![]() |
Metamath
Proof Explorer Theorem List (p. 169 of 491) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30946) |
![]() (30947-32469) |
![]() (32470-49035) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | phicl2 16801 | Bounds and closure for the value of the Euler ϕ function. (Contributed by Mario Carneiro, 23-Feb-2014.) |
⊢ (𝑁 ∈ ℕ → (ϕ‘𝑁) ∈ (1...𝑁)) | ||
Theorem | phicl 16802 | Closure for the value of the Euler ϕ function. (Contributed by Mario Carneiro, 28-Feb-2014.) |
⊢ (𝑁 ∈ ℕ → (ϕ‘𝑁) ∈ ℕ) | ||
Theorem | phibndlem 16803* | Lemma for phibnd 16804. (Contributed by Mario Carneiro, 23-Feb-2014.) |
⊢ (𝑁 ∈ (ℤ≥‘2) → {𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1} ⊆ (1...(𝑁 − 1))) | ||
Theorem | phibnd 16804 | A slightly tighter bound on the value of the Euler ϕ function. (Contributed by Mario Carneiro, 23-Feb-2014.) |
⊢ (𝑁 ∈ (ℤ≥‘2) → (ϕ‘𝑁) ≤ (𝑁 − 1)) | ||
Theorem | phicld 16805 | Closure for the value of the Euler ϕ function. (Contributed by Mario Carneiro, 29-May-2016.) |
⊢ (𝜑 → 𝑁 ∈ ℕ) ⇒ ⊢ (𝜑 → (ϕ‘𝑁) ∈ ℕ) | ||
Theorem | phi1 16806 | Value of the Euler ϕ function at 1. (Contributed by Mario Carneiro, 23-Feb-2014.) |
⊢ (ϕ‘1) = 1 | ||
Theorem | dfphi2 16807* | Alternate definition of the Euler ϕ function. (Contributed by Mario Carneiro, 23-Feb-2014.) (Revised by Mario Carneiro, 2-May-2016.) |
⊢ (𝑁 ∈ ℕ → (ϕ‘𝑁) = (♯‘{𝑥 ∈ (0..^𝑁) ∣ (𝑥 gcd 𝑁) = 1})) | ||
Theorem | hashdvds 16808* | The number of numbers in a given residue class in a finite set of integers. (Contributed by Mario Carneiro, 12-Mar-2014.) (Proof shortened by Mario Carneiro, 7-Jun-2016.) |
⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐴 ∈ ℤ) & ⊢ (𝜑 → 𝐵 ∈ (ℤ≥‘(𝐴 − 1))) & ⊢ (𝜑 → 𝐶 ∈ ℤ) ⇒ ⊢ (𝜑 → (♯‘{𝑥 ∈ (𝐴...𝐵) ∣ 𝑁 ∥ (𝑥 − 𝐶)}) = ((⌊‘((𝐵 − 𝐶) / 𝑁)) − (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)))) | ||
Theorem | phiprmpw 16809 | Value of the Euler ϕ function at a prime power. Theorem 2.5(a) in [ApostolNT] p. 28. (Contributed by Mario Carneiro, 24-Feb-2014.) |
⊢ ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (ϕ‘(𝑃↑𝐾)) = ((𝑃↑(𝐾 − 1)) · (𝑃 − 1))) | ||
Theorem | phiprm 16810 | Value of the Euler ϕ function at a prime. (Contributed by Mario Carneiro, 28-Feb-2014.) |
⊢ (𝑃 ∈ ℙ → (ϕ‘𝑃) = (𝑃 − 1)) | ||
Theorem | crth 16811* | The Chinese Remainder Theorem: the function that maps 𝑥 to its remainder classes mod 𝑀 and mod 𝑁 is 1-1 and onto when 𝑀 and 𝑁 are coprime. (Contributed by Mario Carneiro, 24-Feb-2014.) (Proof shortened by Mario Carneiro, 2-May-2016.) |
⊢ 𝑆 = (0..^(𝑀 · 𝑁)) & ⊢ 𝑇 = ((0..^𝑀) × (0..^𝑁)) & ⊢ 𝐹 = (𝑥 ∈ 𝑆 ↦ 〈(𝑥 mod 𝑀), (𝑥 mod 𝑁)〉) & ⊢ (𝜑 → (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1)) ⇒ ⊢ (𝜑 → 𝐹:𝑆–1-1-onto→𝑇) | ||
Theorem | phimullem 16812* | Lemma for phimul 16813. (Contributed by Mario Carneiro, 24-Feb-2014.) |
⊢ 𝑆 = (0..^(𝑀 · 𝑁)) & ⊢ 𝑇 = ((0..^𝑀) × (0..^𝑁)) & ⊢ 𝐹 = (𝑥 ∈ 𝑆 ↦ 〈(𝑥 mod 𝑀), (𝑥 mod 𝑁)〉) & ⊢ (𝜑 → (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1)) & ⊢ 𝑈 = {𝑦 ∈ (0..^𝑀) ∣ (𝑦 gcd 𝑀) = 1} & ⊢ 𝑉 = {𝑦 ∈ (0..^𝑁) ∣ (𝑦 gcd 𝑁) = 1} & ⊢ 𝑊 = {𝑦 ∈ 𝑆 ∣ (𝑦 gcd (𝑀 · 𝑁)) = 1} ⇒ ⊢ (𝜑 → (ϕ‘(𝑀 · 𝑁)) = ((ϕ‘𝑀) · (ϕ‘𝑁))) | ||
Theorem | phimul 16813 | The Euler ϕ function is a multiplicative function, meaning that it distributes over multiplication at relatively prime arguments. Theorem 2.5(c) in [ApostolNT] p. 28. (Contributed by Mario Carneiro, 24-Feb-2014.) |
⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) → (ϕ‘(𝑀 · 𝑁)) = ((ϕ‘𝑀) · (ϕ‘𝑁))) | ||
Theorem | eulerthlem1 16814* | Lemma for eulerth 16816. (Contributed by Mario Carneiro, 8-May-2015.) |
⊢ (𝜑 → (𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1)) & ⊢ 𝑆 = {𝑦 ∈ (0..^𝑁) ∣ (𝑦 gcd 𝑁) = 1} & ⊢ 𝑇 = (1...(ϕ‘𝑁)) & ⊢ (𝜑 → 𝐹:𝑇–1-1-onto→𝑆) & ⊢ 𝐺 = (𝑥 ∈ 𝑇 ↦ ((𝐴 · (𝐹‘𝑥)) mod 𝑁)) ⇒ ⊢ (𝜑 → 𝐺:𝑇⟶𝑆) | ||
Theorem | eulerthlem2 16815* | Lemma for eulerth 16816. (Contributed by Mario Carneiro, 28-Feb-2014.) |
⊢ (𝜑 → (𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1)) & ⊢ 𝑆 = {𝑦 ∈ (0..^𝑁) ∣ (𝑦 gcd 𝑁) = 1} & ⊢ 𝑇 = (1...(ϕ‘𝑁)) & ⊢ (𝜑 → 𝐹:𝑇–1-1-onto→𝑆) & ⊢ 𝐺 = (𝑥 ∈ 𝑇 ↦ ((𝐴 · (𝐹‘𝑥)) mod 𝑁)) ⇒ ⊢ (𝜑 → ((𝐴↑(ϕ‘𝑁)) mod 𝑁) = (1 mod 𝑁)) | ||
Theorem | eulerth 16816 | Euler's theorem, a generalization of Fermat's little theorem. If 𝐴 and 𝑁 are coprime, then 𝐴↑ϕ(𝑁)≡1 (mod 𝑁). This is Metamath 100 proof #10. Also called Euler-Fermat theorem, see theorem 5.17 in [ApostolNT] p. 113. (Contributed by Mario Carneiro, 28-Feb-2014.) |
⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) → ((𝐴↑(ϕ‘𝑁)) mod 𝑁) = (1 mod 𝑁)) | ||
Theorem | fermltl 16817 | Fermat's little theorem. When 𝑃 is prime, 𝐴↑𝑃≡𝐴 (mod 𝑃) for any 𝐴, see theorem 5.19 in [ApostolNT] p. 114. (Contributed by Mario Carneiro, 28-Feb-2014.) (Proof shortened by AV, 19-Mar-2022.) |
⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → ((𝐴↑𝑃) mod 𝑃) = (𝐴 mod 𝑃)) | ||
Theorem | prmdiv 16818 | Show an explicit expression for the modular inverse of 𝐴 mod 𝑃. (Contributed by Mario Carneiro, 24-Jan-2015.) |
⊢ 𝑅 = ((𝐴↑(𝑃 − 2)) mod 𝑃) ⇒ ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃 ∥ 𝐴) → (𝑅 ∈ (1...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑅) − 1))) | ||
Theorem | prmdiveq 16819 | The modular inverse of 𝐴 mod 𝑃 is unique. (Contributed by Mario Carneiro, 24-Jan-2015.) |
⊢ 𝑅 = ((𝐴↑(𝑃 − 2)) mod 𝑃) ⇒ ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃 ∥ 𝐴) → ((𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1)) ↔ 𝑆 = 𝑅)) | ||
Theorem | prmdivdiv 16820 | The (modular) inverse of the inverse of a number is itself. (Contributed by Mario Carneiro, 24-Jan-2015.) |
⊢ 𝑅 = ((𝐴↑(𝑃 − 2)) mod 𝑃) ⇒ ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ (1...(𝑃 − 1))) → 𝐴 = ((𝑅↑(𝑃 − 2)) mod 𝑃)) | ||
Theorem | hashgcdlem 16821* | A correspondence between elements of specific GCD and relative primes in a smaller ring. (Contributed by Stefan O'Rear, 12-Sep-2015.) |
⊢ 𝐴 = {𝑦 ∈ (0..^(𝑀 / 𝑁)) ∣ (𝑦 gcd (𝑀 / 𝑁)) = 1} & ⊢ 𝐵 = {𝑧 ∈ (0..^𝑀) ∣ (𝑧 gcd 𝑀) = 𝑁} & ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ (𝑥 · 𝑁)) ⇒ ⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∥ 𝑀) → 𝐹:𝐴–1-1-onto→𝐵) | ||
Theorem | hashgcdeq 16822* | Number of initial positive integers with specified divisors. (Contributed by Stefan O'Rear, 12-Sep-2015.) |
⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (♯‘{𝑥 ∈ (0..^𝑀) ∣ (𝑥 gcd 𝑀) = 𝑁}) = if(𝑁 ∥ 𝑀, (ϕ‘(𝑀 / 𝑁)), 0)) | ||
Theorem | phisum 16823* | The divisor sum identity of the totient function. Theorem 2.2 in [ApostolNT] p. 26. (Contributed by Stefan O'Rear, 12-Sep-2015.) |
⊢ (𝑁 ∈ ℕ → Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} (ϕ‘𝑑) = 𝑁) | ||
Theorem | odzval 16824* | Value of the order function. This is a function of functions; the inner argument selects the base (i.e., mod 𝑁 for some 𝑁, often prime) and the outer argument selects the integer or equivalence class (if you want to think about it that way) from the integers mod 𝑁. In order to ensure the supremum is well-defined, we only define the expression when 𝐴 and 𝑁 are coprime. (Contributed by Mario Carneiro, 23-Feb-2014.) (Revised by AV, 26-Sep-2020.) |
⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) → ((odℤ‘𝑁)‘𝐴) = inf({𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝐴↑𝑛) − 1)}, ℝ, < )) | ||
Theorem | odzcllem 16825 | - Lemma for odzcl 16826, showing existence of a recurrent point for the exponential. (Contributed by Mario Carneiro, 28-Feb-2014.) (Proof shortened by AV, 26-Sep-2020.) |
⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) → (((odℤ‘𝑁)‘𝐴) ∈ ℕ ∧ 𝑁 ∥ ((𝐴↑((odℤ‘𝑁)‘𝐴)) − 1))) | ||
Theorem | odzcl 16826 | The order of a group element is an integer. (Contributed by Mario Carneiro, 28-Feb-2014.) |
⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) → ((odℤ‘𝑁)‘𝐴) ∈ ℕ) | ||
Theorem | odzid 16827 | Any element raised to the power of its order is 1. (Contributed by Mario Carneiro, 28-Feb-2014.) |
⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) → 𝑁 ∥ ((𝐴↑((odℤ‘𝑁)‘𝐴)) − 1)) | ||
Theorem | odzdvds 16828 | The only powers of 𝐴 that are congruent to 1 are the multiples of the order of 𝐴. (Contributed by Mario Carneiro, 28-Feb-2014.) (Proof shortened by AV, 26-Sep-2020.) |
⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → (𝑁 ∥ ((𝐴↑𝐾) − 1) ↔ ((odℤ‘𝑁)‘𝐴) ∥ 𝐾)) | ||
Theorem | odzphi 16829 | The order of any group element is a divisor of the Euler ϕ function. (Contributed by Mario Carneiro, 28-Feb-2014.) |
⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) → ((odℤ‘𝑁)‘𝐴) ∥ (ϕ‘𝑁)) | ||
Theorem | modprm1div 16830 | A prime number divides an integer minus 1 iff the integer modulo the prime number is 1. (Contributed by Alexander van der Vekens, 17-May-2018.) (Proof shortened by AV, 30-May-2023.) |
⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → ((𝐴 mod 𝑃) = 1 ↔ 𝑃 ∥ (𝐴 − 1))) | ||
Theorem | m1dvdsndvds 16831 | If an integer minus 1 is divisible by a prime number, the integer itself is not divisible by this prime number. (Contributed by Alexander van der Vekens, 30-Aug-2018.) |
⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (𝑃 ∥ (𝐴 − 1) → ¬ 𝑃 ∥ 𝐴)) | ||
Theorem | modprminv 16832 | Show an explicit expression for the modular inverse of 𝐴 mod 𝑃. This is an application of prmdiv 16818. (Contributed by Alexander van der Vekens, 15-May-2018.) |
⊢ 𝑅 = ((𝐴↑(𝑃 − 2)) mod 𝑃) ⇒ ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃 ∥ 𝐴) → (𝑅 ∈ (1...(𝑃 − 1)) ∧ ((𝐴 · 𝑅) mod 𝑃) = 1)) | ||
Theorem | modprminveq 16833 | The modular inverse of 𝐴 mod 𝑃 is unique. (Contributed by Alexander van der Vekens, 17-May-2018.) |
⊢ 𝑅 = ((𝐴↑(𝑃 − 2)) mod 𝑃) ⇒ ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃 ∥ 𝐴) → ((𝑆 ∈ (0...(𝑃 − 1)) ∧ ((𝐴 · 𝑆) mod 𝑃) = 1) ↔ 𝑆 = 𝑅)) | ||
Theorem | vfermltl 16834 | Variant of Fermat's little theorem if 𝐴 is not a multiple of 𝑃, see theorem 5.18 in [ApostolNT] p. 113. (Contributed by AV, 21-Aug-2020.) (Proof shortened by AV, 5-Sep-2020.) |
⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃 ∥ 𝐴) → ((𝐴↑(𝑃 − 1)) mod 𝑃) = 1) | ||
Theorem | vfermltlALT 16835 | Alternate proof of vfermltl 16834, not using Euler's theorem. (Contributed by AV, 21-Aug-2020.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃 ∥ 𝐴) → ((𝐴↑(𝑃 − 1)) mod 𝑃) = 1) | ||
Theorem | powm2modprm 16836 | If an integer minus 1 is divisible by a prime number, then the integer to the power of the prime number minus 2 is 1 modulo the prime number. (Contributed by Alexander van der Vekens, 30-Aug-2018.) |
⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (𝑃 ∥ (𝐴 − 1) → ((𝐴↑(𝑃 − 2)) mod 𝑃) = 1)) | ||
Theorem | reumodprminv 16837* | For any prime number and for any positive integer less than this prime number, there is a unique modular inverse of this positive integer. (Contributed by Alexander van der Vekens, 12-May-2018.) |
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃)) → ∃!𝑖 ∈ (1...(𝑃 − 1))((𝑁 · 𝑖) mod 𝑃) = 1) | ||
Theorem | modprm0 16838* | For two positive integers less than a given prime number there is always a nonnegative integer (less than the given prime number) so that the sum of one of the two positive integers and the other of the positive integers multiplied by the nonnegative integer is 0 ( modulo the given prime number). (Contributed by Alexander van der Vekens, 17-May-2018.) |
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃)) → ∃𝑗 ∈ (0..^𝑃)((𝐼 + (𝑗 · 𝑁)) mod 𝑃) = 0) | ||
Theorem | nnnn0modprm0 16839* | For a positive integer and a nonnegative integer both less than a given prime number there is always a second nonnegative integer (less than the given prime number) so that the sum of this second nonnegative integer multiplied with the positive integer and the first nonnegative integer is 0 ( modulo the given prime number). (Contributed by Alexander van der Vekens, 8-Nov-2018.) |
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (0..^𝑃)) → ∃𝑗 ∈ (0..^𝑃)((𝐼 + (𝑗 · 𝑁)) mod 𝑃) = 0) | ||
Theorem | modprmn0modprm0 16840* | For an integer not being 0 modulo a given prime number and a nonnegative integer less than the prime number, there is always a second nonnegative integer (less than the given prime number) so that the sum of this second nonnegative integer multiplied with the integer and the first nonnegative integer is 0 ( modulo the given prime number). (Contributed by Alexander van der Vekens, 10-Nov-2018.) |
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ (𝑁 mod 𝑃) ≠ 0) → (𝐼 ∈ (0..^𝑃) → ∃𝑗 ∈ (0..^𝑃)((𝐼 + (𝑗 · 𝑁)) mod 𝑃) = 0)) | ||
Theorem | coprimeprodsq 16841 | If three numbers are coprime, and the square of one is the product of the other two, then there is a formula for the other two in terms of gcd and square. (Contributed by Scott Fenton, 2-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ (((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) ∧ ((𝐴 gcd 𝐵) gcd 𝐶) = 1) → ((𝐶↑2) = (𝐴 · 𝐵) → 𝐴 = ((𝐴 gcd 𝐶)↑2))) | ||
Theorem | coprimeprodsq2 16842 | If three numbers are coprime, and the square of one is the product of the other two, then there is a formula for the other two in terms of gcd and square. (Contributed by Scott Fenton, 17-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0 ∧ 𝐶 ∈ ℕ0) ∧ ((𝐴 gcd 𝐵) gcd 𝐶) = 1) → ((𝐶↑2) = (𝐴 · 𝐵) → 𝐵 = ((𝐵 gcd 𝐶)↑2))) | ||
Theorem | oddprm 16843 | A prime not equal to 2 is odd. (Contributed by Mario Carneiro, 4-Feb-2015.) (Proof shortened by AV, 10-Jul-2022.) |
⊢ (𝑁 ∈ (ℙ ∖ {2}) → ((𝑁 − 1) / 2) ∈ ℕ) | ||
Theorem | nnoddn2prm 16844 | A prime not equal to 2 is an odd positive integer. (Contributed by AV, 28-Jun-2021.) |
⊢ (𝑁 ∈ (ℙ ∖ {2}) → (𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁)) | ||
Theorem | oddn2prm 16845 | A prime not equal to 2 is odd. (Contributed by AV, 28-Jun-2021.) |
⊢ (𝑁 ∈ (ℙ ∖ {2}) → ¬ 2 ∥ 𝑁) | ||
Theorem | nnoddn2prmb 16846 | A number is a prime number not equal to 2 iff it is an odd prime number. Conversion theorem for two representations of odd primes. (Contributed by AV, 14-Jul-2021.) |
⊢ (𝑁 ∈ (ℙ ∖ {2}) ↔ (𝑁 ∈ ℙ ∧ ¬ 2 ∥ 𝑁)) | ||
Theorem | prm23lt5 16847 | A prime less than 5 is either 2 or 3. (Contributed by AV, 5-Jul-2021.) |
⊢ ((𝑃 ∈ ℙ ∧ 𝑃 < 5) → (𝑃 = 2 ∨ 𝑃 = 3)) | ||
Theorem | prm23ge5 16848 | A prime is either 2 or 3 or greater than or equal to 5. (Contributed by AV, 5-Jul-2021.) |
⊢ (𝑃 ∈ ℙ → (𝑃 = 2 ∨ 𝑃 = 3 ∨ 𝑃 ∈ (ℤ≥‘5))) | ||
Theorem | pythagtriplem1 16849* | Lemma for pythagtrip 16867. Prove a weaker version of one direction of the theorem. (Contributed by Scott Fenton, 28-Mar-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ (∃𝑛 ∈ ℕ ∃𝑚 ∈ ℕ ∃𝑘 ∈ ℕ (𝐴 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐵 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2)))) → ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2)) | ||
Theorem | pythagtriplem2 16850* | Lemma for pythagtrip 16867. Prove the full version of one direction of the theorem. (Contributed by Scott Fenton, 28-Mar-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (∃𝑛 ∈ ℕ ∃𝑚 ∈ ℕ ∃𝑘 ∈ ℕ ({𝐴, 𝐵} = {(𝑘 · ((𝑚↑2) − (𝑛↑2))), (𝑘 · (2 · (𝑚 · 𝑛)))} ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2)))) → ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2))) | ||
Theorem | pythagtriplem3 16851 | Lemma for pythagtrip 16867. Show that 𝐶 and 𝐵 are relatively prime under some conditions. (Contributed by Scott Fenton, 8-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (𝐵 gcd 𝐶) = 1) | ||
Theorem | pythagtriplem4 16852 | Lemma for pythagtrip 16867. Show that 𝐶 − 𝐵 and 𝐶 + 𝐵 are relatively prime. (Contributed by Scott Fenton, 12-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((𝐶 − 𝐵) gcd (𝐶 + 𝐵)) = 1) | ||
Theorem | pythagtriplem10 16853 | Lemma for pythagtrip 16867. Show that 𝐶 − 𝐵 is positive. (Contributed by Scott Fenton, 17-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2)) → 0 < (𝐶 − 𝐵)) | ||
Theorem | pythagtriplem6 16854 | Lemma for pythagtrip 16867. Calculate (√‘(𝐶 − 𝐵)). (Contributed by Scott Fenton, 18-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (√‘(𝐶 − 𝐵)) = ((𝐶 − 𝐵) gcd 𝐴)) | ||
Theorem | pythagtriplem7 16855 | Lemma for pythagtrip 16867. Calculate (√‘(𝐶 + 𝐵)). (Contributed by Scott Fenton, 18-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (√‘(𝐶 + 𝐵)) = ((𝐶 + 𝐵) gcd 𝐴)) | ||
Theorem | pythagtriplem8 16856 | Lemma for pythagtrip 16867. Show that (√‘(𝐶 − 𝐵)) is a positive integer. (Contributed by Scott Fenton, 17-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (√‘(𝐶 − 𝐵)) ∈ ℕ) | ||
Theorem | pythagtriplem9 16857 | Lemma for pythagtrip 16867. Show that (√‘(𝐶 + 𝐵)) is a positive integer. (Contributed by Scott Fenton, 17-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (√‘(𝐶 + 𝐵)) ∈ ℕ) | ||
Theorem | pythagtriplem11 16858 | Lemma for pythagtrip 16867. Show that 𝑀 (which will eventually be closely related to the 𝑚 in the final statement) is a natural. (Contributed by Scott Fenton, 17-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ 𝑀 = (((√‘(𝐶 + 𝐵)) + (√‘(𝐶 − 𝐵))) / 2) ⇒ ⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 𝑀 ∈ ℕ) | ||
Theorem | pythagtriplem12 16859 | Lemma for pythagtrip 16867. Calculate the square of 𝑀. (Contributed by Scott Fenton, 17-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ 𝑀 = (((√‘(𝐶 + 𝐵)) + (√‘(𝐶 − 𝐵))) / 2) ⇒ ⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (𝑀↑2) = ((𝐶 + 𝐴) / 2)) | ||
Theorem | pythagtriplem13 16860 | Lemma for pythagtrip 16867. Show that 𝑁 (which will eventually be closely related to the 𝑛 in the final statement) is a natural. (Contributed by Scott Fenton, 17-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ 𝑁 = (((√‘(𝐶 + 𝐵)) − (√‘(𝐶 − 𝐵))) / 2) ⇒ ⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 𝑁 ∈ ℕ) | ||
Theorem | pythagtriplem14 16861 | Lemma for pythagtrip 16867. Calculate the square of 𝑁. (Contributed by Scott Fenton, 17-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ 𝑁 = (((√‘(𝐶 + 𝐵)) − (√‘(𝐶 − 𝐵))) / 2) ⇒ ⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (𝑁↑2) = ((𝐶 − 𝐴) / 2)) | ||
Theorem | pythagtriplem15 16862 | Lemma for pythagtrip 16867. Show the relationship between 𝑀, 𝑁, and 𝐴. (Contributed by Scott Fenton, 17-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ 𝑀 = (((√‘(𝐶 + 𝐵)) + (√‘(𝐶 − 𝐵))) / 2) & ⊢ 𝑁 = (((√‘(𝐶 + 𝐵)) − (√‘(𝐶 − 𝐵))) / 2) ⇒ ⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 𝐴 = ((𝑀↑2) − (𝑁↑2))) | ||
Theorem | pythagtriplem16 16863 | Lemma for pythagtrip 16867. Show the relationship between 𝑀, 𝑁, and 𝐵. (Contributed by Scott Fenton, 17-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ 𝑀 = (((√‘(𝐶 + 𝐵)) + (√‘(𝐶 − 𝐵))) / 2) & ⊢ 𝑁 = (((√‘(𝐶 + 𝐵)) − (√‘(𝐶 − 𝐵))) / 2) ⇒ ⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 𝐵 = (2 · (𝑀 · 𝑁))) | ||
Theorem | pythagtriplem17 16864 | Lemma for pythagtrip 16867. Show the relationship between 𝑀, 𝑁, and 𝐶. (Contributed by Scott Fenton, 17-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ 𝑀 = (((√‘(𝐶 + 𝐵)) + (√‘(𝐶 − 𝐵))) / 2) & ⊢ 𝑁 = (((√‘(𝐶 + 𝐵)) − (√‘(𝐶 − 𝐵))) / 2) ⇒ ⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 𝐶 = ((𝑀↑2) + (𝑁↑2))) | ||
Theorem | pythagtriplem18 16865* | Lemma for pythagtrip 16867. Wrap the previous 𝑀 and 𝑁 up in quantifiers. (Contributed by Scott Fenton, 18-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ∃𝑛 ∈ ℕ ∃𝑚 ∈ ℕ (𝐴 = ((𝑚↑2) − (𝑛↑2)) ∧ 𝐵 = (2 · (𝑚 · 𝑛)) ∧ 𝐶 = ((𝑚↑2) + (𝑛↑2)))) | ||
Theorem | pythagtriplem19 16866* | Lemma for pythagtrip 16867. Introduce 𝑘 and remove the relative primality requirement. (Contributed by Scott Fenton, 18-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ¬ 2 ∥ (𝐴 / (𝐴 gcd 𝐵))) → ∃𝑛 ∈ ℕ ∃𝑚 ∈ ℕ ∃𝑘 ∈ ℕ (𝐴 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐵 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2))))) | ||
Theorem | pythagtrip 16867* | Parameterize the Pythagorean triples. If 𝐴, 𝐵, and 𝐶 are naturals, then they obey the Pythagorean triple formula iff they are parameterized by three naturals. This proof follows the Isabelle proof at http://afp.sourceforge.net/entries/Fermat3_4.shtml. This is Metamath 100 proof #23. (Contributed by Scott Fenton, 19-Apr-2014.) |
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ↔ ∃𝑛 ∈ ℕ ∃𝑚 ∈ ℕ ∃𝑘 ∈ ℕ ({𝐴, 𝐵} = {(𝑘 · ((𝑚↑2) − (𝑛↑2))), (𝑘 · (2 · (𝑚 · 𝑛)))} ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2)))))) | ||
Theorem | iserodd 16868* | Collect the odd terms in a sequence. (Contributed by Mario Carneiro, 7-Apr-2015.) (Proof shortened by AV, 10-Jul-2022.) |
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → 𝐶 ∈ ℂ) & ⊢ (𝑛 = ((2 · 𝑘) + 1) → 𝐵 = 𝐶) ⇒ ⊢ (𝜑 → (seq0( + , (𝑘 ∈ ℕ0 ↦ 𝐶)) ⇝ 𝐴 ↔ seq1( + , (𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 𝐵))) ⇝ 𝐴)) | ||
Syntax | cpc 16869 | Extend class notation with the prime count function. |
class pCnt | ||
Definition | df-pc 16870* | Define the prime count function, which returns the largest exponent of a given prime (or other positive integer) that divides the number. For rational numbers, it returns negative values according to the power of a prime in the denominator. (Contributed by Mario Carneiro, 23-Feb-2014.) |
⊢ pCnt = (𝑝 ∈ ℙ, 𝑟 ∈ ℚ ↦ if(𝑟 = 0, +∞, (℩𝑧∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑟 = (𝑥 / 𝑦) ∧ 𝑧 = (sup({𝑛 ∈ ℕ0 ∣ (𝑝↑𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑝↑𝑛) ∥ 𝑦}, ℝ, < )))))) | ||
Theorem | pclem 16871* | - Lemma for the prime power pre-function's properties. (Contributed by Mario Carneiro, 23-Feb-2014.) |
⊢ 𝐴 = {𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑁} ⇒ ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℤ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥)) | ||
Theorem | pcprecl 16872* | Closure of the prime power pre-function. (Contributed by Mario Carneiro, 23-Feb-2014.) |
⊢ 𝐴 = {𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑁} & ⊢ 𝑆 = sup(𝐴, ℝ, < ) ⇒ ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑆 ∈ ℕ0 ∧ (𝑃↑𝑆) ∥ 𝑁)) | ||
Theorem | pcprendvds 16873* | Non-divisibility property of the prime power pre-function. (Contributed by Mario Carneiro, 23-Feb-2014.) |
⊢ 𝐴 = {𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑁} & ⊢ 𝑆 = sup(𝐴, ℝ, < ) ⇒ ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ¬ (𝑃↑(𝑆 + 1)) ∥ 𝑁) | ||
Theorem | pcprendvds2 16874* | Non-divisibility property of the prime power pre-function. (Contributed by Mario Carneiro, 23-Feb-2014.) |
⊢ 𝐴 = {𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑁} & ⊢ 𝑆 = sup(𝐴, ℝ, < ) ⇒ ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ¬ 𝑃 ∥ (𝑁 / (𝑃↑𝑆))) | ||
Theorem | pcpre1 16875* | Value of the prime power pre-function at 1. (Contributed by Mario Carneiro, 23-Feb-2014.) (Revised by Mario Carneiro, 26-Apr-2016.) |
⊢ 𝐴 = {𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑁} & ⊢ 𝑆 = sup(𝐴, ℝ, < ) ⇒ ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ 𝑁 = 1) → 𝑆 = 0) | ||
Theorem | pcpremul 16876* | Multiplicative property of the prime count pre-function. Note that the primality of 𝑃 is essential for this property; (4 pCnt 2) = 0 but (4 pCnt (2 · 2)) = 1 ≠ 2 · (4 pCnt 2) = 0. Since this is needed to show uniqueness for the real prime count function (over ℚ), we don't bother to define it off the primes. (Contributed by Mario Carneiro, 23-Feb-2014.) |
⊢ 𝑆 = sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑀}, ℝ, < ) & ⊢ 𝑇 = sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑁}, ℝ, < ) & ⊢ 𝑈 = sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ (𝑀 · 𝑁)}, ℝ, < ) ⇒ ⊢ ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑆 + 𝑇) = 𝑈) | ||
Theorem | pcval 16877* | The value of the prime power function. (Contributed by Mario Carneiro, 23-Feb-2014.) (Revised by Mario Carneiro, 3-Oct-2014.) |
⊢ 𝑆 = sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑥}, ℝ, < ) & ⊢ 𝑇 = sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑦}, ℝ, < ) ⇒ ⊢ ((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℚ ∧ 𝑁 ≠ 0)) → (𝑃 pCnt 𝑁) = (℩𝑧∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆 − 𝑇)))) | ||
Theorem | pceulem 16878* | Lemma for pceu 16879. (Contributed by Mario Carneiro, 23-Feb-2014.) |
⊢ 𝑆 = sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑥}, ℝ, < ) & ⊢ 𝑇 = sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑦}, ℝ, < ) & ⊢ 𝑈 = sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑠}, ℝ, < ) & ⊢ 𝑉 = sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑡}, ℝ, < ) & ⊢ (𝜑 → 𝑃 ∈ ℙ) & ⊢ (𝜑 → 𝑁 ≠ 0) & ⊢ (𝜑 → (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) & ⊢ (𝜑 → 𝑁 = (𝑥 / 𝑦)) & ⊢ (𝜑 → (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℕ)) & ⊢ (𝜑 → 𝑁 = (𝑠 / 𝑡)) ⇒ ⊢ (𝜑 → (𝑆 − 𝑇) = (𝑈 − 𝑉)) | ||
Theorem | pceu 16879* | Uniqueness for the prime power function. (Contributed by Mario Carneiro, 23-Feb-2014.) |
⊢ 𝑆 = sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑥}, ℝ, < ) & ⊢ 𝑇 = sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑦}, ℝ, < ) ⇒ ⊢ ((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℚ ∧ 𝑁 ≠ 0)) → ∃!𝑧∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆 − 𝑇))) | ||
Theorem | pczpre 16880* | Connect the prime count pre-function to the actual prime count function, when restricted to the integers. (Contributed by Mario Carneiro, 23-Feb-2014.) (Proof shortened by Mario Carneiro, 24-Dec-2016.) |
⊢ 𝑆 = sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑁}, ℝ, < ) ⇒ ⊢ ((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑃 pCnt 𝑁) = 𝑆) | ||
Theorem | pczcl 16881 | Closure of the prime power function. (Contributed by Mario Carneiro, 23-Feb-2014.) |
⊢ ((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑃 pCnt 𝑁) ∈ ℕ0) | ||
Theorem | pccl 16882 | Closure of the prime power function. (Contributed by Mario Carneiro, 23-Feb-2014.) |
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ) → (𝑃 pCnt 𝑁) ∈ ℕ0) | ||
Theorem | pccld 16883 | Closure of the prime power function. (Contributed by Mario Carneiro, 29-May-2016.) |
⊢ (𝜑 → 𝑃 ∈ ℙ) & ⊢ (𝜑 → 𝑁 ∈ ℕ) ⇒ ⊢ (𝜑 → (𝑃 pCnt 𝑁) ∈ ℕ0) | ||
Theorem | pcmul 16884 | Multiplication property of the prime power function. (Contributed by Mario Carneiro, 23-Feb-2014.) |
⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0)) → (𝑃 pCnt (𝐴 · 𝐵)) = ((𝑃 pCnt 𝐴) + (𝑃 pCnt 𝐵))) | ||
Theorem | pcdiv 16885 | Division property of the prime power function. (Contributed by Mario Carneiro, 1-Mar-2014.) |
⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℕ) → (𝑃 pCnt (𝐴 / 𝐵)) = ((𝑃 pCnt 𝐴) − (𝑃 pCnt 𝐵))) | ||
Theorem | pcqmul 16886 | Multiplication property of the prime power function. (Contributed by Mario Carneiro, 9-Sep-2014.) |
⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℚ ∧ 𝐵 ≠ 0)) → (𝑃 pCnt (𝐴 · 𝐵)) = ((𝑃 pCnt 𝐴) + (𝑃 pCnt 𝐵))) | ||
Theorem | pc0 16887 | The value of the prime power function at zero. (Contributed by Mario Carneiro, 3-Oct-2014.) |
⊢ (𝑃 ∈ ℙ → (𝑃 pCnt 0) = +∞) | ||
Theorem | pc1 16888 | Value of the prime count function at 1. (Contributed by Mario Carneiro, 23-Feb-2014.) |
⊢ (𝑃 ∈ ℙ → (𝑃 pCnt 1) = 0) | ||
Theorem | pcqcl 16889 | Closure of the general prime count function. (Contributed by Mario Carneiro, 23-Feb-2014.) |
⊢ ((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℚ ∧ 𝑁 ≠ 0)) → (𝑃 pCnt 𝑁) ∈ ℤ) | ||
Theorem | pcqdiv 16890 | Division property of the prime power function. (Contributed by Mario Carneiro, 10-Aug-2015.) |
⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℚ ∧ 𝐵 ≠ 0)) → (𝑃 pCnt (𝐴 / 𝐵)) = ((𝑃 pCnt 𝐴) − (𝑃 pCnt 𝐵))) | ||
Theorem | pcrec 16891 | Prime power of a reciprocal. (Contributed by Mario Carneiro, 10-Aug-2015.) |
⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) → (𝑃 pCnt (1 / 𝐴)) = -(𝑃 pCnt 𝐴)) | ||
Theorem | pcexp 16892 | Prime power of an exponential. (Contributed by Mario Carneiro, 10-Aug-2015.) |
⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0) ∧ 𝑁 ∈ ℤ) → (𝑃 pCnt (𝐴↑𝑁)) = (𝑁 · (𝑃 pCnt 𝐴))) | ||
Theorem | pcxnn0cl 16893 | Extended nonnegative integer closure of the general prime count function. (Contributed by Jim Kingdon, 13-Oct-2024.) |
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ) → (𝑃 pCnt 𝑁) ∈ ℕ0*) | ||
Theorem | pcxcl 16894 | Extended real closure of the general prime count function. (Contributed by Mario Carneiro, 3-Oct-2014.) |
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℚ) → (𝑃 pCnt 𝑁) ∈ ℝ*) | ||
Theorem | pcge0 16895 | The prime count of an integer is greater than or equal to zero. (Contributed by Mario Carneiro, 3-Oct-2014.) |
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ) → 0 ≤ (𝑃 pCnt 𝑁)) | ||
Theorem | pczdvds 16896 | Defining property of the prime count function. (Contributed by Mario Carneiro, 9-Sep-2014.) |
⊢ ((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑃↑(𝑃 pCnt 𝑁)) ∥ 𝑁) | ||
Theorem | pcdvds 16897 | Defining property of the prime count function. (Contributed by Mario Carneiro, 23-Feb-2014.) |
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ) → (𝑃↑(𝑃 pCnt 𝑁)) ∥ 𝑁) | ||
Theorem | pczndvds 16898 | Defining property of the prime count function. (Contributed by Mario Carneiro, 3-Oct-2014.) |
⊢ ((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ¬ (𝑃↑((𝑃 pCnt 𝑁) + 1)) ∥ 𝑁) | ||
Theorem | pcndvds 16899 | Defining property of the prime count function. (Contributed by Mario Carneiro, 23-Feb-2014.) |
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ) → ¬ (𝑃↑((𝑃 pCnt 𝑁) + 1)) ∥ 𝑁) | ||
Theorem | pczndvds2 16900 | The remainder after dividing out all factors of 𝑃 is not divisible by 𝑃. (Contributed by Mario Carneiro, 9-Sep-2014.) |
⊢ ((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ¬ 𝑃 ∥ (𝑁 / (𝑃↑(𝑃 pCnt 𝑁)))) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |