Detailed syntax breakdown of Definition df-grisom
| Step | Hyp | Ref
| Expression |
| 1 | | cgrisom 47887 |
. 2
class
GraphIsom |
| 2 | | vx |
. . 3
setvar 𝑥 |
| 3 | | vy |
. . 3
setvar 𝑦 |
| 4 | | cvv 3459 |
. . 3
class
V |
| 5 | 2 | cv 1539 |
. . . . . . 7
class 𝑥 |
| 6 | | cvtx 28975 |
. . . . . . 7
class
Vtx |
| 7 | 5, 6 | cfv 6531 |
. . . . . 6
class
(Vtx‘𝑥) |
| 8 | 3 | cv 1539 |
. . . . . . 7
class 𝑦 |
| 9 | 8, 6 | cfv 6531 |
. . . . . 6
class
(Vtx‘𝑦) |
| 10 | | vf |
. . . . . . 7
setvar 𝑓 |
| 11 | 10 | cv 1539 |
. . . . . 6
class 𝑓 |
| 12 | 7, 9, 11 | wf1o 6530 |
. . . . 5
wff 𝑓:(Vtx‘𝑥)–1-1-onto→(Vtx‘𝑦) |
| 13 | | ciedg 28976 |
. . . . . . . 8
class
iEdg |
| 14 | 5, 13 | cfv 6531 |
. . . . . . 7
class
(iEdg‘𝑥) |
| 15 | 14 | cdm 5654 |
. . . . . 6
class dom
(iEdg‘𝑥) |
| 16 | 8, 13 | cfv 6531 |
. . . . . . 7
class
(iEdg‘𝑦) |
| 17 | 16 | cdm 5654 |
. . . . . 6
class dom
(iEdg‘𝑦) |
| 18 | | vg |
. . . . . . 7
setvar 𝑔 |
| 19 | 18 | cv 1539 |
. . . . . 6
class 𝑔 |
| 20 | 15, 17, 19 | wf1o 6530 |
. . . . 5
wff 𝑔:dom (iEdg‘𝑥)–1-1-onto→dom
(iEdg‘𝑦) |
| 21 | | vi |
. . . . . . . . . 10
setvar 𝑖 |
| 22 | 21 | cv 1539 |
. . . . . . . . 9
class 𝑖 |
| 23 | 22, 14 | cfv 6531 |
. . . . . . . 8
class
((iEdg‘𝑥)‘𝑖) |
| 24 | 11, 23 | cima 5657 |
. . . . . . 7
class (𝑓 “ ((iEdg‘𝑥)‘𝑖)) |
| 25 | 22, 19 | cfv 6531 |
. . . . . . . 8
class (𝑔‘𝑖) |
| 26 | 25, 16 | cfv 6531 |
. . . . . . 7
class
((iEdg‘𝑦)‘(𝑔‘𝑖)) |
| 27 | 24, 26 | wceq 1540 |
. . . . . 6
wff (𝑓 “ ((iEdg‘𝑥)‘𝑖)) = ((iEdg‘𝑦)‘(𝑔‘𝑖)) |
| 28 | 27, 21, 15 | wral 3051 |
. . . . 5
wff
∀𝑖 ∈ dom
(iEdg‘𝑥)(𝑓 “ ((iEdg‘𝑥)‘𝑖)) = ((iEdg‘𝑦)‘(𝑔‘𝑖)) |
| 29 | 12, 20, 28 | w3a 1086 |
. . . 4
wff (𝑓:(Vtx‘𝑥)–1-1-onto→(Vtx‘𝑦) ∧ 𝑔:dom (iEdg‘𝑥)–1-1-onto→dom
(iEdg‘𝑦) ∧
∀𝑖 ∈ dom
(iEdg‘𝑥)(𝑓 “ ((iEdg‘𝑥)‘𝑖)) = ((iEdg‘𝑦)‘(𝑔‘𝑖))) |
| 30 | 29, 10, 18 | copab 5181 |
. . 3
class
{〈𝑓, 𝑔〉 ∣ (𝑓:(Vtx‘𝑥)–1-1-onto→(Vtx‘𝑦) ∧ 𝑔:dom (iEdg‘𝑥)–1-1-onto→dom
(iEdg‘𝑦) ∧
∀𝑖 ∈ dom
(iEdg‘𝑥)(𝑓 “ ((iEdg‘𝑥)‘𝑖)) = ((iEdg‘𝑦)‘(𝑔‘𝑖)))} |
| 31 | 2, 3, 4, 4, 30 | cmpo 7407 |
. 2
class (𝑥 ∈ V, 𝑦 ∈ V ↦ {〈𝑓, 𝑔〉 ∣ (𝑓:(Vtx‘𝑥)–1-1-onto→(Vtx‘𝑦) ∧ 𝑔:dom (iEdg‘𝑥)–1-1-onto→dom
(iEdg‘𝑦) ∧
∀𝑖 ∈ dom
(iEdg‘𝑥)(𝑓 “ ((iEdg‘𝑥)‘𝑖)) = ((iEdg‘𝑦)‘(𝑔‘𝑖)))}) |
| 32 | 1, 31 | wceq 1540 |
1
wff GraphIsom
= (𝑥 ∈ V, 𝑦 ∈ V ↦ {〈𝑓, 𝑔〉 ∣ (𝑓:(Vtx‘𝑥)–1-1-onto→(Vtx‘𝑦) ∧ 𝑔:dom (iEdg‘𝑥)–1-1-onto→dom
(iEdg‘𝑦) ∧
∀𝑖 ∈ dom
(iEdg‘𝑥)(𝑓 “ ((iEdg‘𝑥)‘𝑖)) = ((iEdg‘𝑦)‘(𝑔‘𝑖)))}) |