Detailed syntax breakdown of Definition df-isomgr
Step | Hyp | Ref
| Expression |
1 | | cisomgr 45271 |
. 2
class
IsomGr |
2 | | vx |
. . . . . . . 8
setvar 𝑥 |
3 | 2 | cv 1538 |
. . . . . . 7
class 𝑥 |
4 | | cvtx 27366 |
. . . . . . 7
class
Vtx |
5 | 3, 4 | cfv 6433 |
. . . . . 6
class
(Vtx‘𝑥) |
6 | | vy |
. . . . . . . 8
setvar 𝑦 |
7 | 6 | cv 1538 |
. . . . . . 7
class 𝑦 |
8 | 7, 4 | cfv 6433 |
. . . . . 6
class
(Vtx‘𝑦) |
9 | | vf |
. . . . . . 7
setvar 𝑓 |
10 | 9 | cv 1538 |
. . . . . 6
class 𝑓 |
11 | 5, 8, 10 | wf1o 6432 |
. . . . 5
wff 𝑓:(Vtx‘𝑥)–1-1-onto→(Vtx‘𝑦) |
12 | | ciedg 27367 |
. . . . . . . . . 10
class
iEdg |
13 | 3, 12 | cfv 6433 |
. . . . . . . . 9
class
(iEdg‘𝑥) |
14 | 13 | cdm 5589 |
. . . . . . . 8
class dom
(iEdg‘𝑥) |
15 | 7, 12 | cfv 6433 |
. . . . . . . . 9
class
(iEdg‘𝑦) |
16 | 15 | cdm 5589 |
. . . . . . . 8
class dom
(iEdg‘𝑦) |
17 | | vg |
. . . . . . . . 9
setvar 𝑔 |
18 | 17 | cv 1538 |
. . . . . . . 8
class 𝑔 |
19 | 14, 16, 18 | wf1o 6432 |
. . . . . . 7
wff 𝑔:dom (iEdg‘𝑥)–1-1-onto→dom
(iEdg‘𝑦) |
20 | | vi |
. . . . . . . . . . . 12
setvar 𝑖 |
21 | 20 | cv 1538 |
. . . . . . . . . . 11
class 𝑖 |
22 | 21, 13 | cfv 6433 |
. . . . . . . . . 10
class
((iEdg‘𝑥)‘𝑖) |
23 | 10, 22 | cima 5592 |
. . . . . . . . 9
class (𝑓 “ ((iEdg‘𝑥)‘𝑖)) |
24 | 21, 18 | cfv 6433 |
. . . . . . . . . 10
class (𝑔‘𝑖) |
25 | 24, 15 | cfv 6433 |
. . . . . . . . 9
class
((iEdg‘𝑦)‘(𝑔‘𝑖)) |
26 | 23, 25 | wceq 1539 |
. . . . . . . 8
wff (𝑓 “ ((iEdg‘𝑥)‘𝑖)) = ((iEdg‘𝑦)‘(𝑔‘𝑖)) |
27 | 26, 20, 14 | wral 3064 |
. . . . . . 7
wff
∀𝑖 ∈ dom
(iEdg‘𝑥)(𝑓 “ ((iEdg‘𝑥)‘𝑖)) = ((iEdg‘𝑦)‘(𝑔‘𝑖)) |
28 | 19, 27 | wa 396 |
. . . . . 6
wff (𝑔:dom (iEdg‘𝑥)–1-1-onto→dom
(iEdg‘𝑦) ∧
∀𝑖 ∈ dom
(iEdg‘𝑥)(𝑓 “ ((iEdg‘𝑥)‘𝑖)) = ((iEdg‘𝑦)‘(𝑔‘𝑖))) |
29 | 28, 17 | wex 1782 |
. . . . 5
wff
∃𝑔(𝑔:dom (iEdg‘𝑥)–1-1-onto→dom
(iEdg‘𝑦) ∧
∀𝑖 ∈ dom
(iEdg‘𝑥)(𝑓 “ ((iEdg‘𝑥)‘𝑖)) = ((iEdg‘𝑦)‘(𝑔‘𝑖))) |
30 | 11, 29 | wa 396 |
. . . 4
wff (𝑓:(Vtx‘𝑥)–1-1-onto→(Vtx‘𝑦) ∧ ∃𝑔(𝑔:dom (iEdg‘𝑥)–1-1-onto→dom
(iEdg‘𝑦) ∧
∀𝑖 ∈ dom
(iEdg‘𝑥)(𝑓 “ ((iEdg‘𝑥)‘𝑖)) = ((iEdg‘𝑦)‘(𝑔‘𝑖)))) |
31 | 30, 9 | wex 1782 |
. . 3
wff
∃𝑓(𝑓:(Vtx‘𝑥)–1-1-onto→(Vtx‘𝑦) ∧ ∃𝑔(𝑔:dom (iEdg‘𝑥)–1-1-onto→dom
(iEdg‘𝑦) ∧
∀𝑖 ∈ dom
(iEdg‘𝑥)(𝑓 “ ((iEdg‘𝑥)‘𝑖)) = ((iEdg‘𝑦)‘(𝑔‘𝑖)))) |
32 | 31, 2, 6 | copab 5136 |
. 2
class
{〈𝑥, 𝑦〉 ∣ ∃𝑓(𝑓:(Vtx‘𝑥)–1-1-onto→(Vtx‘𝑦) ∧ ∃𝑔(𝑔:dom (iEdg‘𝑥)–1-1-onto→dom
(iEdg‘𝑦) ∧
∀𝑖 ∈ dom
(iEdg‘𝑥)(𝑓 “ ((iEdg‘𝑥)‘𝑖)) = ((iEdg‘𝑦)‘(𝑔‘𝑖))))} |
33 | 1, 32 | wceq 1539 |
1
wff IsomGr =
{〈𝑥, 𝑦〉 ∣ ∃𝑓(𝑓:(Vtx‘𝑥)–1-1-onto→(Vtx‘𝑦) ∧ ∃𝑔(𝑔:dom (iEdg‘𝑥)–1-1-onto→dom
(iEdg‘𝑦) ∧
∀𝑖 ∈ dom
(iEdg‘𝑥)(𝑓 “ ((iEdg‘𝑥)‘𝑖)) = ((iEdg‘𝑦)‘(𝑔‘𝑖))))} |