Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > df-had | Structured version Visualization version GIF version |
Description: Definition of the "sum" output of the full adder (triple exclusive disjunction, or XOR3, or testing whether an odd number of parameters are true). (Contributed by Mario Carneiro, 4-Sep-2016.) |
Ref | Expression |
---|---|
df-had | ⊢ (hadd(𝜑, 𝜓, 𝜒) ↔ ((𝜑 ⊻ 𝜓) ⊻ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wph | . . 3 wff 𝜑 | |
2 | wps | . . 3 wff 𝜓 | |
3 | wch | . . 3 wff 𝜒 | |
4 | 1, 2, 3 | whad 1595 | . 2 wff hadd(𝜑, 𝜓, 𝜒) |
5 | 1, 2 | wxo 1503 | . . 3 wff (𝜑 ⊻ 𝜓) |
6 | 5, 3 | wxo 1503 | . 2 wff ((𝜑 ⊻ 𝜓) ⊻ 𝜒) |
7 | 4, 6 | wb 205 | 1 wff (hadd(𝜑, 𝜓, 𝜒) ↔ ((𝜑 ⊻ 𝜓) ⊻ 𝜒)) |
Colors of variables: wff setvar class |
This definition is referenced by: hadbi123d 1597 hadass 1599 hadbi 1600 hadcomaOLD 1602 |
Copyright terms: Public domain | W3C validator |