Detailed syntax breakdown of Definition df-grisom
Step | Hyp | Ref
| Expression |
1 | | cgrisom 45222 |
. 2
class
GrIsom |
2 | | vx |
. . 3
setvar 𝑥 |
3 | | vy |
. . 3
setvar 𝑦 |
4 | | cvv 3430 |
. . 3
class
V |
5 | 2 | cv 1540 |
. . . . . . 7
class 𝑥 |
6 | | cvtx 27347 |
. . . . . . 7
class
Vtx |
7 | 5, 6 | cfv 6430 |
. . . . . 6
class
(Vtx‘𝑥) |
8 | 3 | cv 1540 |
. . . . . . 7
class 𝑦 |
9 | 8, 6 | cfv 6430 |
. . . . . 6
class
(Vtx‘𝑦) |
10 | | vf |
. . . . . . 7
setvar 𝑓 |
11 | 10 | cv 1540 |
. . . . . 6
class 𝑓 |
12 | 7, 9, 11 | wf1o 6429 |
. . . . 5
wff 𝑓:(Vtx‘𝑥)–1-1-onto→(Vtx‘𝑦) |
13 | | ciedg 27348 |
. . . . . . . 8
class
iEdg |
14 | 5, 13 | cfv 6430 |
. . . . . . 7
class
(iEdg‘𝑥) |
15 | 14 | cdm 5588 |
. . . . . 6
class dom
(iEdg‘𝑥) |
16 | 8, 13 | cfv 6430 |
. . . . . . 7
class
(iEdg‘𝑦) |
17 | 16 | cdm 5588 |
. . . . . 6
class dom
(iEdg‘𝑦) |
18 | | vg |
. . . . . . 7
setvar 𝑔 |
19 | 18 | cv 1540 |
. . . . . 6
class 𝑔 |
20 | 15, 17, 19 | wf1o 6429 |
. . . . 5
wff 𝑔:dom (iEdg‘𝑥)–1-1-onto→dom
(iEdg‘𝑦) |
21 | | vi |
. . . . . . . . . 10
setvar 𝑖 |
22 | 21 | cv 1540 |
. . . . . . . . 9
class 𝑖 |
23 | 22, 14 | cfv 6430 |
. . . . . . . 8
class
((iEdg‘𝑥)‘𝑖) |
24 | 11, 23 | cima 5591 |
. . . . . . 7
class (𝑓 “ ((iEdg‘𝑥)‘𝑖)) |
25 | 22, 19 | cfv 6430 |
. . . . . . . 8
class (𝑔‘𝑖) |
26 | 25, 16 | cfv 6430 |
. . . . . . 7
class
((iEdg‘𝑦)‘(𝑔‘𝑖)) |
27 | 24, 26 | wceq 1541 |
. . . . . 6
wff (𝑓 “ ((iEdg‘𝑥)‘𝑖)) = ((iEdg‘𝑦)‘(𝑔‘𝑖)) |
28 | 27, 21, 15 | wral 3065 |
. . . . 5
wff
∀𝑖 ∈ dom
(iEdg‘𝑥)(𝑓 “ ((iEdg‘𝑥)‘𝑖)) = ((iEdg‘𝑦)‘(𝑔‘𝑖)) |
29 | 12, 20, 28 | w3a 1085 |
. . . 4
wff (𝑓:(Vtx‘𝑥)–1-1-onto→(Vtx‘𝑦) ∧ 𝑔:dom (iEdg‘𝑥)–1-1-onto→dom
(iEdg‘𝑦) ∧
∀𝑖 ∈ dom
(iEdg‘𝑥)(𝑓 “ ((iEdg‘𝑥)‘𝑖)) = ((iEdg‘𝑦)‘(𝑔‘𝑖))) |
30 | 29, 10, 18 | copab 5140 |
. . 3
class
{〈𝑓, 𝑔〉 ∣ (𝑓:(Vtx‘𝑥)–1-1-onto→(Vtx‘𝑦) ∧ 𝑔:dom (iEdg‘𝑥)–1-1-onto→dom
(iEdg‘𝑦) ∧
∀𝑖 ∈ dom
(iEdg‘𝑥)(𝑓 “ ((iEdg‘𝑥)‘𝑖)) = ((iEdg‘𝑦)‘(𝑔‘𝑖)))} |
31 | 2, 3, 4, 4, 30 | cmpo 7270 |
. 2
class (𝑥 ∈ V, 𝑦 ∈ V ↦ {〈𝑓, 𝑔〉 ∣ (𝑓:(Vtx‘𝑥)–1-1-onto→(Vtx‘𝑦) ∧ 𝑔:dom (iEdg‘𝑥)–1-1-onto→dom
(iEdg‘𝑦) ∧
∀𝑖 ∈ dom
(iEdg‘𝑥)(𝑓 “ ((iEdg‘𝑥)‘𝑖)) = ((iEdg‘𝑦)‘(𝑔‘𝑖)))}) |
32 | 1, 31 | wceq 1541 |
1
wff GrIsom =
(𝑥 ∈ V, 𝑦 ∈ V ↦ {〈𝑓, 𝑔〉 ∣ (𝑓:(Vtx‘𝑥)–1-1-onto→(Vtx‘𝑦) ∧ 𝑔:dom (iEdg‘𝑥)–1-1-onto→dom
(iEdg‘𝑦) ∧
∀𝑖 ∈ dom
(iEdg‘𝑥)(𝑓 “ ((iEdg‘𝑥)‘𝑖)) = ((iEdg‘𝑦)‘(𝑔‘𝑖)))}) |