|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > hadass | Structured version Visualization version GIF version | ||
| Description: Associative law for the adder sum. (Contributed by Mario Carneiro, 4-Sep-2016.) | 
| Ref | Expression | 
|---|---|
| hadass | ⊢ (hadd(𝜑, 𝜓, 𝜒) ↔ (𝜑 ⊻ (𝜓 ⊻ 𝜒))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-had 1594 | . 2 ⊢ (hadd(𝜑, 𝜓, 𝜒) ↔ ((𝜑 ⊻ 𝜓) ⊻ 𝜒)) | |
| 2 | xorass 1515 | . 2 ⊢ (((𝜑 ⊻ 𝜓) ⊻ 𝜒) ↔ (𝜑 ⊻ (𝜓 ⊻ 𝜒))) | |
| 3 | 1, 2 | bitri 275 | 1 ⊢ (hadd(𝜑, 𝜓, 𝜒) ↔ (𝜑 ⊻ (𝜓 ⊻ 𝜒))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ↔ wb 206 ⊻ wxo 1511 haddwhad 1593 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 207 df-xor 1512 df-had 1594 | 
| This theorem is referenced by: hadcomb 1600 | 
| Copyright terms: Public domain | W3C validator |