| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > hadbi123d | Structured version Visualization version GIF version | ||
| Description: Equality theorem for the adder sum. (Contributed by Mario Carneiro, 4-Sep-2016.) |
| Ref | Expression |
|---|---|
| hadbid.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| hadbid.2 | ⊢ (𝜑 → (𝜃 ↔ 𝜏)) |
| hadbid.3 | ⊢ (𝜑 → (𝜂 ↔ 𝜁)) |
| Ref | Expression |
|---|---|
| hadbi123d | ⊢ (𝜑 → (hadd(𝜓, 𝜃, 𝜂) ↔ hadd(𝜒, 𝜏, 𝜁))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hadbid.1 | . . . 4 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | hadbid.2 | . . . 4 ⊢ (𝜑 → (𝜃 ↔ 𝜏)) | |
| 3 | 1, 2 | xorbi12d 1525 | . . 3 ⊢ (𝜑 → ((𝜓 ⊻ 𝜃) ↔ (𝜒 ⊻ 𝜏))) |
| 4 | hadbid.3 | . . 3 ⊢ (𝜑 → (𝜂 ↔ 𝜁)) | |
| 5 | 3, 4 | xorbi12d 1525 | . 2 ⊢ (𝜑 → (((𝜓 ⊻ 𝜃) ⊻ 𝜂) ↔ ((𝜒 ⊻ 𝜏) ⊻ 𝜁))) |
| 6 | df-had 1594 | . 2 ⊢ (hadd(𝜓, 𝜃, 𝜂) ↔ ((𝜓 ⊻ 𝜃) ⊻ 𝜂)) | |
| 7 | df-had 1594 | . 2 ⊢ (hadd(𝜒, 𝜏, 𝜁) ↔ ((𝜒 ⊻ 𝜏) ⊻ 𝜁)) | |
| 8 | 5, 6, 7 | 3bitr4g 314 | 1 ⊢ (𝜑 → (hadd(𝜓, 𝜃, 𝜂) ↔ hadd(𝜒, 𝜏, 𝜁))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ⊻ wxo 1511 haddwhad 1593 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-xor 1512 df-had 1594 |
| This theorem is referenced by: hadbi123i 1596 sadfval 16489 sadval 16493 |
| Copyright terms: Public domain | W3C validator |