (dom 𝑓 ∩ dom 𝑔) & ⊢ (𝜓 ↔ (𝜑 ∧ ∀𝑓 ∈ 𝐴 ∀𝑔 ∈ 𝐴 (𝑓 ↾ 𝐷) = (𝑔 ↾ 𝐷))) & ⊢ (𝑥 ∈ 𝐴 → ∀𝑓 𝑥 ∈ 𝐴) ⇒ ⊢ (𝜓 → Fun ∪ 𝐴) | ||
| Theorem | bnj1397 34867 | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| ⊢ (𝜑 → ∃𝑥𝜓) & ⊢ (𝜓 → ∀𝑥𝜓) ⇒ ⊢ (𝜑 → 𝜓) | ||
| Theorem | bnj1400 34868* | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| ⊢ (𝑦 ∈ 𝐴 → ∀𝑥 𝑦 ∈ 𝐴) ⇒ ⊢ dom ∪ 𝐴 = ∪ 𝑥 ∈ 𝐴 dom 𝑥 | ||
| Theorem | bnj1405 34869* | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| ⊢ (𝜑 → 𝑋 ∈ ∪ 𝑦 ∈ 𝐴 𝐵) ⇒ ⊢ (𝜑 → ∃𝑦 ∈ 𝐴 𝑋 ∈ 𝐵) | ||
| Theorem | bnj1422 34870 | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| ⊢ (𝜑 → Fun 𝐴) & ⊢ (𝜑 → dom 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → 𝐴 Fn 𝐵) | ||
| Theorem | bnj1424 34871 | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| ⊢ 𝐴 = (𝐵 ∪ 𝐶) ⇒ ⊢ (𝐷 ∈ 𝐴 → (𝐷 ∈ 𝐵 ∨ 𝐷 ∈ 𝐶)) | ||
| Theorem | bnj1436 34872 | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| ⊢ 𝐴 = {𝑥 ∣ 𝜑} ⇒ ⊢ (𝑥 ∈ 𝐴 → 𝜑) | ||
| Theorem | bnj1441 34873* | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) Add disjoint variable condition to avoid ax-13 2374. See bnj1441g 34874 for a less restrictive version requiring more axioms. (Revised by GG, 20-Jan-2024.) (New usage is discouraged.) |
| ⊢ (𝑥 ∈ 𝐴 → ∀𝑦 𝑥 ∈ 𝐴) & ⊢ (𝜑 → ∀𝑦𝜑) ⇒ ⊢ (𝑧 ∈ {𝑥 ∈ 𝐴 ∣ 𝜑} → ∀𝑦 𝑧 ∈ {𝑥 ∈ 𝐴 ∣ 𝜑}) | ||
| Theorem | bnj1441g 34874* | First-order logic and set theory. See bnj1441 34873 for a version with more disjoint variable conditions, but not requiring ax-13 2374. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| ⊢ (𝑥 ∈ 𝐴 → ∀𝑦 𝑥 ∈ 𝐴) & ⊢ (𝜑 → ∀𝑦𝜑) ⇒ ⊢ (𝑧 ∈ {𝑥 ∈ 𝐴 ∣ 𝜑} → ∀𝑦 𝑧 ∈ {𝑥 ∈ 𝐴 ∣ 𝜑}) | ||
| Theorem | bnj1454 34875 | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| ⊢ 𝐴 = {𝑥 ∣ 𝜑} ⇒ ⊢ (𝐵 ∈ V → (𝐵 ∈ 𝐴 ↔ [𝐵 / 𝑥]𝜑)) | ||
| Theorem | bnj1459 34876* | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| ⊢ (𝜓 ↔ (𝜑 ∧ 𝑥 ∈ 𝐴)) & ⊢ (𝜓 → 𝜒) ⇒ ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝜒) | ||
| Theorem | bnj1464 34877* | Conversion of implicit substitution to explicit class substitution. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| ⊢ (𝜓 → ∀𝑥𝜓) & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝜑 ↔ 𝜓)) | ||
| Theorem | bnj1465 34878* | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) & ⊢ (𝜓 → ∀𝑥𝜓) & ⊢ (𝜒 → 𝜓) ⇒ ⊢ ((𝜒 ∧ 𝐴 ∈ 𝑉) → ∃𝑥𝜑) | ||
| Theorem | bnj1468 34879* | Conversion of implicit substitution to explicit class substitution. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| ⊢ (𝜓 → ∀𝑥𝜓) & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) & ⊢ (𝑦 ∈ 𝐴 → ∀𝑥 𝑦 ∈ 𝐴) ⇒ ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝜑 ↔ 𝜓)) | ||
| Theorem | bnj1476 34880 | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| ⊢ 𝐷 = {𝑥 ∈ 𝐴 ∣ ¬ 𝜑} & ⊢ (𝜓 → 𝐷 = ∅) ⇒ ⊢ (𝜓 → ∀𝑥 ∈ 𝐴 𝜑) | ||
| Theorem | bnj1502 34881 | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| ⊢ (𝜑 → Fun 𝐹) & ⊢ (𝜑 → 𝐺 ⊆ 𝐹) & ⊢ (𝜑 → 𝐴 ∈ dom 𝐺) ⇒ ⊢ (𝜑 → (𝐹‘𝐴) = (𝐺‘𝐴)) | ||
| Theorem | bnj1503 34882 | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| ⊢ (𝜑 → Fun 𝐹) & ⊢ (𝜑 → 𝐺 ⊆ 𝐹) & ⊢ (𝜑 → 𝐴 ⊆ dom 𝐺) ⇒ ⊢ (𝜑 → (𝐹 ↾ 𝐴) = (𝐺 ↾ 𝐴)) | ||
| Theorem | bnj1517 34883 | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| ⊢ 𝐴 = {𝑥 ∣ (𝜑 ∧ 𝜓)} ⇒ ⊢ (𝑥 ∈ 𝐴 → 𝜓) | ||
| Theorem | bnj1521 34884 | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| ⊢ (𝜒 → ∃𝑥 ∈ 𝐵 𝜑) & ⊢ (𝜃 ↔ (𝜒 ∧ 𝑥 ∈ 𝐵 ∧ 𝜑)) & ⊢ (𝜒 → ∀𝑥𝜒) ⇒ ⊢ (𝜒 → ∃𝑥𝜃) | ||
| Theorem | bnj1533 34885 | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| ⊢ (𝜃 → ∀𝑧 ∈ 𝐵 ¬ 𝑧 ∈ 𝐷) & ⊢ 𝐵 ⊆ 𝐴 & ⊢ 𝐷 = {𝑧 ∈ 𝐴 ∣ 𝐶 ≠ 𝐸} ⇒ ⊢ (𝜃 → ∀𝑧 ∈ 𝐵 𝐶 = 𝐸) | ||
| Theorem | bnj1534 34886* | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| ⊢ 𝐷 = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) ≠ (𝐻‘𝑥)} & ⊢ (𝑤 ∈ 𝐹 → ∀𝑥 𝑤 ∈ 𝐹) ⇒ ⊢ 𝐷 = {𝑧 ∈ 𝐴 ∣ (𝐹‘𝑧) ≠ (𝐻‘𝑧)} | ||
| Theorem | bnj1536 34887* | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| ⊢ (𝜑 → 𝐹 Fn 𝐴) & ⊢ (𝜑 → 𝐺 Fn 𝐴) & ⊢ (𝜑 → 𝐵 ⊆ 𝐴) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 (𝐹‘𝑥) = (𝐺‘𝑥)) ⇒ ⊢ (𝜑 → (𝐹 ↾ 𝐵) = (𝐺 ↾ 𝐵)) | ||
| Theorem | bnj1538 34888 | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| ⊢ 𝐴 = {𝑥 ∈ 𝐵 ∣ 𝜑} ⇒ ⊢ (𝑥 ∈ 𝐴 → 𝜑) | ||
| Theorem | bnj1541 34889 | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| ⊢ (𝜑 ↔ (𝜓 ∧ 𝐴 ≠ 𝐵)) & ⊢ ¬ 𝜑 ⇒ ⊢ (𝜓 → 𝐴 = 𝐵) | ||
| Theorem | bnj1542 34890* | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| ⊢ (𝜑 → 𝐹 Fn 𝐴) & ⊢ (𝜑 → 𝐺 Fn 𝐴) & ⊢ (𝜑 → 𝐹 ≠ 𝐺) & ⊢ (𝑤 ∈ 𝐹 → ∀𝑥 𝑤 ∈ 𝐹) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (𝐹‘𝑥) ≠ (𝐺‘𝑥)) | ||
| Theorem | bnj110 34891* | Well-founded induction restricted to a set (𝐴 ∈ V). The proof has been taken from Chapter 4 of Don Monk's notes on Set Theory. See http://euclid.colorado.edu/~monkd/setth.pdf. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ V & ⊢ (𝜓 ↔ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → [𝑦 / 𝑥]𝜑)) ⇒ ⊢ ((𝑅 Fr 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝜓 → 𝜑)) → ∀𝑥 ∈ 𝐴 𝜑) | ||
| Theorem | bnj157 34892* | Well-founded induction restricted to a set (𝐴 ∈ V). The proof has been taken from Chapter 4 of Don Monk's notes on Set Theory. See http://euclid.colorado.edu/~monkd/setth.pdf. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| ⊢ (𝜓 ↔ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → [𝑦 / 𝑥]𝜑)) & ⊢ 𝐴 ∈ V & ⊢ 𝑅 Fr 𝐴 ⇒ ⊢ (∀𝑥 ∈ 𝐴 (𝜓 → 𝜑) → ∀𝑥 ∈ 𝐴 𝜑) | ||
| Theorem | bnj66 34893* | Technical lemma for bnj60 35095. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| ⊢ 𝐵 = {𝑑 ∣ (𝑑 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)} & ⊢ 𝑌 = 〈𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))〉 & ⊢ 𝐶 = {𝑓 ∣ ∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌))} ⇒ ⊢ (𝑔 ∈ 𝐶 → Rel 𝑔) | ||
| Theorem | bnj91 34894* | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| ⊢ (𝜑 ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅)) & ⊢ 𝑍 ∈ V ⇒ ⊢ ([𝑍 / 𝑦]𝜑 ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅)) | ||
| Theorem | bnj92 34895* | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| ⊢ (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑛 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) & ⊢ 𝑍 ∈ V ⇒ ⊢ ([𝑍 / 𝑛]𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑍 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) | ||
| Theorem | bnj93 34896* | Technical lemma for bnj97 34899. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| ⊢ ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → pred(𝑥, 𝐴, 𝑅) ∈ V) | ||
| Theorem | bnj95 34897 | Technical lemma for bnj124 34904. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| ⊢ 𝐹 = {〈∅, pred(𝑥, 𝐴, 𝑅)〉} ⇒ ⊢ 𝐹 ∈ V | ||
| Theorem | bnj96 34898* | Technical lemma for bnj150 34909. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (Revised by Mario Carneiro, 6-May-2015.) (New usage is discouraged.) |
| ⊢ 𝐹 = {〈∅, pred(𝑥, 𝐴, 𝑅)〉} ⇒ ⊢ ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → dom 𝐹 = 1o) | ||
| Theorem | bnj97 34899* | Technical lemma for bnj150 34909. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| ⊢ 𝐹 = {〈∅, pred(𝑥, 𝐴, 𝑅)〉} ⇒ ⊢ ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → (𝐹‘∅) = pred(𝑥, 𝐴, 𝑅)) | ||
| Theorem | bnj98 34900 | Technical lemma for bnj150 34909. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| ⊢ ∀𝑖 ∈ ω (suc 𝑖 ∈ 1o → (𝐹‘suc 𝑖) = ∪ 𝑦 ∈ (𝐹‘𝑖) pred(𝑦, 𝐴, 𝑅)) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |