Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > hadass | Structured version Visualization version GIF version |
Description: Associative law for the adder sum. (Contributed by Mario Carneiro, 4-Sep-2016.) |
Ref | Expression |
---|---|
hadass | ⊢ (hadd(𝜑, 𝜓, 𝜒) ↔ (𝜑 ⊻ (𝜓 ⊻ 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-had 1600 | . 2 ⊢ (hadd(𝜑, 𝜓, 𝜒) ↔ ((𝜑 ⊻ 𝜓) ⊻ 𝜒)) | |
2 | xorass 1512 | . 2 ⊢ (((𝜑 ⊻ 𝜓) ⊻ 𝜒) ↔ (𝜑 ⊻ (𝜓 ⊻ 𝜒))) | |
3 | 1, 2 | bitri 278 | 1 ⊢ (hadd(𝜑, 𝜓, 𝜒) ↔ (𝜑 ⊻ (𝜓 ⊻ 𝜒))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 209 ⊻ wxo 1507 haddwhad 1599 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 210 df-xor 1508 df-had 1600 |
This theorem is referenced by: hadcomb 1607 |
Copyright terms: Public domain | W3C validator |