MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-gz Structured version   Visualization version   GIF version

Definition df-gz 16631
Description: Define the set of gaussian integers, which are complex numbers whose real and imaginary parts are integers. (Note that the [i] is actually part of the symbol token and has no independent meaning.) (Contributed by Mario Carneiro, 14-Jul-2014.)
Assertion
Ref Expression
df-gz ℤ[i] = {𝑥 ∈ ℂ ∣ ((ℜ‘𝑥) ∈ ℤ ∧ (ℑ‘𝑥) ∈ ℤ)}

Detailed syntax breakdown of Definition df-gz
StepHypRef Expression
1 cgz 16630 . 2 class ℤ[i]
2 vx . . . . . . 7 setvar 𝑥
32cv 1538 . . . . . 6 class 𝑥
4 cre 14808 . . . . . 6 class
53, 4cfv 6433 . . . . 5 class (ℜ‘𝑥)
6 cz 12319 . . . . 5 class
75, 6wcel 2106 . . . 4 wff (ℜ‘𝑥) ∈ ℤ
8 cim 14809 . . . . . 6 class
93, 8cfv 6433 . . . . 5 class (ℑ‘𝑥)
109, 6wcel 2106 . . . 4 wff (ℑ‘𝑥) ∈ ℤ
117, 10wa 396 . . 3 wff ((ℜ‘𝑥) ∈ ℤ ∧ (ℑ‘𝑥) ∈ ℤ)
12 cc 10869 . . 3 class
1311, 2, 12crab 3068 . 2 class {𝑥 ∈ ℂ ∣ ((ℜ‘𝑥) ∈ ℤ ∧ (ℑ‘𝑥) ∈ ℤ)}
141, 13wceq 1539 1 wff ℤ[i] = {𝑥 ∈ ℂ ∣ ((ℜ‘𝑥) ∈ ℤ ∧ (ℑ‘𝑥) ∈ ℤ)}
Colors of variables: wff setvar class
This definition is referenced by:  elgz  16632
  Copyright terms: Public domain W3C validator