Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > hadbi | Structured version Visualization version GIF version |
Description: The adder sum is the same as the triple biconditional. (Contributed by Mario Carneiro, 4-Sep-2016.) |
Ref | Expression |
---|---|
hadbi | ⊢ (hadd(𝜑, 𝜓, 𝜒) ↔ ((𝜑 ↔ 𝜓) ↔ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-xor 1507 | . 2 ⊢ (((𝜑 ⊻ 𝜓) ⊻ 𝜒) ↔ ¬ ((𝜑 ⊻ 𝜓) ↔ 𝜒)) | |
2 | df-had 1595 | . 2 ⊢ (hadd(𝜑, 𝜓, 𝜒) ↔ ((𝜑 ⊻ 𝜓) ⊻ 𝜒)) | |
3 | xnor 1508 | . . . 4 ⊢ ((𝜑 ↔ 𝜓) ↔ ¬ (𝜑 ⊻ 𝜓)) | |
4 | 3 | bibi1i 339 | . . 3 ⊢ (((𝜑 ↔ 𝜓) ↔ 𝜒) ↔ (¬ (𝜑 ⊻ 𝜓) ↔ 𝜒)) |
5 | nbbn 385 | . . 3 ⊢ ((¬ (𝜑 ⊻ 𝜓) ↔ 𝜒) ↔ ¬ ((𝜑 ⊻ 𝜓) ↔ 𝜒)) | |
6 | 4, 5 | bitri 274 | . 2 ⊢ (((𝜑 ↔ 𝜓) ↔ 𝜒) ↔ ¬ ((𝜑 ⊻ 𝜓) ↔ 𝜒)) |
7 | 1, 2, 6 | 3bitr4i 303 | 1 ⊢ (hadd(𝜑, 𝜓, 𝜒) ↔ ((𝜑 ↔ 𝜓) ↔ 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ⊻ wxo 1506 haddwhad 1594 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-xor 1507 df-had 1595 |
This theorem is referenced by: hadcoma 1600 hadnot 1604 had1 1605 |
Copyright terms: Public domain | W3C validator |