MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hadbi Structured version   Visualization version   GIF version

Theorem hadbi 1600
Description: The adder sum is the same as the triple biconditional. (Contributed by Mario Carneiro, 4-Sep-2016.)
Assertion
Ref Expression
hadbi (hadd(𝜑, 𝜓, 𝜒) ↔ ((𝜑𝜓) ↔ 𝜒))

Proof of Theorem hadbi
StepHypRef Expression
1 df-xor 1504 . 2 (((𝜑𝜓) ⊻ 𝜒) ↔ ¬ ((𝜑𝜓) ↔ 𝜒))
2 df-had 1596 . 2 (hadd(𝜑, 𝜓, 𝜒) ↔ ((𝜑𝜓) ⊻ 𝜒))
3 xnor 1505 . . . 4 ((𝜑𝜓) ↔ ¬ (𝜑𝜓))
43bibi1i 338 . . 3 (((𝜑𝜓) ↔ 𝜒) ↔ (¬ (𝜑𝜓) ↔ 𝜒))
5 nbbn 384 . . 3 ((¬ (𝜑𝜓) ↔ 𝜒) ↔ ¬ ((𝜑𝜓) ↔ 𝜒))
64, 5bitri 274 . 2 (((𝜑𝜓) ↔ 𝜒) ↔ ¬ ((𝜑𝜓) ↔ 𝜒))
71, 2, 63bitr4i 302 1 (hadd(𝜑, 𝜓, 𝜒) ↔ ((𝜑𝜓) ↔ 𝜒))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205  wxo 1503  haddwhad 1595
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-xor 1504  df-had 1596
This theorem is referenced by:  hadcoma  1601  hadnot  1605  had1  1606
  Copyright terms: Public domain W3C validator