MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elgz Structured version   Visualization version   GIF version

Theorem elgz 16909
Description: Elementhood in the gaussian integers. (Contributed by Mario Carneiro, 14-Jul-2014.)
Assertion
Ref Expression
elgz (𝐴 ∈ ℤ[i] ↔ (𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ ℤ ∧ (ℑ‘𝐴) ∈ ℤ))

Proof of Theorem elgz
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6861 . . . . 5 (𝑥 = 𝐴 → (ℜ‘𝑥) = (ℜ‘𝐴))
21eleq1d 2814 . . . 4 (𝑥 = 𝐴 → ((ℜ‘𝑥) ∈ ℤ ↔ (ℜ‘𝐴) ∈ ℤ))
3 fveq2 6861 . . . . 5 (𝑥 = 𝐴 → (ℑ‘𝑥) = (ℑ‘𝐴))
43eleq1d 2814 . . . 4 (𝑥 = 𝐴 → ((ℑ‘𝑥) ∈ ℤ ↔ (ℑ‘𝐴) ∈ ℤ))
52, 4anbi12d 632 . . 3 (𝑥 = 𝐴 → (((ℜ‘𝑥) ∈ ℤ ∧ (ℑ‘𝑥) ∈ ℤ) ↔ ((ℜ‘𝐴) ∈ ℤ ∧ (ℑ‘𝐴) ∈ ℤ)))
6 df-gz 16908 . . 3 ℤ[i] = {𝑥 ∈ ℂ ∣ ((ℜ‘𝑥) ∈ ℤ ∧ (ℑ‘𝑥) ∈ ℤ)}
75, 6elrab2 3665 . 2 (𝐴 ∈ ℤ[i] ↔ (𝐴 ∈ ℂ ∧ ((ℜ‘𝐴) ∈ ℤ ∧ (ℑ‘𝐴) ∈ ℤ)))
8 3anass 1094 . 2 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ ℤ ∧ (ℑ‘𝐴) ∈ ℤ) ↔ (𝐴 ∈ ℂ ∧ ((ℜ‘𝐴) ∈ ℤ ∧ (ℑ‘𝐴) ∈ ℤ)))
97, 8bitr4i 278 1 (𝐴 ∈ ℤ[i] ↔ (𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ ℤ ∧ (ℑ‘𝐴) ∈ ℤ))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  cfv 6514  cc 11073  cz 12536  cre 15070  cim 15071  ℤ[i]cgz 16907
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-iota 6467  df-fv 6522  df-gz 16908
This theorem is referenced by:  gzcn  16910  zgz  16911  igz  16912  gznegcl  16913  gzcjcl  16914  gzaddcl  16915  gzmulcl  16916  gzabssqcl  16919  4sqlem4a  16929  2sqlem2  27336  2sqlem3  27338  cntotbnd  37797
  Copyright terms: Public domain W3C validator