MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elgz Structured version   Visualization version   GIF version

Theorem elgz 16859
Description: Elementhood in the gaussian integers. (Contributed by Mario Carneiro, 14-Jul-2014.)
Assertion
Ref Expression
elgz (𝐴 ∈ ℤ[i] ↔ (𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ ℤ ∧ (ℑ‘𝐴) ∈ ℤ))

Proof of Theorem elgz
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6887 . . . . 5 (𝑥 = 𝐴 → (ℜ‘𝑥) = (ℜ‘𝐴))
21eleq1d 2819 . . . 4 (𝑥 = 𝐴 → ((ℜ‘𝑥) ∈ ℤ ↔ (ℜ‘𝐴) ∈ ℤ))
3 fveq2 6887 . . . . 5 (𝑥 = 𝐴 → (ℑ‘𝑥) = (ℑ‘𝐴))
43eleq1d 2819 . . . 4 (𝑥 = 𝐴 → ((ℑ‘𝑥) ∈ ℤ ↔ (ℑ‘𝐴) ∈ ℤ))
52, 4anbi12d 632 . . 3 (𝑥 = 𝐴 → (((ℜ‘𝑥) ∈ ℤ ∧ (ℑ‘𝑥) ∈ ℤ) ↔ ((ℜ‘𝐴) ∈ ℤ ∧ (ℑ‘𝐴) ∈ ℤ)))
6 df-gz 16858 . . 3 ℤ[i] = {𝑥 ∈ ℂ ∣ ((ℜ‘𝑥) ∈ ℤ ∧ (ℑ‘𝑥) ∈ ℤ)}
75, 6elrab2 3684 . 2 (𝐴 ∈ ℤ[i] ↔ (𝐴 ∈ ℂ ∧ ((ℜ‘𝐴) ∈ ℤ ∧ (ℑ‘𝐴) ∈ ℤ)))
8 3anass 1096 . 2 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ ℤ ∧ (ℑ‘𝐴) ∈ ℤ) ↔ (𝐴 ∈ ℂ ∧ ((ℜ‘𝐴) ∈ ℤ ∧ (ℑ‘𝐴) ∈ ℤ)))
97, 8bitr4i 278 1 (𝐴 ∈ ℤ[i] ↔ (𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ ℤ ∧ (ℑ‘𝐴) ∈ ℤ))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 397  w3a 1088   = wceq 1542  wcel 2107  cfv 6539  cc 11103  cz 12553  cre 15039  cim 15040  ℤ[i]cgz 16857
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-rab 3434  df-v 3477  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-nul 4321  df-if 4527  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4907  df-br 5147  df-iota 6491  df-fv 6547  df-gz 16858
This theorem is referenced by:  gzcn  16860  zgz  16861  igz  16862  gznegcl  16863  gzcjcl  16864  gzaddcl  16865  gzmulcl  16866  gzabssqcl  16869  4sqlem4a  16879  2sqlem2  26900  2sqlem3  26902  cntotbnd  36601
  Copyright terms: Public domain W3C validator