Detailed syntax breakdown of Definition df-grisom
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | cgrisom 47860 | . 2
class 
GraphIsom | 
| 2 |  | vx | . . 3
setvar 𝑥 | 
| 3 |  | vy | . . 3
setvar 𝑦 | 
| 4 |  | cvv 3480 | . . 3
class
V | 
| 5 | 2 | cv 1539 | . . . . . . 7
class 𝑥 | 
| 6 |  | cvtx 29013 | . . . . . . 7
class
Vtx | 
| 7 | 5, 6 | cfv 6561 | . . . . . 6
class
(Vtx‘𝑥) | 
| 8 | 3 | cv 1539 | . . . . . . 7
class 𝑦 | 
| 9 | 8, 6 | cfv 6561 | . . . . . 6
class
(Vtx‘𝑦) | 
| 10 |  | vf | . . . . . . 7
setvar 𝑓 | 
| 11 | 10 | cv 1539 | . . . . . 6
class 𝑓 | 
| 12 | 7, 9, 11 | wf1o 6560 | . . . . 5
wff 𝑓:(Vtx‘𝑥)–1-1-onto→(Vtx‘𝑦) | 
| 13 |  | ciedg 29014 | . . . . . . . 8
class
iEdg | 
| 14 | 5, 13 | cfv 6561 | . . . . . . 7
class
(iEdg‘𝑥) | 
| 15 | 14 | cdm 5685 | . . . . . 6
class dom
(iEdg‘𝑥) | 
| 16 | 8, 13 | cfv 6561 | . . . . . . 7
class
(iEdg‘𝑦) | 
| 17 | 16 | cdm 5685 | . . . . . 6
class dom
(iEdg‘𝑦) | 
| 18 |  | vg | . . . . . . 7
setvar 𝑔 | 
| 19 | 18 | cv 1539 | . . . . . 6
class 𝑔 | 
| 20 | 15, 17, 19 | wf1o 6560 | . . . . 5
wff 𝑔:dom (iEdg‘𝑥)–1-1-onto→dom
(iEdg‘𝑦) | 
| 21 |  | vi | . . . . . . . . . 10
setvar 𝑖 | 
| 22 | 21 | cv 1539 | . . . . . . . . 9
class 𝑖 | 
| 23 | 22, 14 | cfv 6561 | . . . . . . . 8
class
((iEdg‘𝑥)‘𝑖) | 
| 24 | 11, 23 | cima 5688 | . . . . . . 7
class (𝑓 “ ((iEdg‘𝑥)‘𝑖)) | 
| 25 | 22, 19 | cfv 6561 | . . . . . . . 8
class (𝑔‘𝑖) | 
| 26 | 25, 16 | cfv 6561 | . . . . . . 7
class
((iEdg‘𝑦)‘(𝑔‘𝑖)) | 
| 27 | 24, 26 | wceq 1540 | . . . . . 6
wff (𝑓 “ ((iEdg‘𝑥)‘𝑖)) = ((iEdg‘𝑦)‘(𝑔‘𝑖)) | 
| 28 | 27, 21, 15 | wral 3061 | . . . . 5
wff
∀𝑖 ∈ dom
(iEdg‘𝑥)(𝑓 “ ((iEdg‘𝑥)‘𝑖)) = ((iEdg‘𝑦)‘(𝑔‘𝑖)) | 
| 29 | 12, 20, 28 | w3a 1087 | . . . 4
wff (𝑓:(Vtx‘𝑥)–1-1-onto→(Vtx‘𝑦) ∧ 𝑔:dom (iEdg‘𝑥)–1-1-onto→dom
(iEdg‘𝑦) ∧
∀𝑖 ∈ dom
(iEdg‘𝑥)(𝑓 “ ((iEdg‘𝑥)‘𝑖)) = ((iEdg‘𝑦)‘(𝑔‘𝑖))) | 
| 30 | 29, 10, 18 | copab 5205 | . . 3
class
{〈𝑓, 𝑔〉 ∣ (𝑓:(Vtx‘𝑥)–1-1-onto→(Vtx‘𝑦) ∧ 𝑔:dom (iEdg‘𝑥)–1-1-onto→dom
(iEdg‘𝑦) ∧
∀𝑖 ∈ dom
(iEdg‘𝑥)(𝑓 “ ((iEdg‘𝑥)‘𝑖)) = ((iEdg‘𝑦)‘(𝑔‘𝑖)))} | 
| 31 | 2, 3, 4, 4, 30 | cmpo 7433 | . 2
class (𝑥 ∈ V, 𝑦 ∈ V ↦ {〈𝑓, 𝑔〉 ∣ (𝑓:(Vtx‘𝑥)–1-1-onto→(Vtx‘𝑦) ∧ 𝑔:dom (iEdg‘𝑥)–1-1-onto→dom
(iEdg‘𝑦) ∧
∀𝑖 ∈ dom
(iEdg‘𝑥)(𝑓 “ ((iEdg‘𝑥)‘𝑖)) = ((iEdg‘𝑦)‘(𝑔‘𝑖)))}) | 
| 32 | 1, 31 | wceq 1540 | 1
wff  GraphIsom
= (𝑥 ∈ V, 𝑦 ∈ V ↦ {〈𝑓, 𝑔〉 ∣ (𝑓:(Vtx‘𝑥)–1-1-onto→(Vtx‘𝑦) ∧ 𝑔:dom (iEdg‘𝑥)–1-1-onto→dom
(iEdg‘𝑦) ∧
∀𝑖 ∈ dom
(iEdg‘𝑥)(𝑓 “ ((iEdg‘𝑥)‘𝑖)) = ((iEdg‘𝑦)‘(𝑔‘𝑖)))}) |