Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-grisom Structured version   Visualization version   GIF version

Definition df-grisom 45525
Description: Define the class of all isomorphisms between two graphs. (Contributed by AV, 11-Dec-2022.)
Assertion
Ref Expression
df-grisom GrIsom = (𝑥 ∈ V, 𝑦 ∈ V ↦ {⟨𝑓, 𝑔⟩ ∣ (𝑓:(Vtx‘𝑥)–1-1-onto→(Vtx‘𝑦) ∧ 𝑔:dom (iEdg‘𝑥)–1-1-onto→dom (iEdg‘𝑦) ∧ ∀𝑖 ∈ dom (iEdg‘𝑥)(𝑓 “ ((iEdg‘𝑥)‘𝑖)) = ((iEdg‘𝑦)‘(𝑔𝑖)))})
Distinct variable group:   𝑓,𝑔,𝑖,𝑥,𝑦

Detailed syntax breakdown of Definition df-grisom
StepHypRef Expression
1 cgrisom 45523 . 2 class GrIsom
2 vx . . 3 setvar 𝑥
3 vy . . 3 setvar 𝑦
4 cvv 3437 . . 3 class V
52cv 1538 . . . . . . 7 class 𝑥
6 cvtx 27423 . . . . . . 7 class Vtx
75, 6cfv 6458 . . . . . 6 class (Vtx‘𝑥)
83cv 1538 . . . . . . 7 class 𝑦
98, 6cfv 6458 . . . . . 6 class (Vtx‘𝑦)
10 vf . . . . . . 7 setvar 𝑓
1110cv 1538 . . . . . 6 class 𝑓
127, 9, 11wf1o 6457 . . . . 5 wff 𝑓:(Vtx‘𝑥)–1-1-onto→(Vtx‘𝑦)
13 ciedg 27424 . . . . . . . 8 class iEdg
145, 13cfv 6458 . . . . . . 7 class (iEdg‘𝑥)
1514cdm 5600 . . . . . 6 class dom (iEdg‘𝑥)
168, 13cfv 6458 . . . . . . 7 class (iEdg‘𝑦)
1716cdm 5600 . . . . . 6 class dom (iEdg‘𝑦)
18 vg . . . . . . 7 setvar 𝑔
1918cv 1538 . . . . . 6 class 𝑔
2015, 17, 19wf1o 6457 . . . . 5 wff 𝑔:dom (iEdg‘𝑥)–1-1-onto→dom (iEdg‘𝑦)
21 vi . . . . . . . . . 10 setvar 𝑖
2221cv 1538 . . . . . . . . 9 class 𝑖
2322, 14cfv 6458 . . . . . . . 8 class ((iEdg‘𝑥)‘𝑖)
2411, 23cima 5603 . . . . . . 7 class (𝑓 “ ((iEdg‘𝑥)‘𝑖))
2522, 19cfv 6458 . . . . . . . 8 class (𝑔𝑖)
2625, 16cfv 6458 . . . . . . 7 class ((iEdg‘𝑦)‘(𝑔𝑖))
2724, 26wceq 1539 . . . . . 6 wff (𝑓 “ ((iEdg‘𝑥)‘𝑖)) = ((iEdg‘𝑦)‘(𝑔𝑖))
2827, 21, 15wral 3061 . . . . 5 wff 𝑖 ∈ dom (iEdg‘𝑥)(𝑓 “ ((iEdg‘𝑥)‘𝑖)) = ((iEdg‘𝑦)‘(𝑔𝑖))
2912, 20, 28w3a 1087 . . . 4 wff (𝑓:(Vtx‘𝑥)–1-1-onto→(Vtx‘𝑦) ∧ 𝑔:dom (iEdg‘𝑥)–1-1-onto→dom (iEdg‘𝑦) ∧ ∀𝑖 ∈ dom (iEdg‘𝑥)(𝑓 “ ((iEdg‘𝑥)‘𝑖)) = ((iEdg‘𝑦)‘(𝑔𝑖)))
3029, 10, 18copab 5143 . . 3 class {⟨𝑓, 𝑔⟩ ∣ (𝑓:(Vtx‘𝑥)–1-1-onto→(Vtx‘𝑦) ∧ 𝑔:dom (iEdg‘𝑥)–1-1-onto→dom (iEdg‘𝑦) ∧ ∀𝑖 ∈ dom (iEdg‘𝑥)(𝑓 “ ((iEdg‘𝑥)‘𝑖)) = ((iEdg‘𝑦)‘(𝑔𝑖)))}
312, 3, 4, 4, 30cmpo 7309 . 2 class (𝑥 ∈ V, 𝑦 ∈ V ↦ {⟨𝑓, 𝑔⟩ ∣ (𝑓:(Vtx‘𝑥)–1-1-onto→(Vtx‘𝑦) ∧ 𝑔:dom (iEdg‘𝑥)–1-1-onto→dom (iEdg‘𝑦) ∧ ∀𝑖 ∈ dom (iEdg‘𝑥)(𝑓 “ ((iEdg‘𝑥)‘𝑖)) = ((iEdg‘𝑦)‘(𝑔𝑖)))})
321, 31wceq 1539 1 wff GrIsom = (𝑥 ∈ V, 𝑦 ∈ V ↦ {⟨𝑓, 𝑔⟩ ∣ (𝑓:(Vtx‘𝑥)–1-1-onto→(Vtx‘𝑦) ∧ 𝑔:dom (iEdg‘𝑥)–1-1-onto→dom (iEdg‘𝑦) ∧ ∀𝑖 ∈ dom (iEdg‘𝑥)(𝑓 “ ((iEdg‘𝑥)‘𝑖)) = ((iEdg‘𝑦)‘(𝑔𝑖)))})
Colors of variables: wff setvar class
This definition is referenced by: (None)
  Copyright terms: Public domain W3C validator