| Metamath
Proof Explorer Theorem List (p. 169 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30854) |
(30855-32377) |
(32378-49798) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | pythagtriplem8 16801 | Lemma for pythagtrip 16812. Show that (√‘(𝐶 − 𝐵)) is a positive integer. (Contributed by Scott Fenton, 17-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
| ⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (√‘(𝐶 − 𝐵)) ∈ ℕ) | ||
| Theorem | pythagtriplem9 16802 | Lemma for pythagtrip 16812. Show that (√‘(𝐶 + 𝐵)) is a positive integer. (Contributed by Scott Fenton, 17-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
| ⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (√‘(𝐶 + 𝐵)) ∈ ℕ) | ||
| Theorem | pythagtriplem11 16803 | Lemma for pythagtrip 16812. Show that 𝑀 (which will eventually be closely related to the 𝑚 in the final statement) is a natural. (Contributed by Scott Fenton, 17-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
| ⊢ 𝑀 = (((√‘(𝐶 + 𝐵)) + (√‘(𝐶 − 𝐵))) / 2) ⇒ ⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 𝑀 ∈ ℕ) | ||
| Theorem | pythagtriplem12 16804 | Lemma for pythagtrip 16812. Calculate the square of 𝑀. (Contributed by Scott Fenton, 17-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
| ⊢ 𝑀 = (((√‘(𝐶 + 𝐵)) + (√‘(𝐶 − 𝐵))) / 2) ⇒ ⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (𝑀↑2) = ((𝐶 + 𝐴) / 2)) | ||
| Theorem | pythagtriplem13 16805 | Lemma for pythagtrip 16812. Show that 𝑁 (which will eventually be closely related to the 𝑛 in the final statement) is a natural. (Contributed by Scott Fenton, 17-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
| ⊢ 𝑁 = (((√‘(𝐶 + 𝐵)) − (√‘(𝐶 − 𝐵))) / 2) ⇒ ⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 𝑁 ∈ ℕ) | ||
| Theorem | pythagtriplem14 16806 | Lemma for pythagtrip 16812. Calculate the square of 𝑁. (Contributed by Scott Fenton, 17-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
| ⊢ 𝑁 = (((√‘(𝐶 + 𝐵)) − (√‘(𝐶 − 𝐵))) / 2) ⇒ ⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (𝑁↑2) = ((𝐶 − 𝐴) / 2)) | ||
| Theorem | pythagtriplem15 16807 | Lemma for pythagtrip 16812. Show the relationship between 𝑀, 𝑁, and 𝐴. (Contributed by Scott Fenton, 17-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
| ⊢ 𝑀 = (((√‘(𝐶 + 𝐵)) + (√‘(𝐶 − 𝐵))) / 2) & ⊢ 𝑁 = (((√‘(𝐶 + 𝐵)) − (√‘(𝐶 − 𝐵))) / 2) ⇒ ⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 𝐴 = ((𝑀↑2) − (𝑁↑2))) | ||
| Theorem | pythagtriplem16 16808 | Lemma for pythagtrip 16812. Show the relationship between 𝑀, 𝑁, and 𝐵. (Contributed by Scott Fenton, 17-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
| ⊢ 𝑀 = (((√‘(𝐶 + 𝐵)) + (√‘(𝐶 − 𝐵))) / 2) & ⊢ 𝑁 = (((√‘(𝐶 + 𝐵)) − (√‘(𝐶 − 𝐵))) / 2) ⇒ ⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 𝐵 = (2 · (𝑀 · 𝑁))) | ||
| Theorem | pythagtriplem17 16809 | Lemma for pythagtrip 16812. Show the relationship between 𝑀, 𝑁, and 𝐶. (Contributed by Scott Fenton, 17-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
| ⊢ 𝑀 = (((√‘(𝐶 + 𝐵)) + (√‘(𝐶 − 𝐵))) / 2) & ⊢ 𝑁 = (((√‘(𝐶 + 𝐵)) − (√‘(𝐶 − 𝐵))) / 2) ⇒ ⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 𝐶 = ((𝑀↑2) + (𝑁↑2))) | ||
| Theorem | pythagtriplem18 16810* | Lemma for pythagtrip 16812. Wrap the previous 𝑀 and 𝑁 up in quantifiers. (Contributed by Scott Fenton, 18-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
| ⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ∃𝑛 ∈ ℕ ∃𝑚 ∈ ℕ (𝐴 = ((𝑚↑2) − (𝑛↑2)) ∧ 𝐵 = (2 · (𝑚 · 𝑛)) ∧ 𝐶 = ((𝑚↑2) + (𝑛↑2)))) | ||
| Theorem | pythagtriplem19 16811* | Lemma for pythagtrip 16812. Introduce 𝑘 and remove the relative primality requirement. (Contributed by Scott Fenton, 18-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
| ⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ¬ 2 ∥ (𝐴 / (𝐴 gcd 𝐵))) → ∃𝑛 ∈ ℕ ∃𝑚 ∈ ℕ ∃𝑘 ∈ ℕ (𝐴 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐵 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2))))) | ||
| Theorem | pythagtrip 16812* | Parameterize the Pythagorean triples. If 𝐴, 𝐵, and 𝐶 are naturals, then they obey the Pythagorean triple formula iff they are parameterized by three naturals. This proof follows the Isabelle proof at http://afp.sourceforge.net/entries/Fermat3_4.shtml. This is Metamath 100 proof #23. (Contributed by Scott Fenton, 19-Apr-2014.) |
| ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ↔ ∃𝑛 ∈ ℕ ∃𝑚 ∈ ℕ ∃𝑘 ∈ ℕ ({𝐴, 𝐵} = {(𝑘 · ((𝑚↑2) − (𝑛↑2))), (𝑘 · (2 · (𝑚 · 𝑛)))} ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2)))))) | ||
| Theorem | iserodd 16813* | Collect the odd terms in a sequence. (Contributed by Mario Carneiro, 7-Apr-2015.) (Proof shortened by AV, 10-Jul-2022.) |
| ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → 𝐶 ∈ ℂ) & ⊢ (𝑛 = ((2 · 𝑘) + 1) → 𝐵 = 𝐶) ⇒ ⊢ (𝜑 → (seq0( + , (𝑘 ∈ ℕ0 ↦ 𝐶)) ⇝ 𝐴 ↔ seq1( + , (𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 𝐵))) ⇝ 𝐴)) | ||
| Syntax | cpc 16814 | Extend class notation with the prime count function. |
| class pCnt | ||
| Definition | df-pc 16815* | Define the prime count function, which returns the largest exponent of a given prime (or other positive integer) that divides the number. For rational numbers, it returns negative values according to the power of a prime in the denominator. (Contributed by Mario Carneiro, 23-Feb-2014.) |
| ⊢ pCnt = (𝑝 ∈ ℙ, 𝑟 ∈ ℚ ↦ if(𝑟 = 0, +∞, (℩𝑧∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑟 = (𝑥 / 𝑦) ∧ 𝑧 = (sup({𝑛 ∈ ℕ0 ∣ (𝑝↑𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑝↑𝑛) ∥ 𝑦}, ℝ, < )))))) | ||
| Theorem | pclem 16816* | - Lemma for the prime power pre-function's properties. (Contributed by Mario Carneiro, 23-Feb-2014.) |
| ⊢ 𝐴 = {𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑁} ⇒ ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℤ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥)) | ||
| Theorem | pcprecl 16817* | Closure of the prime power pre-function. (Contributed by Mario Carneiro, 23-Feb-2014.) |
| ⊢ 𝐴 = {𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑁} & ⊢ 𝑆 = sup(𝐴, ℝ, < ) ⇒ ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑆 ∈ ℕ0 ∧ (𝑃↑𝑆) ∥ 𝑁)) | ||
| Theorem | pcprendvds 16818* | Non-divisibility property of the prime power pre-function. (Contributed by Mario Carneiro, 23-Feb-2014.) |
| ⊢ 𝐴 = {𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑁} & ⊢ 𝑆 = sup(𝐴, ℝ, < ) ⇒ ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ¬ (𝑃↑(𝑆 + 1)) ∥ 𝑁) | ||
| Theorem | pcprendvds2 16819* | Non-divisibility property of the prime power pre-function. (Contributed by Mario Carneiro, 23-Feb-2014.) |
| ⊢ 𝐴 = {𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑁} & ⊢ 𝑆 = sup(𝐴, ℝ, < ) ⇒ ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ¬ 𝑃 ∥ (𝑁 / (𝑃↑𝑆))) | ||
| Theorem | pcpre1 16820* | Value of the prime power pre-function at 1. (Contributed by Mario Carneiro, 23-Feb-2014.) (Revised by Mario Carneiro, 26-Apr-2016.) |
| ⊢ 𝐴 = {𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑁} & ⊢ 𝑆 = sup(𝐴, ℝ, < ) ⇒ ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ 𝑁 = 1) → 𝑆 = 0) | ||
| Theorem | pcpremul 16821* | Multiplicative property of the prime count pre-function. Note that the primality of 𝑃 is essential for this property; (4 pCnt 2) = 0 but (4 pCnt (2 · 2)) = 1 ≠ 2 · (4 pCnt 2) = 0. Since this is needed to show uniqueness for the real prime count function (over ℚ), we don't bother to define it off the primes. (Contributed by Mario Carneiro, 23-Feb-2014.) |
| ⊢ 𝑆 = sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑀}, ℝ, < ) & ⊢ 𝑇 = sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑁}, ℝ, < ) & ⊢ 𝑈 = sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ (𝑀 · 𝑁)}, ℝ, < ) ⇒ ⊢ ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑆 + 𝑇) = 𝑈) | ||
| Theorem | pcval 16822* | The value of the prime power function. (Contributed by Mario Carneiro, 23-Feb-2014.) (Revised by Mario Carneiro, 3-Oct-2014.) |
| ⊢ 𝑆 = sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑥}, ℝ, < ) & ⊢ 𝑇 = sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑦}, ℝ, < ) ⇒ ⊢ ((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℚ ∧ 𝑁 ≠ 0)) → (𝑃 pCnt 𝑁) = (℩𝑧∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆 − 𝑇)))) | ||
| Theorem | pceulem 16823* | Lemma for pceu 16824. (Contributed by Mario Carneiro, 23-Feb-2014.) |
| ⊢ 𝑆 = sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑥}, ℝ, < ) & ⊢ 𝑇 = sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑦}, ℝ, < ) & ⊢ 𝑈 = sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑠}, ℝ, < ) & ⊢ 𝑉 = sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑡}, ℝ, < ) & ⊢ (𝜑 → 𝑃 ∈ ℙ) & ⊢ (𝜑 → 𝑁 ≠ 0) & ⊢ (𝜑 → (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) & ⊢ (𝜑 → 𝑁 = (𝑥 / 𝑦)) & ⊢ (𝜑 → (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℕ)) & ⊢ (𝜑 → 𝑁 = (𝑠 / 𝑡)) ⇒ ⊢ (𝜑 → (𝑆 − 𝑇) = (𝑈 − 𝑉)) | ||
| Theorem | pceu 16824* | Uniqueness for the prime power function. (Contributed by Mario Carneiro, 23-Feb-2014.) |
| ⊢ 𝑆 = sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑥}, ℝ, < ) & ⊢ 𝑇 = sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑦}, ℝ, < ) ⇒ ⊢ ((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℚ ∧ 𝑁 ≠ 0)) → ∃!𝑧∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆 − 𝑇))) | ||
| Theorem | pczpre 16825* | Connect the prime count pre-function to the actual prime count function, when restricted to the integers. (Contributed by Mario Carneiro, 23-Feb-2014.) (Proof shortened by Mario Carneiro, 24-Dec-2016.) |
| ⊢ 𝑆 = sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑁}, ℝ, < ) ⇒ ⊢ ((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑃 pCnt 𝑁) = 𝑆) | ||
| Theorem | pczcl 16826 | Closure of the prime power function. (Contributed by Mario Carneiro, 23-Feb-2014.) |
| ⊢ ((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑃 pCnt 𝑁) ∈ ℕ0) | ||
| Theorem | pccl 16827 | Closure of the prime power function. (Contributed by Mario Carneiro, 23-Feb-2014.) |
| ⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ) → (𝑃 pCnt 𝑁) ∈ ℕ0) | ||
| Theorem | pccld 16828 | Closure of the prime power function. (Contributed by Mario Carneiro, 29-May-2016.) |
| ⊢ (𝜑 → 𝑃 ∈ ℙ) & ⊢ (𝜑 → 𝑁 ∈ ℕ) ⇒ ⊢ (𝜑 → (𝑃 pCnt 𝑁) ∈ ℕ0) | ||
| Theorem | pcmul 16829 | Multiplication property of the prime power function. (Contributed by Mario Carneiro, 23-Feb-2014.) |
| ⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0)) → (𝑃 pCnt (𝐴 · 𝐵)) = ((𝑃 pCnt 𝐴) + (𝑃 pCnt 𝐵))) | ||
| Theorem | pcdiv 16830 | Division property of the prime power function. (Contributed by Mario Carneiro, 1-Mar-2014.) |
| ⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℕ) → (𝑃 pCnt (𝐴 / 𝐵)) = ((𝑃 pCnt 𝐴) − (𝑃 pCnt 𝐵))) | ||
| Theorem | pcqmul 16831 | Multiplication property of the prime power function. (Contributed by Mario Carneiro, 9-Sep-2014.) |
| ⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℚ ∧ 𝐵 ≠ 0)) → (𝑃 pCnt (𝐴 · 𝐵)) = ((𝑃 pCnt 𝐴) + (𝑃 pCnt 𝐵))) | ||
| Theorem | pc0 16832 | The value of the prime power function at zero. (Contributed by Mario Carneiro, 3-Oct-2014.) |
| ⊢ (𝑃 ∈ ℙ → (𝑃 pCnt 0) = +∞) | ||
| Theorem | pc1 16833 | Value of the prime count function at 1. (Contributed by Mario Carneiro, 23-Feb-2014.) |
| ⊢ (𝑃 ∈ ℙ → (𝑃 pCnt 1) = 0) | ||
| Theorem | pcqcl 16834 | Closure of the general prime count function. (Contributed by Mario Carneiro, 23-Feb-2014.) |
| ⊢ ((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℚ ∧ 𝑁 ≠ 0)) → (𝑃 pCnt 𝑁) ∈ ℤ) | ||
| Theorem | pcqdiv 16835 | Division property of the prime power function. (Contributed by Mario Carneiro, 10-Aug-2015.) |
| ⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℚ ∧ 𝐵 ≠ 0)) → (𝑃 pCnt (𝐴 / 𝐵)) = ((𝑃 pCnt 𝐴) − (𝑃 pCnt 𝐵))) | ||
| Theorem | pcrec 16836 | Prime power of a reciprocal. (Contributed by Mario Carneiro, 10-Aug-2015.) |
| ⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) → (𝑃 pCnt (1 / 𝐴)) = -(𝑃 pCnt 𝐴)) | ||
| Theorem | pcexp 16837 | Prime power of an exponential. (Contributed by Mario Carneiro, 10-Aug-2015.) |
| ⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0) ∧ 𝑁 ∈ ℤ) → (𝑃 pCnt (𝐴↑𝑁)) = (𝑁 · (𝑃 pCnt 𝐴))) | ||
| Theorem | pcxnn0cl 16838 | Extended nonnegative integer closure of the general prime count function. (Contributed by Jim Kingdon, 13-Oct-2024.) |
| ⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ) → (𝑃 pCnt 𝑁) ∈ ℕ0*) | ||
| Theorem | pcxcl 16839 | Extended real closure of the general prime count function. (Contributed by Mario Carneiro, 3-Oct-2014.) |
| ⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℚ) → (𝑃 pCnt 𝑁) ∈ ℝ*) | ||
| Theorem | pcge0 16840 | The prime count of an integer is greater than or equal to zero. (Contributed by Mario Carneiro, 3-Oct-2014.) |
| ⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ) → 0 ≤ (𝑃 pCnt 𝑁)) | ||
| Theorem | pczdvds 16841 | Defining property of the prime count function. (Contributed by Mario Carneiro, 9-Sep-2014.) |
| ⊢ ((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑃↑(𝑃 pCnt 𝑁)) ∥ 𝑁) | ||
| Theorem | pcdvds 16842 | Defining property of the prime count function. (Contributed by Mario Carneiro, 23-Feb-2014.) |
| ⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ) → (𝑃↑(𝑃 pCnt 𝑁)) ∥ 𝑁) | ||
| Theorem | pczndvds 16843 | Defining property of the prime count function. (Contributed by Mario Carneiro, 3-Oct-2014.) |
| ⊢ ((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ¬ (𝑃↑((𝑃 pCnt 𝑁) + 1)) ∥ 𝑁) | ||
| Theorem | pcndvds 16844 | Defining property of the prime count function. (Contributed by Mario Carneiro, 23-Feb-2014.) |
| ⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ) → ¬ (𝑃↑((𝑃 pCnt 𝑁) + 1)) ∥ 𝑁) | ||
| Theorem | pczndvds2 16845 | The remainder after dividing out all factors of 𝑃 is not divisible by 𝑃. (Contributed by Mario Carneiro, 9-Sep-2014.) |
| ⊢ ((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ¬ 𝑃 ∥ (𝑁 / (𝑃↑(𝑃 pCnt 𝑁)))) | ||
| Theorem | pcndvds2 16846 | The remainder after dividing out all factors of 𝑃 is not divisible by 𝑃. (Contributed by Mario Carneiro, 23-Feb-2014.) |
| ⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ) → ¬ 𝑃 ∥ (𝑁 / (𝑃↑(𝑃 pCnt 𝑁)))) | ||
| Theorem | pcdvdsb 16847 | 𝑃↑𝐴 divides 𝑁 if and only if 𝐴 is at most the count of 𝑃. (Contributed by Mario Carneiro, 3-Oct-2014.) |
| ⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) → (𝐴 ≤ (𝑃 pCnt 𝑁) ↔ (𝑃↑𝐴) ∥ 𝑁)) | ||
| Theorem | pcelnn 16848 | There are a positive number of powers of a prime 𝑃 in 𝑁 iff 𝑃 divides 𝑁. (Contributed by Mario Carneiro, 23-Feb-2014.) |
| ⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ) → ((𝑃 pCnt 𝑁) ∈ ℕ ↔ 𝑃 ∥ 𝑁)) | ||
| Theorem | pceq0 16849 | There are zero powers of a prime 𝑃 in 𝑁 iff 𝑃 does not divide 𝑁. (Contributed by Mario Carneiro, 23-Feb-2014.) |
| ⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ) → ((𝑃 pCnt 𝑁) = 0 ↔ ¬ 𝑃 ∥ 𝑁)) | ||
| Theorem | pcidlem 16850 | The prime count of a prime power. (Contributed by Mario Carneiro, 12-Mar-2014.) |
| ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → (𝑃 pCnt (𝑃↑𝐴)) = 𝐴) | ||
| Theorem | pcid 16851 | The prime count of a prime power. (Contributed by Mario Carneiro, 9-Sep-2014.) |
| ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (𝑃 pCnt (𝑃↑𝐴)) = 𝐴) | ||
| Theorem | pcneg 16852 | The prime count of a negative number. (Contributed by Mario Carneiro, 13-Mar-2014.) |
| ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℚ) → (𝑃 pCnt -𝐴) = (𝑃 pCnt 𝐴)) | ||
| Theorem | pcabs 16853 | The prime count of an absolute value. (Contributed by Mario Carneiro, 13-Mar-2014.) |
| ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℚ) → (𝑃 pCnt (abs‘𝐴)) = (𝑃 pCnt 𝐴)) | ||
| Theorem | pcdvdstr 16854 | The prime count increases under the divisibility relation. (Contributed by Mario Carneiro, 13-Mar-2014.) |
| ⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ∥ 𝐵)) → (𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵)) | ||
| Theorem | pcgcd1 16855 | The prime count of a GCD is the minimum of the prime counts of the arguments. (Contributed by Mario Carneiro, 3-Oct-2014.) |
| ⊢ (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵)) → (𝑃 pCnt (𝐴 gcd 𝐵)) = (𝑃 pCnt 𝐴)) | ||
| Theorem | pcgcd 16856 | The prime count of a GCD is the minimum of the prime counts of the arguments. (Contributed by Mario Carneiro, 3-Oct-2014.) |
| ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝑃 pCnt (𝐴 gcd 𝐵)) = if((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵), (𝑃 pCnt 𝐴), (𝑃 pCnt 𝐵))) | ||
| Theorem | pc2dvds 16857* | A characterization of divisibility in terms of prime count. (Contributed by Mario Carneiro, 23-Feb-2014.) (Revised by Mario Carneiro, 3-Oct-2014.) |
| ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 ∥ 𝐵 ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵))) | ||
| Theorem | pc11 16858* | The prime count function, viewed as a function from ℕ to (ℕ ↑m ℙ), is one-to-one. (Contributed by Mario Carneiro, 23-Feb-2014.) |
| ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0) → (𝐴 = 𝐵 ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) = (𝑝 pCnt 𝐵))) | ||
| Theorem | pcz 16859* | The prime count function can be used as an indicator that a given rational number is an integer. (Contributed by Mario Carneiro, 23-Feb-2014.) |
| ⊢ (𝐴 ∈ ℚ → (𝐴 ∈ ℤ ↔ ∀𝑝 ∈ ℙ 0 ≤ (𝑝 pCnt 𝐴))) | ||
| Theorem | pcprmpw2 16860* | Self-referential expression for a prime power. (Contributed by Mario Carneiro, 16-Jan-2015.) |
| ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) → (∃𝑛 ∈ ℕ0 𝐴 ∥ (𝑃↑𝑛) ↔ 𝐴 = (𝑃↑(𝑃 pCnt 𝐴)))) | ||
| Theorem | pcprmpw 16861* | Self-referential expression for a prime power. (Contributed by Mario Carneiro, 16-Jan-2015.) |
| ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) → (∃𝑛 ∈ ℕ0 𝐴 = (𝑃↑𝑛) ↔ 𝐴 = (𝑃↑(𝑃 pCnt 𝐴)))) | ||
| Theorem | dvdsprmpweq 16862* | If a positive integer divides a prime power, it is a prime power. (Contributed by AV, 25-Jul-2021.) |
| ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (𝐴 ∥ (𝑃↑𝑁) → ∃𝑛 ∈ ℕ0 𝐴 = (𝑃↑𝑛))) | ||
| Theorem | dvdsprmpweqnn 16863* | If an integer greater than 1 divides a prime power, it is a (proper) prime power. (Contributed by AV, 13-Aug-2021.) |
| ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0) → (𝐴 ∥ (𝑃↑𝑁) → ∃𝑛 ∈ ℕ 𝐴 = (𝑃↑𝑛))) | ||
| Theorem | dvdsprmpweqle 16864* | If a positive integer divides a prime power, it is a prime power with a smaller exponent. (Contributed by AV, 25-Jul-2021.) |
| ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (𝐴 ∥ (𝑃↑𝑁) → ∃𝑛 ∈ ℕ0 (𝑛 ≤ 𝑁 ∧ 𝐴 = (𝑃↑𝑛)))) | ||
| Theorem | difsqpwdvds 16865 | If the difference of two squares is a power of a prime, the prime divides twice the second squared number. (Contributed by AV, 13-Aug-2021.) |
| ⊢ (((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) ∧ (𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0)) → ((𝐶↑𝐷) = ((𝐴↑2) − (𝐵↑2)) → 𝐶 ∥ (2 · 𝐵))) | ||
| Theorem | pcaddlem 16866 | Lemma for pcadd 16867. The original numbers 𝐴 and 𝐵 have been decomposed using the prime count function as (𝑃↑𝑀) · (𝑅 / 𝑆) where 𝑅, 𝑆 are both not divisible by 𝑃 and 𝑀 = (𝑃 pCnt 𝐴), and similarly for 𝐵. (Contributed by Mario Carneiro, 9-Sep-2014.) |
| ⊢ (𝜑 → 𝑃 ∈ ℙ) & ⊢ (𝜑 → 𝐴 = ((𝑃↑𝑀) · (𝑅 / 𝑆))) & ⊢ (𝜑 → 𝐵 = ((𝑃↑𝑁) · (𝑇 / 𝑈))) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ (𝜑 → (𝑅 ∈ ℤ ∧ ¬ 𝑃 ∥ 𝑅)) & ⊢ (𝜑 → (𝑆 ∈ ℕ ∧ ¬ 𝑃 ∥ 𝑆)) & ⊢ (𝜑 → (𝑇 ∈ ℤ ∧ ¬ 𝑃 ∥ 𝑇)) & ⊢ (𝜑 → (𝑈 ∈ ℕ ∧ ¬ 𝑃 ∥ 𝑈)) ⇒ ⊢ (𝜑 → 𝑀 ≤ (𝑃 pCnt (𝐴 + 𝐵))) | ||
| Theorem | pcadd 16867 | An inequality for the prime count of a sum. This is the source of the ultrametric inequality for the p-adic metric. (Contributed by Mario Carneiro, 9-Sep-2014.) |
| ⊢ (𝜑 → 𝑃 ∈ ℙ) & ⊢ (𝜑 → 𝐴 ∈ ℚ) & ⊢ (𝜑 → 𝐵 ∈ ℚ) & ⊢ (𝜑 → (𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵)) ⇒ ⊢ (𝜑 → (𝑃 pCnt 𝐴) ≤ (𝑃 pCnt (𝐴 + 𝐵))) | ||
| Theorem | pcadd2 16868 | The inequality of pcadd 16867 becomes an equality when one of the factors has prime count strictly less than the other. (Contributed by Mario Carneiro, 16-Jan-2015.) (Revised by Mario Carneiro, 26-Jun-2015.) |
| ⊢ (𝜑 → 𝑃 ∈ ℙ) & ⊢ (𝜑 → 𝐴 ∈ ℚ) & ⊢ (𝜑 → 𝐵 ∈ ℚ) & ⊢ (𝜑 → (𝑃 pCnt 𝐴) < (𝑃 pCnt 𝐵)) ⇒ ⊢ (𝜑 → (𝑃 pCnt 𝐴) = (𝑃 pCnt (𝐴 + 𝐵))) | ||
| Theorem | pcmptcl 16869 | Closure for the prime power map. (Contributed by Mario Carneiro, 12-Mar-2014.) |
| ⊢ 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (𝑛↑𝐴), 1)) & ⊢ (𝜑 → ∀𝑛 ∈ ℙ 𝐴 ∈ ℕ0) ⇒ ⊢ (𝜑 → (𝐹:ℕ⟶ℕ ∧ seq1( · , 𝐹):ℕ⟶ℕ)) | ||
| Theorem | pcmpt 16870* | Construct a function with given prime count characteristics. (Contributed by Mario Carneiro, 12-Mar-2014.) |
| ⊢ 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (𝑛↑𝐴), 1)) & ⊢ (𝜑 → ∀𝑛 ∈ ℙ 𝐴 ∈ ℕ0) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑃 ∈ ℙ) & ⊢ (𝑛 = 𝑃 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (𝑃 pCnt (seq1( · , 𝐹)‘𝑁)) = if(𝑃 ≤ 𝑁, 𝐵, 0)) | ||
| Theorem | pcmpt2 16871* | Dividing two prime count maps yields a number with all dividing primes confined to an interval. (Contributed by Mario Carneiro, 14-Mar-2014.) |
| ⊢ 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (𝑛↑𝐴), 1)) & ⊢ (𝜑 → ∀𝑛 ∈ ℙ 𝐴 ∈ ℕ0) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑃 ∈ ℙ) & ⊢ (𝑛 = 𝑃 → 𝐴 = 𝐵) & ⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘𝑁)) ⇒ ⊢ (𝜑 → (𝑃 pCnt ((seq1( · , 𝐹)‘𝑀) / (seq1( · , 𝐹)‘𝑁))) = if((𝑃 ≤ 𝑀 ∧ ¬ 𝑃 ≤ 𝑁), 𝐵, 0)) | ||
| Theorem | pcmptdvds 16872 | The partial products of the prime power map form a divisibility chain. (Contributed by Mario Carneiro, 12-Mar-2014.) |
| ⊢ 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (𝑛↑𝐴), 1)) & ⊢ (𝜑 → ∀𝑛 ∈ ℙ 𝐴 ∈ ℕ0) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘𝑁)) ⇒ ⊢ (𝜑 → (seq1( · , 𝐹)‘𝑁) ∥ (seq1( · , 𝐹)‘𝑀)) | ||
| Theorem | pcprod 16873* | The product of the primes taken to their respective powers reconstructs the original number. (Contributed by Mario Carneiro, 12-Mar-2014.) |
| ⊢ 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (𝑛↑(𝑛 pCnt 𝑁)), 1)) ⇒ ⊢ (𝑁 ∈ ℕ → (seq1( · , 𝐹)‘𝑁) = 𝑁) | ||
| Theorem | sumhash 16874* | The sum of 1 over a set is the size of the set. (Contributed by Mario Carneiro, 8-Mar-2014.) (Revised by Mario Carneiro, 20-May-2014.) |
| ⊢ ((𝐵 ∈ Fin ∧ 𝐴 ⊆ 𝐵) → Σ𝑘 ∈ 𝐵 if(𝑘 ∈ 𝐴, 1, 0) = (♯‘𝐴)) | ||
| Theorem | fldivp1 16875 | The difference between the floors of adjacent fractions is either 1 or 0. (Contributed by Mario Carneiro, 8-Mar-2014.) |
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((⌊‘((𝑀 + 1) / 𝑁)) − (⌊‘(𝑀 / 𝑁))) = if(𝑁 ∥ (𝑀 + 1), 1, 0)) | ||
| Theorem | pcfaclem 16876 | Lemma for pcfac 16877. (Contributed by Mario Carneiro, 20-May-2014.) |
| ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ (ℤ≥‘𝑁) ∧ 𝑃 ∈ ℙ) → (⌊‘(𝑁 / (𝑃↑𝑀))) = 0) | ||
| Theorem | pcfac 16877* | Calculate the prime count of a factorial. (Contributed by Mario Carneiro, 11-Mar-2014.) (Revised by Mario Carneiro, 21-May-2014.) |
| ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ (ℤ≥‘𝑁) ∧ 𝑃 ∈ ℙ) → (𝑃 pCnt (!‘𝑁)) = Σ𝑘 ∈ (1...𝑀)(⌊‘(𝑁 / (𝑃↑𝑘)))) | ||
| Theorem | pcbc 16878* | Calculate the prime count of a binomial coefficient. (Contributed by Mario Carneiro, 11-Mar-2014.) (Revised by Mario Carneiro, 21-May-2014.) |
| ⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → (𝑃 pCnt (𝑁C𝐾)) = Σ𝑘 ∈ (1...𝑁)((⌊‘(𝑁 / (𝑃↑𝑘))) − ((⌊‘((𝑁 − 𝐾) / (𝑃↑𝑘))) + (⌊‘(𝐾 / (𝑃↑𝑘)))))) | ||
| Theorem | qexpz 16879 | If a power of a rational number is an integer, then the number is an integer. In other words, all n-th roots are irrational unless they are integers (so that the original number is an n-th power). (Contributed by Mario Carneiro, 10-Aug-2015.) |
| ⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ ∧ (𝐴↑𝑁) ∈ ℤ) → 𝐴 ∈ ℤ) | ||
| Theorem | expnprm 16880 | A second or higher power of a rational number is not a prime number. Or by contraposition, the n-th root of a prime number is irrational. Suggested by Norm Megill. (Contributed by Mario Carneiro, 10-Aug-2015.) |
| ⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈ (ℤ≥‘2)) → ¬ (𝐴↑𝑁) ∈ ℙ) | ||
| Theorem | oddprmdvds 16881* | Every positive integer which is not a power of two is divisible by an odd prime number. (Contributed by AV, 6-Aug-2021.) |
| ⊢ ((𝐾 ∈ ℕ ∧ ¬ ∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛)) → ∃𝑝 ∈ (ℙ ∖ {2})𝑝 ∥ 𝐾) | ||
| Theorem | prmpwdvds 16882 | A relation involving divisibility by a prime power. (Contributed by Mario Carneiro, 2-Mar-2014.) |
| ⊢ (((𝐾 ∈ ℤ ∧ 𝐷 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ) ∧ (𝐷 ∥ (𝐾 · (𝑃↑𝑁)) ∧ ¬ 𝐷 ∥ (𝐾 · (𝑃↑(𝑁 − 1))))) → (𝑃↑𝑁) ∥ 𝐷) | ||
| Theorem | pockthlem 16883 | Lemma for pockthg 16884. (Contributed by Mario Carneiro, 2-Mar-2014.) |
| ⊢ (𝜑 → 𝐴 ∈ ℕ) & ⊢ (𝜑 → 𝐵 ∈ ℕ) & ⊢ (𝜑 → 𝐵 < 𝐴) & ⊢ (𝜑 → 𝑁 = ((𝐴 · 𝐵) + 1)) & ⊢ (𝜑 → 𝑃 ∈ ℙ) & ⊢ (𝜑 → 𝑃 ∥ 𝑁) & ⊢ (𝜑 → 𝑄 ∈ ℙ) & ⊢ (𝜑 → (𝑄 pCnt 𝐴) ∈ ℕ) & ⊢ (𝜑 → 𝐶 ∈ ℤ) & ⊢ (𝜑 → ((𝐶↑(𝑁 − 1)) mod 𝑁) = 1) & ⊢ (𝜑 → (((𝐶↑((𝑁 − 1) / 𝑄)) − 1) gcd 𝑁) = 1) ⇒ ⊢ (𝜑 → (𝑄 pCnt 𝐴) ≤ (𝑄 pCnt (𝑃 − 1))) | ||
| Theorem | pockthg 16884* | The generalized Pocklington's theorem. If 𝑁 − 1 = 𝐴 · 𝐵 where 𝐵 < 𝐴, then 𝑁 is prime if and only if for every prime factor 𝑝 of 𝐴, there is an 𝑥 such that 𝑥↑(𝑁 − 1) = 1( mod 𝑁) and gcd (𝑥↑((𝑁 − 1) / 𝑝) − 1, 𝑁) = 1. (Contributed by Mario Carneiro, 2-Mar-2014.) |
| ⊢ (𝜑 → 𝐴 ∈ ℕ) & ⊢ (𝜑 → 𝐵 ∈ ℕ) & ⊢ (𝜑 → 𝐵 < 𝐴) & ⊢ (𝜑 → 𝑁 = ((𝐴 · 𝐵) + 1)) & ⊢ (𝜑 → ∀𝑝 ∈ ℙ (𝑝 ∥ 𝐴 → ∃𝑥 ∈ ℤ (((𝑥↑(𝑁 − 1)) mod 𝑁) = 1 ∧ (((𝑥↑((𝑁 − 1) / 𝑝)) − 1) gcd 𝑁) = 1))) ⇒ ⊢ (𝜑 → 𝑁 ∈ ℙ) | ||
| Theorem | pockthi 16885 | Pocklington's theorem, which gives a sufficient criterion for a number 𝑁 to be prime. This is the preferred method for verifying large primes, being much more efficient to compute than trial division. This form has been optimized for application to specific large primes; see pockthg 16884 for a more general closed-form version. (Contributed by Mario Carneiro, 2-Mar-2014.) |
| ⊢ 𝑃 ∈ ℙ & ⊢ 𝐺 ∈ ℕ & ⊢ 𝑀 = (𝐺 · 𝑃) & ⊢ 𝑁 = (𝑀 + 1) & ⊢ 𝐷 ∈ ℕ & ⊢ 𝐸 ∈ ℕ & ⊢ 𝐴 ∈ ℕ & ⊢ 𝑀 = (𝐷 · (𝑃↑𝐸)) & ⊢ 𝐷 < (𝑃↑𝐸) & ⊢ ((𝐴↑𝑀) mod 𝑁) = (1 mod 𝑁) & ⊢ (((𝐴↑𝐺) − 1) gcd 𝑁) = 1 ⇒ ⊢ 𝑁 ∈ ℙ | ||
| Theorem | unbenlem 16886* | Lemma for unben 16887. (Contributed by NM, 5-May-2005.) (Revised by Mario Carneiro, 15-Sep-2013.) |
| ⊢ 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω) ⇒ ⊢ ((𝐴 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛 ∈ 𝐴 𝑚 < 𝑛) → 𝐴 ≈ ω) | ||
| Theorem | unben 16887* | An unbounded set of positive integers is infinite. (Contributed by NM, 5-May-2005.) (Revised by Mario Carneiro, 15-Sep-2013.) |
| ⊢ ((𝐴 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛 ∈ 𝐴 𝑚 < 𝑛) → 𝐴 ≈ ℕ) | ||
| Theorem | infpnlem1 16888* | Lemma for infpn 16890. The smallest divisor (greater than 1) 𝑀 of 𝑁! + 1 is a prime greater than 𝑁. (Contributed by NM, 5-May-2005.) |
| ⊢ 𝐾 = ((!‘𝑁) + 1) ⇒ ⊢ ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) → (((1 < 𝑀 ∧ (𝐾 / 𝑀) ∈ ℕ) ∧ ∀𝑗 ∈ ℕ ((1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ) → 𝑀 ≤ 𝑗)) → (𝑁 < 𝑀 ∧ ∀𝑗 ∈ ℕ ((𝑀 / 𝑗) ∈ ℕ → (𝑗 = 1 ∨ 𝑗 = 𝑀))))) | ||
| Theorem | infpnlem2 16889* | Lemma for infpn 16890. For any positive integer 𝑁, there exists a prime number 𝑗 greater than 𝑁. (Contributed by NM, 5-May-2005.) |
| ⊢ 𝐾 = ((!‘𝑁) + 1) ⇒ ⊢ (𝑁 ∈ ℕ → ∃𝑗 ∈ ℕ (𝑁 < 𝑗 ∧ ∀𝑘 ∈ ℕ ((𝑗 / 𝑘) ∈ ℕ → (𝑘 = 1 ∨ 𝑘 = 𝑗)))) | ||
| Theorem | infpn 16890* | There exist infinitely many prime numbers: for any positive integer 𝑁, there exists a prime number 𝑗 greater than 𝑁. (See infpn2 16891 for the equinumerosity version.) (Contributed by NM, 1-Jun-2006.) |
| ⊢ (𝑁 ∈ ℕ → ∃𝑗 ∈ ℕ (𝑁 < 𝑗 ∧ ∀𝑘 ∈ ℕ ((𝑗 / 𝑘) ∈ ℕ → (𝑘 = 1 ∨ 𝑘 = 𝑗)))) | ||
| Theorem | infpn2 16891* | There exist infinitely many prime numbers: the set of all primes 𝑆 is unbounded by infpn 16890, so by unben 16887 it is infinite. This is Metamath 100 proof #11. (Contributed by NM, 5-May-2005.) |
| ⊢ 𝑆 = {𝑛 ∈ ℕ ∣ (1 < 𝑛 ∧ ∀𝑚 ∈ ℕ ((𝑛 / 𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑛)))} ⇒ ⊢ 𝑆 ≈ ℕ | ||
| Theorem | prmunb 16892* | The primes are unbounded. (Contributed by Paul Chapman, 28-Nov-2012.) |
| ⊢ (𝑁 ∈ ℕ → ∃𝑝 ∈ ℙ 𝑁 < 𝑝) | ||
| Theorem | prminf 16893 | There are an infinite number of primes. Theorem 1.7 in [ApostolNT] p. 16. (Contributed by Paul Chapman, 28-Nov-2012.) |
| ⊢ ℙ ≈ ℕ | ||
| Theorem | prmreclem1 16894* | Lemma for prmrec 16900. Properties of the "square part" function, which extracts the 𝑚 of the decomposition 𝑁 = 𝑟𝑚↑2, with 𝑚 maximal and 𝑟 squarefree. (Contributed by Mario Carneiro, 5-Aug-2014.) |
| ⊢ 𝑄 = (𝑛 ∈ ℕ ↦ sup({𝑟 ∈ ℕ ∣ (𝑟↑2) ∥ 𝑛}, ℝ, < )) ⇒ ⊢ (𝑁 ∈ ℕ → ((𝑄‘𝑁) ∈ ℕ ∧ ((𝑄‘𝑁)↑2) ∥ 𝑁 ∧ (𝐾 ∈ (ℤ≥‘2) → ¬ (𝐾↑2) ∥ (𝑁 / ((𝑄‘𝑁)↑2))))) | ||
| Theorem | prmreclem2 16895* | Lemma for prmrec 16900. There are at most 2↑𝐾 squarefree numbers which divide no primes larger than 𝐾. (We could strengthen this to 2↑♯(ℙ ∩ (1...𝐾)) but there's no reason to.) We establish the inequality by showing that the prime counts of the number up to 𝐾 completely determine it because all higher prime counts are zero, and they are all at most 1 because no square divides the number, so there are at most 2↑𝐾 possibilities. (Contributed by Mario Carneiro, 5-Aug-2014.) |
| ⊢ 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (1 / 𝑛), 0)) & ⊢ (𝜑 → 𝐾 ∈ ℕ) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ 𝑀 = {𝑛 ∈ (1...𝑁) ∣ ∀𝑝 ∈ (ℙ ∖ (1...𝐾)) ¬ 𝑝 ∥ 𝑛} & ⊢ 𝑄 = (𝑛 ∈ ℕ ↦ sup({𝑟 ∈ ℕ ∣ (𝑟↑2) ∥ 𝑛}, ℝ, < )) ⇒ ⊢ (𝜑 → (♯‘{𝑥 ∈ 𝑀 ∣ (𝑄‘𝑥) = 1}) ≤ (2↑𝐾)) | ||
| Theorem | prmreclem3 16896* | Lemma for prmrec 16900. The main inequality established here is ♯𝑀 ≤ ♯{𝑥 ∈ 𝑀 ∣ (𝑄‘𝑥) = 1} · √𝑁, where {𝑥 ∈ 𝑀 ∣ (𝑄‘𝑥) = 1} is the set of squarefree numbers in 𝑀. This is demonstrated by the map 𝑦 ↦ 〈𝑦 / (𝑄‘𝑦)↑2, (𝑄‘𝑦)〉 where 𝑄‘𝑦 is the largest number whose square divides 𝑦. (Contributed by Mario Carneiro, 5-Aug-2014.) |
| ⊢ 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (1 / 𝑛), 0)) & ⊢ (𝜑 → 𝐾 ∈ ℕ) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ 𝑀 = {𝑛 ∈ (1...𝑁) ∣ ∀𝑝 ∈ (ℙ ∖ (1...𝐾)) ¬ 𝑝 ∥ 𝑛} & ⊢ 𝑄 = (𝑛 ∈ ℕ ↦ sup({𝑟 ∈ ℕ ∣ (𝑟↑2) ∥ 𝑛}, ℝ, < )) ⇒ ⊢ (𝜑 → (♯‘𝑀) ≤ ((2↑𝐾) · (√‘𝑁))) | ||
| Theorem | prmreclem4 16897* | Lemma for prmrec 16900. Show by induction that the indexed (nondisjoint) union 𝑊‘𝑘 is at most the size of the prime reciprocal series. The key counting lemma is hashdvds 16752, to show that the number of numbers in 1...𝑁 that divide 𝑘 is at most 𝑁 / 𝑘. (Contributed by Mario Carneiro, 6-Aug-2014.) |
| ⊢ 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (1 / 𝑛), 0)) & ⊢ (𝜑 → 𝐾 ∈ ℕ) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ 𝑀 = {𝑛 ∈ (1...𝑁) ∣ ∀𝑝 ∈ (ℙ ∖ (1...𝐾)) ¬ 𝑝 ∥ 𝑛} & ⊢ (𝜑 → seq1( + , 𝐹) ∈ dom ⇝ ) & ⊢ (𝜑 → Σ𝑘 ∈ (ℤ≥‘(𝐾 + 1))if(𝑘 ∈ ℙ, (1 / 𝑘), 0) < (1 / 2)) & ⊢ 𝑊 = (𝑝 ∈ ℕ ↦ {𝑛 ∈ (1...𝑁) ∣ (𝑝 ∈ ℙ ∧ 𝑝 ∥ 𝑛)}) ⇒ ⊢ (𝜑 → (𝑁 ∈ (ℤ≥‘𝐾) → (♯‘∪ 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊‘𝑘)) ≤ (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝑁)if(𝑘 ∈ ℙ, (1 / 𝑘), 0)))) | ||
| Theorem | prmreclem5 16898* | Lemma for prmrec 16900. Here we show the inequality 𝑁 / 2 < ♯𝑀 by decomposing the set (1...𝑁) into the disjoint union of the set 𝑀 of those numbers that are not divisible by any "large" primes (above 𝐾) and the indexed union over 𝐾 < 𝑘 of the numbers 𝑊‘𝑘 that divide the prime 𝑘. By prmreclem4 16897 the second of these has size less than 𝑁 times the prime reciprocal series, which is less than 1 / 2 by assumption, we find that the complementary part 𝑀 must be at least 𝑁 / 2 large. (Contributed by Mario Carneiro, 6-Aug-2014.) |
| ⊢ 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (1 / 𝑛), 0)) & ⊢ (𝜑 → 𝐾 ∈ ℕ) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ 𝑀 = {𝑛 ∈ (1...𝑁) ∣ ∀𝑝 ∈ (ℙ ∖ (1...𝐾)) ¬ 𝑝 ∥ 𝑛} & ⊢ (𝜑 → seq1( + , 𝐹) ∈ dom ⇝ ) & ⊢ (𝜑 → Σ𝑘 ∈ (ℤ≥‘(𝐾 + 1))if(𝑘 ∈ ℙ, (1 / 𝑘), 0) < (1 / 2)) & ⊢ 𝑊 = (𝑝 ∈ ℕ ↦ {𝑛 ∈ (1...𝑁) ∣ (𝑝 ∈ ℙ ∧ 𝑝 ∥ 𝑛)}) ⇒ ⊢ (𝜑 → (𝑁 / 2) < ((2↑𝐾) · (√‘𝑁))) | ||
| Theorem | prmreclem6 16899* | Lemma for prmrec 16900. If the series 𝐹 was convergent, there would be some 𝑘 such that the sum starting from 𝑘 + 1 sums to less than 1 / 2; this is a sufficient hypothesis for prmreclem5 16898 to produce the contradictory bound 𝑁 / 2 < (2↑𝑘)√𝑁, which is false for 𝑁 = 2↑(2𝑘 + 2). (Contributed by Mario Carneiro, 6-Aug-2014.) |
| ⊢ 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (1 / 𝑛), 0)) ⇒ ⊢ ¬ seq1( + , 𝐹) ∈ dom ⇝ | ||
| Theorem | prmrec 16900* | The sum of the reciprocals of the primes diverges. Theorem 1.13 in [ApostolNT] p. 18. This is the "second" proof at http://en.wikipedia.org/wiki/Prime_harmonic_series, attributed to Paul Erdős. This is Metamath 100 proof #81. (Contributed by Mario Carneiro, 6-Aug-2014.) |
| ⊢ 𝐹 = (𝑛 ∈ ℕ ↦ Σ𝑘 ∈ (ℙ ∩ (1...𝑛))(1 / 𝑘)) ⇒ ⊢ ¬ 𝐹 ∈ dom ⇝ | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |