![]() |
Metamath
Proof Explorer Theorem List (p. 349 of 437) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-28347) |
![]() (28348-29872) |
![]() (29873-43650) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | relcoss 34801 | Cosets by 𝑅 is a relation. (Contributed by Peter Mazsa, 27-Dec-2018.) |
⊢ Rel ≀ 𝑅 | ||
Theorem | relcoels 34802 | Coelements on 𝐴 is a relation. (Contributed by Peter Mazsa, 5-Oct-2021.) |
⊢ Rel ∼ 𝐴 | ||
Theorem | cossss 34803 | Subclass theorem for the classes of cosets by 𝐴 and 𝐵. (Contributed by Peter Mazsa, 11-Nov-2019.) |
⊢ (𝐴 ⊆ 𝐵 → ≀ 𝐴 ⊆ ≀ 𝐵) | ||
Theorem | cosseq 34804 | Equality theorem for the classes of cosets by 𝐴 and 𝐵. (Contributed by Peter Mazsa, 9-Jan-2018.) |
⊢ (𝐴 = 𝐵 → ≀ 𝐴 = ≀ 𝐵) | ||
Theorem | cosseqi 34805 | Equality theorem for the classes of cosets by 𝐴 and 𝐵, inference form. (Contributed by Peter Mazsa, 9-Jan-2018.) |
⊢ 𝐴 = 𝐵 ⇒ ⊢ ≀ 𝐴 = ≀ 𝐵 | ||
Theorem | cosseqd 34806 | Equality theorem for the classes of cosets by 𝐴 and 𝐵, deduction form. (Contributed by Peter Mazsa, 4-Nov-2019.) |
⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → ≀ 𝐴 = ≀ 𝐵) | ||
Theorem | 1cossres 34807* | The class of cosets by a restriction. (Contributed by Peter Mazsa, 20-Apr-2019.) |
⊢ ≀ (𝑅 ↾ 𝐴) = {〈𝑥, 𝑦〉 ∣ ∃𝑢 ∈ 𝐴 (𝑢𝑅𝑥 ∧ 𝑢𝑅𝑦)} | ||
Theorem | dfcoels 34808* | Alternate definition of the class of coelements on the class 𝐴. (Contributed by Peter Mazsa, 20-Apr-2019.) |
⊢ ∼ 𝐴 = {〈𝑥, 𝑦〉 ∣ ∃𝑢 ∈ 𝐴 (𝑥 ∈ 𝑢 ∧ 𝑦 ∈ 𝑢)} | ||
Theorem | brcoss 34809* | 𝐴 and 𝐵 are cosets by 𝑅: a binary relation. (Contributed by Peter Mazsa, 27-Dec-2018.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ≀ 𝑅𝐵 ↔ ∃𝑢(𝑢𝑅𝐴 ∧ 𝑢𝑅𝐵))) | ||
Theorem | brcoss2 34810* | Alternate form of the 𝐴 and 𝐵 are cosets by 𝑅 binary relation. (Contributed by Peter Mazsa, 26-Mar-2019.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ≀ 𝑅𝐵 ↔ ∃𝑢(𝐴 ∈ [𝑢]𝑅 ∧ 𝐵 ∈ [𝑢]𝑅))) | ||
Theorem | brcoss3 34811 | Alternate form of the 𝐴 and 𝐵 are cosets by 𝑅 binary relation. (Contributed by Peter Mazsa, 26-Mar-2019.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ≀ 𝑅𝐵 ↔ ([𝐴]◡𝑅 ∩ [𝐵]◡𝑅) ≠ ∅)) | ||
Theorem | brcosscnvcoss 34812 | For sets, the 𝐴 and 𝐵 cosets by 𝑅 binary relation and the 𝐵 and 𝐴 cosets by 𝑅 binary relation are the same. (Contributed by Peter Mazsa, 27-Dec-2018.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ≀ 𝑅𝐵 ↔ 𝐵 ≀ 𝑅𝐴)) | ||
Theorem | brcoels 34813* | 𝐵 and 𝐶 are coelements : a binary relation. (Contributed by Peter Mazsa, 14-Jan-2020.) (Revised by Peter Mazsa, 5-Oct-2021.) |
⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (𝐵 ∼ 𝐴𝐶 ↔ ∃𝑢 ∈ 𝐴 (𝐵 ∈ 𝑢 ∧ 𝐶 ∈ 𝑢))) | ||
Theorem | cocossss 34814* | Two ways of saying that cosets by cosets by 𝑅 is a subclass. (Contributed by Peter Mazsa, 17-Sep-2021.) |
⊢ ( ≀ ≀ 𝑅 ⊆ 𝑆 ↔ ∀𝑥∀𝑦∀𝑧((𝑥 ≀ 𝑅𝑦 ∧ 𝑦 ≀ 𝑅𝑧) → 𝑥𝑆𝑧)) | ||
Theorem | cnvcosseq 34815 | The converse of cosets by 𝑅 are cosets by 𝑅. (Contributed by Peter Mazsa, 3-May-2019.) |
⊢ ◡ ≀ 𝑅 = ≀ 𝑅 | ||
Theorem | br2coss 34816 | Cosets by ≀ 𝑅 binary relation. (Contributed by Peter Mazsa, 25-Aug-2019.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ≀ ≀ 𝑅𝐵 ↔ ([𝐴] ≀ 𝑅 ∩ [𝐵] ≀ 𝑅) ≠ ∅)) | ||
Theorem | br1cossres 34817* | 𝐵 and 𝐶 are cosets by a restriction: a binary relation. (Contributed by Peter Mazsa, 30-Dec-2018.) |
⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (𝐵 ≀ (𝑅 ↾ 𝐴)𝐶 ↔ ∃𝑢 ∈ 𝐴 (𝑢𝑅𝐵 ∧ 𝑢𝑅𝐶))) | ||
Theorem | br1cossres2 34818* | 𝐵 and 𝐶 are cosets by a restriction: a binary relation. (Contributed by Peter Mazsa, 3-Jan-2018.) |
⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (𝐵 ≀ (𝑅 ↾ 𝐴)𝐶 ↔ ∃𝑥 ∈ 𝐴 (𝐵 ∈ [𝑥]𝑅 ∧ 𝐶 ∈ [𝑥]𝑅))) | ||
Theorem | relbrcoss 34819* | 𝐴 and 𝐵 are cosets by relation 𝑅: a binary relation. (Contributed by Peter Mazsa, 22-Apr-2021.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (Rel 𝑅 → (𝐴 ≀ 𝑅𝐵 ↔ ∃𝑥 ∈ dom 𝑅(𝐴 ∈ [𝑥]𝑅 ∧ 𝐵 ∈ [𝑥]𝑅)))) | ||
Theorem | br1cossinres 34820* | 𝐵 and 𝐶 are cosets by an intersection with a restriction: a binary relation. (Contributed by Peter Mazsa, 31-Dec-2021.) |
⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (𝐵 ≀ (𝑅 ∩ (𝑆 ↾ 𝐴))𝐶 ↔ ∃𝑢 ∈ 𝐴 ((𝑢𝑆𝐵 ∧ 𝑢𝑅𝐵) ∧ (𝑢𝑆𝐶 ∧ 𝑢𝑅𝐶)))) | ||
Theorem | br1cossxrnres 34821* | 〈𝐵, 𝐶〉 and 〈𝐷, 𝐸〉 are cosets by an intersection with a restriction: a binary relation. (Contributed by Peter Mazsa, 8-Jun-2021.) |
⊢ (((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) ∧ (𝐷 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌)) → (〈𝐵, 𝐶〉 ≀ (𝑅 ⋉ (𝑆 ↾ 𝐴))〈𝐷, 𝐸〉 ↔ ∃𝑢 ∈ 𝐴 ((𝑢𝑆𝐶 ∧ 𝑢𝑅𝐵) ∧ (𝑢𝑆𝐸 ∧ 𝑢𝑅𝐷)))) | ||
Theorem | br1cossinidres 34822* | 𝐵 and 𝐶 are cosets by an intersection with the restricted identity class: a binary relation. (Contributed by Peter Mazsa, 31-Dec-2021.) |
⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (𝐵 ≀ (𝑅 ∩ ( I ↾ 𝐴))𝐶 ↔ ∃𝑢 ∈ 𝐴 ((𝑢 = 𝐵 ∧ 𝑢𝑅𝐵) ∧ (𝑢 = 𝐶 ∧ 𝑢𝑅𝐶)))) | ||
Theorem | br1cossincnvepres 34823* | 𝐵 and 𝐶 are cosets by an intersection with the restricted converse epsilon class: a binary relation. (Contributed by Peter Mazsa, 31-Dec-2021.) |
⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (𝐵 ≀ (𝑅 ∩ (◡ E ↾ 𝐴))𝐶 ↔ ∃𝑢 ∈ 𝐴 ((𝐵 ∈ 𝑢 ∧ 𝑢𝑅𝐵) ∧ (𝐶 ∈ 𝑢 ∧ 𝑢𝑅𝐶)))) | ||
Theorem | br1cossxrnidres 34824* | 〈𝐵, 𝐶〉 and 〈𝐷, 𝐸〉 are cosets by a range Cartesian product with the restricted identity class: a binary relation. (Contributed by Peter Mazsa, 8-Jun-2021.) |
⊢ (((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) ∧ (𝐷 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌)) → (〈𝐵, 𝐶〉 ≀ (𝑅 ⋉ ( I ↾ 𝐴))〈𝐷, 𝐸〉 ↔ ∃𝑢 ∈ 𝐴 ((𝑢 = 𝐶 ∧ 𝑢𝑅𝐵) ∧ (𝑢 = 𝐸 ∧ 𝑢𝑅𝐷)))) | ||
Theorem | br1cossxrncnvepres 34825* | 〈𝐵, 𝐶〉 and 〈𝐷, 𝐸〉 are cosets by a range Cartesian product with the restricted converse epsilon class: a binary relation. (Contributed by Peter Mazsa, 12-May-2021.) |
⊢ (((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) ∧ (𝐷 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌)) → (〈𝐵, 𝐶〉 ≀ (𝑅 ⋉ (◡ E ↾ 𝐴))〈𝐷, 𝐸〉 ↔ ∃𝑢 ∈ 𝐴 ((𝐶 ∈ 𝑢 ∧ 𝑢𝑅𝐵) ∧ (𝐸 ∈ 𝑢 ∧ 𝑢𝑅𝐷)))) | ||
Theorem | dmcoss3 34826 | The domain of cosets is the domain of converse. (Contributed by Peter Mazsa, 4-Jan-2019.) |
⊢ dom ≀ 𝑅 = dom ◡𝑅 | ||
Theorem | dmcoss2 34827 | The domain of cosets is the range. (Contributed by Peter Mazsa, 27-Dec-2018.) |
⊢ dom ≀ 𝑅 = ran 𝑅 | ||
Theorem | rncossdmcoss 34828 | The range of cosets is the domain of them (this should be rncoss 5632 but there exists a theorem with this name already). (Contributed by Peter Mazsa, 12-Dec-2019.) |
⊢ ran ≀ 𝑅 = dom ≀ 𝑅 | ||
Theorem | dm1cosscnvepres 34829 | The domain of cosets of the restricted converse epsilon relation is the union of the restriction. (Contributed by Peter Mazsa, 18-May-2019.) (Revised by Peter Mazsa, 26-Sep-2021.) |
⊢ dom ≀ (◡ E ↾ 𝐴) = ∪ 𝐴 | ||
Theorem | dmcoels 34830 | The domain of coelements in 𝐴 is the union of 𝐴. (Contributed by Rodolfo Medina, 14-Oct-2010.) (Revised by Peter Mazsa, 5-Apr-2018.) (Revised by Peter Mazsa, 26-Sep-2021.) |
⊢ dom ∼ 𝐴 = ∪ 𝐴 | ||
Theorem | eldmcoss 34831* | Elementhood in the domain of cosets. (Contributed by Peter Mazsa, 29-Mar-2019.) |
⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ dom ≀ 𝑅 ↔ ∃𝑢 𝑢𝑅𝐴)) | ||
Theorem | eldmcoss2 34832 | Elementhood in the domain of cosets. (Contributed by Peter Mazsa, 28-Dec-2018.) |
⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ dom ≀ 𝑅 ↔ 𝐴 ≀ 𝑅𝐴)) | ||
Theorem | eldm1cossres 34833* | Elementhood in the domain of restricted cosets. (Contributed by Peter Mazsa, 30-Dec-2018.) |
⊢ (𝐵 ∈ 𝑉 → (𝐵 ∈ dom ≀ (𝑅 ↾ 𝐴) ↔ ∃𝑢 ∈ 𝐴 𝑢𝑅𝐵)) | ||
Theorem | eldm1cossres2 34834* | Elementhood in the domain of restricted cosets. (Contributed by Peter Mazsa, 30-Dec-2018.) |
⊢ (𝐵 ∈ 𝑉 → (𝐵 ∈ dom ≀ (𝑅 ↾ 𝐴) ↔ ∃𝑥 ∈ 𝐴 𝐵 ∈ [𝑥]𝑅)) | ||
Theorem | refrelcosslem 34835 | Lemma for the left side of the refrelcoss3 34836 reflexivity theorem. (Contributed by Peter Mazsa, 1-Apr-2019.) |
⊢ ∀𝑥 ∈ dom ≀ 𝑅𝑥 ≀ 𝑅𝑥 | ||
Theorem | refrelcoss3 34836* | The class of cosets by 𝑅 is reflexive, cf. dfrefrel3 34889. (Contributed by Peter Mazsa, 30-Jul-2019.) |
⊢ (∀𝑥 ∈ dom ≀ 𝑅∀𝑦 ∈ ran ≀ 𝑅(𝑥 = 𝑦 → 𝑥 ≀ 𝑅𝑦) ∧ Rel ≀ 𝑅) | ||
Theorem | refrelcoss2 34837 | The class of cosets by 𝑅 is reflexive, cf. dfrefrel2 34888. (Contributed by Peter Mazsa, 30-Jul-2019.) |
⊢ (( I ∩ (dom ≀ 𝑅 × ran ≀ 𝑅)) ⊆ ≀ 𝑅 ∧ Rel ≀ 𝑅) | ||
Theorem | symrelcoss3 34838 | The class of cosets by 𝑅 is symmetric, cf. dfsymrel3 34919. (Contributed by Peter Mazsa, 28-Mar-2019.) (Revised by Peter Mazsa, 17-Sep-2021.) |
⊢ (∀𝑥∀𝑦(𝑥 ≀ 𝑅𝑦 → 𝑦 ≀ 𝑅𝑥) ∧ Rel ≀ 𝑅) | ||
Theorem | symrelcoss2 34839 | The class of cosets by 𝑅 is symmetric, cf. dfsymrel2 34918. (Contributed by Peter Mazsa, 27-Dec-2018.) |
⊢ (◡ ≀ 𝑅 ⊆ ≀ 𝑅 ∧ Rel ≀ 𝑅) | ||
Theorem | cossssid 34840 | Equivalent expressions for the class of cosets by 𝑅 to be a subset of the identity class. (Contributed by Peter Mazsa, 27-Jul-2021.) |
⊢ ( ≀ 𝑅 ⊆ I ↔ ≀ 𝑅 ⊆ ( I ∩ (dom ≀ 𝑅 × ran ≀ 𝑅))) | ||
Theorem | cossssid2 34841* | Equivalent expressions for the class of cosets by 𝑅 to be a subset of the identity class. (Contributed by Peter Mazsa, 10-Mar-2019.) |
⊢ ( ≀ 𝑅 ⊆ I ↔ ∀𝑥∀𝑦(∃𝑢(𝑢𝑅𝑥 ∧ 𝑢𝑅𝑦) → 𝑥 = 𝑦)) | ||
Theorem | cossssid3 34842* | Equivalent expressions for the class of cosets by 𝑅 to be a subset of the identity class. (Contributed by Peter Mazsa, 10-Mar-2019.) |
⊢ ( ≀ 𝑅 ⊆ I ↔ ∀𝑢∀𝑥∀𝑦((𝑢𝑅𝑥 ∧ 𝑢𝑅𝑦) → 𝑥 = 𝑦)) | ||
Theorem | cossssid4 34843* | Equivalent expressions for the class of cosets by 𝑅 to be a subset of the identity class. (Contributed by Peter Mazsa, 31-Aug-2021.) |
⊢ ( ≀ 𝑅 ⊆ I ↔ ∀𝑢∃*𝑥 𝑢𝑅𝑥) | ||
Theorem | cossssid5 34844* | Equivalent expressions for the class of cosets by 𝑅 to be a subset of the identity class. (Contributed by Peter Mazsa, 5-Sep-2021.) |
⊢ ( ≀ 𝑅 ⊆ I ↔ ∀𝑥 ∈ ran 𝑅∀𝑦 ∈ ran 𝑅(𝑥 = 𝑦 ∨ ([𝑥]◡𝑅 ∩ [𝑦]◡𝑅) = ∅)) | ||
Theorem | brcosscnv 34845* | 𝐴 and 𝐵 are cosets by converse 𝑅: a binary relation. (Contributed by Peter Mazsa, 23-Jan-2019.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ≀ ◡𝑅𝐵 ↔ ∃𝑥(𝐴𝑅𝑥 ∧ 𝐵𝑅𝑥))) | ||
Theorem | brcosscnv2 34846 | 𝐴 and 𝐵 are cosets by converse 𝑅: a binary relation. (Contributed by Peter Mazsa, 12-Mar-2019.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ≀ ◡𝑅𝐵 ↔ ([𝐴]𝑅 ∩ [𝐵]𝑅) ≠ ∅)) | ||
Theorem | br1cosscnvxrn 34847 | 𝐴 and 𝐵 are cosets by the converse range Cartesian product: a binary relation. (Contributed by Peter Mazsa, 19-Apr-2020.) (Revised by Peter Mazsa, 21-Sep-2021.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ≀ ◡(𝑅 ⋉ 𝑆)𝐵 ↔ (𝐴 ≀ ◡𝑅𝐵 ∧ 𝐴 ≀ ◡𝑆𝐵))) | ||
Theorem | 1cosscnvxrn 34848 | Cosets by the converse range Cartesian product. (Contributed by Peter Mazsa, 19-Apr-2020.) (Revised by Peter Mazsa, 21-Sep-2021.) |
⊢ ≀ ◡(𝐴 ⋉ 𝐵) = ( ≀ ◡𝐴 ∩ ≀ ◡𝐵) | ||
Theorem | cosscnvssid3 34849* | Equivalent expressions for the class of cosets by the converse of 𝑅 to be a subset of the identity class. (Contributed by Peter Mazsa, 28-Jul-2021.) |
⊢ ( ≀ ◡𝑅 ⊆ I ↔ ∀𝑢∀𝑣∀𝑥((𝑢𝑅𝑥 ∧ 𝑣𝑅𝑥) → 𝑢 = 𝑣)) | ||
Theorem | cosscnvssid4 34850* | Equivalent expressions for the class of cosets by the converse of 𝑅 to be a subset of the identity class. (Contributed by Peter Mazsa, 31-Aug-2021.) |
⊢ ( ≀ ◡𝑅 ⊆ I ↔ ∀𝑥∃*𝑢 𝑢𝑅𝑥) | ||
Theorem | cosscnvssid5 34851* | Equivalent expressions for the class of cosets by the converse of the relation 𝑅 to be a subset of the identity class. (Contributed by Peter Mazsa, 5-Sep-2021.) |
⊢ (( ≀ ◡𝑅 ⊆ I ∧ Rel 𝑅) ↔ (∀𝑢 ∈ dom 𝑅∀𝑣 ∈ dom 𝑅(𝑢 = 𝑣 ∨ ([𝑢]𝑅 ∩ [𝑣]𝑅) = ∅) ∧ Rel 𝑅)) | ||
Theorem | coss0 34852 | Cosets by the empty set are the empty set. (Contributed by Peter Mazsa, 22-Oct-2019.) |
⊢ ≀ ∅ = ∅ | ||
Theorem | cossid 34853 | Cosets by the identity relation are the identity relation. (Contributed by Peter Mazsa, 16-Jan-2019.) |
⊢ ≀ I = I | ||
Theorem | cosscnvid 34854 | Cosets by the converse identity relation are the identity relation. (Contributed by Peter Mazsa, 27-Sep-2021.) |
⊢ ≀ ◡ I = I | ||
Theorem | trcoss 34855* | Sufficient condition for the transitivity of cosets by 𝑅. (Contributed by Peter Mazsa, 26-Dec-2018.) |
⊢ (∀𝑦∃*𝑢 𝑢𝑅𝑦 → ∀𝑥∀𝑦∀𝑧((𝑥 ≀ 𝑅𝑦 ∧ 𝑦 ≀ 𝑅𝑧) → 𝑥 ≀ 𝑅𝑧)) | ||
Theorem | eleccossin 34856 | Two ways of saying that the coset of 𝐴 and the coset of 𝐶 have the common element 𝐵. (Contributed by Peter Mazsa, 15-Oct-2021.) |
⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (𝐵 ∈ ([𝐴] ≀ 𝑅 ∩ [𝐶] ≀ 𝑅) ↔ (𝐴 ≀ 𝑅𝐵 ∧ 𝐵 ≀ 𝑅𝐶))) | ||
Theorem | trcoss2 34857* | Equivalent expressions for the transitivity of cosets by 𝑅. (Contributed by Peter Mazsa, 4-Jul-2020.) (Revised by Peter Mazsa, 16-Oct-2021.) |
⊢ (∀𝑥∀𝑦∀𝑧((𝑥 ≀ 𝑅𝑦 ∧ 𝑦 ≀ 𝑅𝑧) → 𝑥 ≀ 𝑅𝑧) ↔ ∀𝑥∀𝑧(([𝑥] ≀ 𝑅 ∩ [𝑧] ≀ 𝑅) ≠ ∅ → ([𝑥]◡𝑅 ∩ [𝑧]◡𝑅) ≠ ∅)) | ||
Definition | df-rels 34858 |
Define the relations class. Proper class relations (like I, cf.
reli 5495) are not elements of it. The element of this
class and the
relation predicate are the same when 𝑅 is a set (cf. elrelsrel 34860).
The class of relations is a great tool we can use when we define classes of different relations as nullary class constants as required by the 2. point in our Guidelines http://us.metamath.org/mpeuni/mathbox.html. When we want to define a specific class of relations as a nullary class constant, the appropriate method is the following: 1. We define the specific nullary class constant for general sets (cf. e.g. df-refs 34883), then 2. we get the required class of relations by the intersection of the class of general sets above with the class of relations df-rels 34858 (cf. df-refrels 34884 and the resulting dfrefrels2 34886 and dfrefrels3 34887). 3. Finally, in order to be able to work with proper classes (like iprc 7380) as well, we define the predicate of the relation (cf. df-refrel 34885) so that it is true for the relevant proper classes (cf. refrelid 34894), and that the element of the class of the required relations (e.g. elrefrels3 34891) and this predicate are the same in case of sets (cf. elrefrelsrel 34892). (Contributed by Peter Mazsa, 13-Jun-2018.) |
⊢ Rels = 𝒫 (V × V) | ||
Theorem | elrels2 34859 | The element of the relations class (df-rels 34858) and the relation predicate (df-rel 5362) are the same when 𝑅 is a set. (Contributed by Peter Mazsa, 14-Jun-2018.) |
⊢ (𝑅 ∈ 𝑉 → (𝑅 ∈ Rels ↔ 𝑅 ⊆ (V × V))) | ||
Theorem | elrelsrel 34860 | The element of the relations class (df-rels 34858) and the relation predicate are the same when 𝑅 is a set. (Contributed by Peter Mazsa, 24-Nov-2018.) |
⊢ (𝑅 ∈ 𝑉 → (𝑅 ∈ Rels ↔ Rel 𝑅)) | ||
Theorem | elrelsrelim 34861 | The element of the relations class is a relation. (Contributed by Peter Mazsa, 20-Jul-2019.) |
⊢ (𝑅 ∈ Rels → Rel 𝑅) | ||
Theorem | elrels5 34862 | Equivalent expressions for an element of the relations class. (Contributed by Peter Mazsa, 21-Jul-2021.) |
⊢ (𝑅 ∈ 𝑉 → (𝑅 ∈ Rels ↔ (𝑅 ↾ dom 𝑅) = 𝑅)) | ||
Theorem | elrels6 34863 | Equivalent expressions for an element of the relations class. (Contributed by Peter Mazsa, 21-Jul-2021.) |
⊢ (𝑅 ∈ 𝑉 → (𝑅 ∈ Rels ↔ (𝑅 ∩ (dom 𝑅 × ran 𝑅)) = 𝑅)) | ||
Theorem | elrelscnveq3 34864* | Two ways of saying a relation is symmetric. (Contributed by Peter Mazsa, 22-Aug-2021.) |
⊢ (𝑅 ∈ Rels → (𝑅 = ◡𝑅 ↔ ∀𝑥∀𝑦(𝑥𝑅𝑦 → 𝑦𝑅𝑥))) | ||
Theorem | elrelscnveq 34865 | Two ways of saying a relation is symmetric. (Contributed by Peter Mazsa, 22-Aug-2021.) |
⊢ (𝑅 ∈ Rels → (◡𝑅 ⊆ 𝑅 ↔ ◡𝑅 = 𝑅)) | ||
Theorem | elrelscnveq2 34866* | Two ways of saying a relation is symmetric. (Contributed by Peter Mazsa, 22-Aug-2021.) |
⊢ (𝑅 ∈ Rels → (◡𝑅 = 𝑅 ↔ ∀𝑥∀𝑦(𝑥𝑅𝑦 ↔ 𝑦𝑅𝑥))) | ||
Theorem | elrelscnveq4 34867* | Two ways of saying a relation is symmetric. (Contributed by Peter Mazsa, 22-Aug-2021.) |
⊢ (𝑅 ∈ Rels → (◡𝑅 ⊆ 𝑅 ↔ ∀𝑥∀𝑦(𝑥𝑅𝑦 ↔ 𝑦𝑅𝑥))) | ||
Theorem | cnvelrels 34868 | The converse of a set is an element of the class of relations. (Contributed by Peter Mazsa, 18-Aug-2019.) |
⊢ (𝐴 ∈ 𝑉 → ◡𝐴 ∈ Rels ) | ||
Theorem | cosselrels 34869 | Cosets of sets are elements of the relations class. Implies ⊢ (𝑅 ∈ Rels → ≀ 𝑅 ∈ Rels ). (Contributed by Peter Mazsa, 25-Aug-2021.) |
⊢ (𝐴 ∈ 𝑉 → ≀ 𝐴 ∈ Rels ) | ||
Theorem | cosscnvelrels 34870 | Cosets of converse sets are elements of the relations class. (Contributed by Peter Mazsa, 31-Aug-2021.) |
⊢ (𝐴 ∈ 𝑉 → ≀ ◡𝐴 ∈ Rels ) | ||
Definition | df-ssr 34871* |
Define the subsets class or the class of subset relations. Similar to
definitions of epsilon relation (df-eprel 5266) and identity relation
(df-id 5261) classes. Subset relation class and Scott
Fenton's subset
class df-sset 32552 are the same: S = SSet (compare dfssr2 34872 with
df-sset 32552, cf. comment of df-xrn 34756), the only reason we do not use
dfssr2 34872 as the base definition of the subsets class
is the way we
defined the epsilon relation and the identity relation classes.
The binary relation on the class of subsets and the subclass relationship (df-ss 3805) are the same, that is, (𝐴 S 𝐵 ↔ 𝐴 ⊆ 𝐵) when 𝐵 is a set, cf. brssr 34874. Yet in general we use the subclass relation 𝐴 ⊆ 𝐵 both for classes and for sets, cf. the comment of df-ss 3805. The only exception (aside from directly investigating the class S e.g. in relssr 34873 or in extssr 34882) is when we have a specific purpose with its usage, like in case of df-refs 34883 versus df-cnvrefs 34896, where we need S to define the class of reflexive sets in order to be able to define the class of converse reflexive sets with the help of the converse of S. The subsets class S has another place in set.mm as well: if we define extensional relation based on the common property in extid 34705, extep 34675 and extssr 34882, then "extrelssr" " |- ExtRel _S " is a theorem along with "extrelep" " |- ExtRel _E " and "extrelid" " |- ExtRel _I ". (Contributed by Peter Mazsa, 25-Jul-2019.) |
⊢ S = {〈𝑥, 𝑦〉 ∣ 𝑥 ⊆ 𝑦} | ||
Theorem | dfssr2 34872 | Alternate definition of the subset relation. (Contributed by Peter Mazsa, 9-Aug-2021.) |
⊢ S = ((V × V) ∖ ran ( E ⋉ (V ∖ E ))) | ||
Theorem | relssr 34873 | The subset relation is a relation. (Contributed by Peter Mazsa, 1-Aug-2019.) |
⊢ Rel S | ||
Theorem | brssr 34874 | The subset relation and subclass relationship (df-ss 3805) are the same, that is, (𝐴 S 𝐵 ↔ 𝐴 ⊆ 𝐵) when 𝐵 is a set. (Contributed by Peter Mazsa, 31-Jul-2019.) |
⊢ (𝐵 ∈ 𝑉 → (𝐴 S 𝐵 ↔ 𝐴 ⊆ 𝐵)) | ||
Theorem | brssrid 34875 | Any set is a subset of itself. (Contributed by Peter Mazsa, 1-Aug-2019.) |
⊢ (𝐴 ∈ 𝑉 → 𝐴 S 𝐴) | ||
Theorem | issetssr 34876 | Two ways of expressing set existence. (Contributed by Peter Mazsa, 1-Aug-2019.) |
⊢ (𝐴 ∈ V ↔ 𝐴 S 𝐴) | ||
Theorem | brssrres 34877 | Restricted subset binary relation. (Contributed by Peter Mazsa, 25-Nov-2019.) |
⊢ (𝐶 ∈ 𝑉 → (𝐵( S ↾ 𝐴)𝐶 ↔ (𝐵 ∈ 𝐴 ∧ 𝐵 ⊆ 𝐶))) | ||
Theorem | br1cnvssrres 34878 | Restricted converse subset binary relation. (Contributed by Peter Mazsa, 25-Nov-2019.) |
⊢ (𝐵 ∈ 𝑉 → (𝐵◡( S ↾ 𝐴)𝐶 ↔ (𝐶 ∈ 𝐴 ∧ 𝐶 ⊆ 𝐵))) | ||
Theorem | brcnvssr 34879 | The converse of a subset relation swaps arguments. (Contributed by Peter Mazsa, 1-Aug-2019.) |
⊢ (𝐴 ∈ 𝑉 → (𝐴◡ S 𝐵 ↔ 𝐵 ⊆ 𝐴)) | ||
Theorem | brcnvssrid 34880 | Any set is a converse subset of itself. (Contributed by Peter Mazsa, 9-Jun-2021.) |
⊢ (𝐴 ∈ 𝑉 → 𝐴◡ S 𝐴) | ||
Theorem | br1cossxrncnvssrres 34881* | 〈𝐵, 𝐶〉 and 〈𝐷, 𝐸〉 are cosets by tail Cartesian product with restricted converse subsets class: a binary relation. (Contributed by Peter Mazsa, 9-Jun-2021.) |
⊢ (((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) ∧ (𝐷 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌)) → (〈𝐵, 𝐶〉 ≀ (𝑅 ⋉ (◡ S ↾ 𝐴))〈𝐷, 𝐸〉 ↔ ∃𝑢 ∈ 𝐴 ((𝐶 ⊆ 𝑢 ∧ 𝑢𝑅𝐵) ∧ (𝐸 ⊆ 𝑢 ∧ 𝑢𝑅𝐷)))) | ||
Theorem | extssr 34882 | Property of subset relation, cf. extid 34705, extep 34675 and the comment of df-ssr 34871. (Contributed by Peter Mazsa, 10-Jul-2019.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ([𝐴]◡ S = [𝐵]◡ S ↔ 𝐴 = 𝐵)) | ||
Definition | df-refs 34883 |
Define the class of all reflexive sets. It is used only by df-refrels 34884.
We use subset relation S (df-ssr 34871) here to be able to define
converse reflexivity (df-cnvrefs 34896), cf. the comment of df-ssr 34871. The
elements of this class are not necessarily relations (versus
df-refrels 34884).
Note the similarity of the definitions df-refs 34883, df-syms 34911 and df-trs 34941, cf. comments of dfrefrels2 34886. (Contributed by Peter Mazsa, 19-Jul-2019.) |
⊢ Refs = {𝑥 ∣ ( I ∩ (dom 𝑥 × ran 𝑥)) S (𝑥 ∩ (dom 𝑥 × ran 𝑥))} | ||
Definition | df-refrels 34884 |
Define the class of reflexive relations. This is practically dfrefrels2 34886
(which reveals that RefRels can not include proper
classes like I
as is elements, cf. comments of dfrefrels2 34886).
Another alternative definition is dfrefrels3 34887. The element of this class and the reflexive relation predicate (df-refrel 34885) are the same, that is, (𝑅 ∈ RefRels ↔ RefRel 𝑅) when 𝐴 is a set, cf. elrefrelsrel 34892. This definition is similar to the definitions of the classes of symmetric (df-symrels 34912) and transitive (df-trrels 34942) relations. (Contributed by Peter Mazsa, 7-Jul-2019.) |
⊢ RefRels = ( Refs ∩ Rels ) | ||
Definition | df-refrel 34885 | Define the reflexive relation predicate. (Read: 𝑅 is a reflexive relation.) This is a surprising definition, see the comment of dfrefrel3 34889. Alternate definitions are dfrefrel2 34888 and dfrefrel3 34889. For sets, being an element of the class of reflexive relations (df-refrels 34884) is equivalent to satisfying the reflexive relation predicate, that is (𝑅 ∈ RefRels ↔ RefRel 𝑅) when 𝑅 is a set, cf. elrefrelsrel 34892. (Contributed by Peter Mazsa, 16-Jul-2021.) |
⊢ ( RefRel 𝑅 ↔ (( I ∩ (dom 𝑅 × ran 𝑅)) ⊆ (𝑅 ∩ (dom 𝑅 × ran 𝑅)) ∧ Rel 𝑅)) | ||
Theorem | dfrefrels2 34886 |
Alternate definition of the class of reflexive relations. This is a 0-ary
class constant, which is recommended for definitions (cf. the 1.
Guideline at http://us.metamath.org/ileuni/mathbox.html).
Proper
classes (like I, cf. iprc 7380)
are not elements of this (or any)
class: if a class is an element of another class, it is not a proper class
but a set, cf. elex 3413. So if we use 0-ary constant classes as our
main
definitions, they are valid only for sets, not for proper classes. For
proper classes we use predicate-type definitions like df-refrel 34885. Cf.
the comment of df-rels 34858.
Note that while elementhood in the class of relations cancels restriction of 𝑟 in dfrefrels2 34886, it keeps restriction of I: this is why the very similar definitions df-refs 34883, df-syms 34911 and df-trs 34941 diverge when we switch from (general) sets to relations in dfrefrels2 34886, dfsymrels2 34914 and dftrrels2 34944. (Contributed by Peter Mazsa, 20-Jul-2019.) |
⊢ RefRels = {𝑟 ∈ Rels ∣ ( I ∩ (dom 𝑟 × ran 𝑟)) ⊆ 𝑟} | ||
Theorem | dfrefrels3 34887* | Alternate definition of the class of reflexive relations. (Contributed by Peter Mazsa, 8-Jul-2019.) |
⊢ RefRels = {𝑟 ∈ Rels ∣ ∀𝑥 ∈ dom 𝑟∀𝑦 ∈ ran 𝑟(𝑥 = 𝑦 → 𝑥𝑟𝑦)} | ||
Theorem | dfrefrel2 34888 | Alternate definition of the reflexive relation predicate. (Contributed by Peter Mazsa, 25-Jul-2021.) |
⊢ ( RefRel 𝑅 ↔ (( I ∩ (dom 𝑅 × ran 𝑅)) ⊆ 𝑅 ∧ Rel 𝑅)) | ||
Theorem | dfrefrel3 34889* |
Alternate definition of the reflexive relation predicate. A relation is
reflexive iff: for all elements on its domain and range, if an element
of its domain is the same as an element of its range, then there is the
relation between them.
Note that this is definitely not the definition we are accustomed to, like e.g. idref 6677 / idrefALT 5763 or df-reflexive 43610 ⊢ (𝑅Reflexive𝐴 ↔ (𝑅 ⊆ (𝐴 × 𝐴) ∧ ∀𝑥 ∈ 𝐴𝑥𝑅𝑥)). It turns out that the not-surprising definition which contains ∀𝑥 ∈ dom 𝑟𝑥𝑟𝑥 needs symmetry as well, cf. refsymrels3 34935. Only when this symmetry condition holds, like in case of equivalence relations, cf. dfeqvrels3 34956, can we write the traditional form ∀𝑥 ∈ dom 𝑟𝑥𝑟𝑥 for reflexive relations. For the special case with square Cartesian product when the two forms are equivalent cf. idinxpssinxp4 34714 where ⊢ (∀𝑥 ∈ 𝐴∀𝑦 ∈ 𝐴(𝑥 = 𝑦 → 𝑥𝑅𝑦) ↔ ∀𝑥 ∈ 𝐴𝑥𝑅𝑥). Cf. similar definition of the converse reflexive relations class dfcnvrefrel3 34902. (Contributed by Peter Mazsa, 8-Jul-2019.) |
⊢ ( RefRel 𝑅 ↔ (∀𝑥 ∈ dom 𝑅∀𝑦 ∈ ran 𝑅(𝑥 = 𝑦 → 𝑥𝑅𝑦) ∧ Rel 𝑅)) | ||
Theorem | elrefrels2 34890 | Element of the class of reflexive relations. (Contributed by Peter Mazsa, 23-Jul-2019.) |
⊢ (𝑅 ∈ RefRels ↔ (( I ∩ (dom 𝑅 × ran 𝑅)) ⊆ 𝑅 ∧ 𝑅 ∈ Rels )) | ||
Theorem | elrefrels3 34891* | Element of the class of reflexive relations. (Contributed by Peter Mazsa, 23-Jul-2019.) |
⊢ (𝑅 ∈ RefRels ↔ (∀𝑥 ∈ dom 𝑅∀𝑦 ∈ ran 𝑅(𝑥 = 𝑦 → 𝑥𝑅𝑦) ∧ 𝑅 ∈ Rels )) | ||
Theorem | elrefrelsrel 34892 | For sets, being an element of the class of reflexive relations (df-refrels 34884) is equivalent to satisfying the reflexive relation predicate. (Contributed by Peter Mazsa, 25-Jul-2021.) |
⊢ (𝑅 ∈ 𝑉 → (𝑅 ∈ RefRels ↔ RefRel 𝑅)) | ||
Theorem | refreleq 34893 | Equality theorem for reflexive relation. (Contributed by Peter Mazsa, 15-Apr-2019.) (Revised by Peter Mazsa, 23-Sep-2021.) |
⊢ (𝑅 = 𝑆 → ( RefRel 𝑅 ↔ RefRel 𝑆)) | ||
Theorem | refrelid 34894 | Identity relation is reflexive. (Contributed by Peter Mazsa, 25-Jul-2021.) |
⊢ RefRel I | ||
Theorem | refrelcoss 34895 | The class of cosets by 𝑅 is reflexive. (Contributed by Peter Mazsa, 4-Jul-2020.) |
⊢ RefRel ≀ 𝑅 | ||
Definition | df-cnvrefs 34896 | Define the class of all converse reflexive sets, cf. the comment of df-ssr 34871. It is used only by df-cnvrefrels 34897. (Contributed by Peter Mazsa, 22-Jul-2019.) |
⊢ CnvRefs = {𝑥 ∣ ( I ∩ (dom 𝑥 × ran 𝑥))◡ S (𝑥 ∩ (dom 𝑥 × ran 𝑥))} | ||
Definition | df-cnvrefrels 34897 |
Define the class of converse reflexive relations. This is practically
dfcnvrefrels2 34899 (which uses the traditional subclass
relation ⊆) :
we use converse subset relation (brcnvssr 34879) here to ensure the
comparability to the definitions of the classes of all reflexive
(df-ref 21717), symmetric (df-syms 34911) and transitive (df-trs 34941) sets.
We use this concept to define functions ( ~? df-funsALTV , ~? df-funALTV ) and disjoints ( ~? df-disjs , ~? df-disjALTV ). For sets, being an element of the class of converse reflexive relations is equivalent to satisfying the converse reflexive relation predicate, cf. elcnvrefrelsrel 34905. Alternate definitions are dfcnvrefrels2 34899 and dfcnvrefrels3 34900. (Contributed by Peter Mazsa, 7-Jul-2019.) |
⊢ CnvRefRels = ( CnvRefs ∩ Rels ) | ||
Definition | df-cnvrefrel 34898 | Define the converse reflexive relation predicate (read: 𝑅 is a converse reflexive relation), cf. the comment of dfcnvrefrel3 34902. Alternate definitions are dfcnvrefrel2 34901 and dfcnvrefrel3 34902. (Contributed by Peter Mazsa, 16-Jul-2021.) |
⊢ ( CnvRefRel 𝑅 ↔ ((𝑅 ∩ (dom 𝑅 × ran 𝑅)) ⊆ ( I ∩ (dom 𝑅 × ran 𝑅)) ∧ Rel 𝑅)) | ||
Theorem | dfcnvrefrels2 34899 | Alternate definition of the class of converse reflexive relations. Cf. the comment of dfrefrels2 34886. (Contributed by Peter Mazsa, 21-Jul-2021.) |
⊢ CnvRefRels = {𝑟 ∈ Rels ∣ 𝑟 ⊆ ( I ∩ (dom 𝑟 × ran 𝑟))} | ||
Theorem | dfcnvrefrels3 34900* | Alternate definition of the class of converse reflexive relations. (Contributed by Peter Mazsa, 22-Jul-2019.) |
⊢ CnvRefRels = {𝑟 ∈ Rels ∣ ∀𝑥 ∈ dom 𝑟∀𝑦 ∈ ran 𝑟(𝑥𝑟𝑦 → 𝑥 = 𝑦)} |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |