![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elgz | Structured version Visualization version GIF version |
Description: Elementhood in the gaussian integers. (Contributed by Mario Carneiro, 14-Jul-2014.) |
Ref | Expression |
---|---|
elgz | ⊢ (𝐴 ∈ ℤ[i] ↔ (𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ ℤ ∧ (ℑ‘𝐴) ∈ ℤ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6906 | . . . . 5 ⊢ (𝑥 = 𝐴 → (ℜ‘𝑥) = (ℜ‘𝐴)) | |
2 | 1 | eleq1d 2823 | . . . 4 ⊢ (𝑥 = 𝐴 → ((ℜ‘𝑥) ∈ ℤ ↔ (ℜ‘𝐴) ∈ ℤ)) |
3 | fveq2 6906 | . . . . 5 ⊢ (𝑥 = 𝐴 → (ℑ‘𝑥) = (ℑ‘𝐴)) | |
4 | 3 | eleq1d 2823 | . . . 4 ⊢ (𝑥 = 𝐴 → ((ℑ‘𝑥) ∈ ℤ ↔ (ℑ‘𝐴) ∈ ℤ)) |
5 | 2, 4 | anbi12d 632 | . . 3 ⊢ (𝑥 = 𝐴 → (((ℜ‘𝑥) ∈ ℤ ∧ (ℑ‘𝑥) ∈ ℤ) ↔ ((ℜ‘𝐴) ∈ ℤ ∧ (ℑ‘𝐴) ∈ ℤ))) |
6 | df-gz 16963 | . . 3 ⊢ ℤ[i] = {𝑥 ∈ ℂ ∣ ((ℜ‘𝑥) ∈ ℤ ∧ (ℑ‘𝑥) ∈ ℤ)} | |
7 | 5, 6 | elrab2 3697 | . 2 ⊢ (𝐴 ∈ ℤ[i] ↔ (𝐴 ∈ ℂ ∧ ((ℜ‘𝐴) ∈ ℤ ∧ (ℑ‘𝐴) ∈ ℤ))) |
8 | 3anass 1094 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ ℤ ∧ (ℑ‘𝐴) ∈ ℤ) ↔ (𝐴 ∈ ℂ ∧ ((ℜ‘𝐴) ∈ ℤ ∧ (ℑ‘𝐴) ∈ ℤ))) | |
9 | 7, 8 | bitr4i 278 | 1 ⊢ (𝐴 ∈ ℤ[i] ↔ (𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ ℤ ∧ (ℑ‘𝐴) ∈ ℤ)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1536 ∈ wcel 2105 ‘cfv 6562 ℂcc 11150 ℤcz 12610 ℜcre 15132 ℑcim 15133 ℤ[i]cgz 16962 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-rab 3433 df-v 3479 df-dif 3965 df-un 3967 df-ss 3979 df-nul 4339 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-br 5148 df-iota 6515 df-fv 6570 df-gz 16963 |
This theorem is referenced by: gzcn 16965 zgz 16966 igz 16967 gznegcl 16968 gzcjcl 16969 gzaddcl 16970 gzmulcl 16971 gzabssqcl 16974 4sqlem4a 16984 2sqlem2 27476 2sqlem3 27478 cntotbnd 37782 |
Copyright terms: Public domain | W3C validator |