Detailed syntax breakdown of Definition df-hcmp
| Step | Hyp | Ref
| Expression |
| 1 | | chcmp 33955 |
. 2
class
HCmp |
| 2 | | vu |
. . . . . . 7
setvar 𝑢 |
| 3 | 2 | cv 1539 |
. . . . . 6
class 𝑢 |
| 4 | | cust 24208 |
. . . . . . . 8
class
UnifOn |
| 5 | 4 | crn 5686 |
. . . . . . 7
class ran
UnifOn |
| 6 | 5 | cuni 4907 |
. . . . . 6
class ∪ ran UnifOn |
| 7 | 3, 6 | wcel 2108 |
. . . . 5
wff 𝑢 ∈ ∪ ran UnifOn |
| 8 | | vw |
. . . . . . 7
setvar 𝑤 |
| 9 | 8 | cv 1539 |
. . . . . 6
class 𝑤 |
| 10 | | ccusp 24306 |
. . . . . 6
class
CUnifSp |
| 11 | 9, 10 | wcel 2108 |
. . . . 5
wff 𝑤 ∈ CUnifSp |
| 12 | 7, 11 | wa 395 |
. . . 4
wff (𝑢 ∈ ∪ ran UnifOn ∧ 𝑤 ∈ CUnifSp) |
| 13 | | cuss 24262 |
. . . . . . 7
class
UnifSt |
| 14 | 9, 13 | cfv 6561 |
. . . . . 6
class
(UnifSt‘𝑤) |
| 15 | 3 | cuni 4907 |
. . . . . . 7
class ∪ 𝑢 |
| 16 | 15 | cdm 5685 |
. . . . . 6
class dom ∪ 𝑢 |
| 17 | | crest 17465 |
. . . . . 6
class
↾t |
| 18 | 14, 16, 17 | co 7431 |
. . . . 5
class
((UnifSt‘𝑤)
↾t dom ∪ 𝑢) |
| 19 | 18, 3 | wceq 1540 |
. . . 4
wff
((UnifSt‘𝑤)
↾t dom ∪ 𝑢) = 𝑢 |
| 20 | | ctopn 17466 |
. . . . . . . 8
class
TopOpen |
| 21 | 9, 20 | cfv 6561 |
. . . . . . 7
class
(TopOpen‘𝑤) |
| 22 | | ccl 23026 |
. . . . . . 7
class
cls |
| 23 | 21, 22 | cfv 6561 |
. . . . . 6
class
(cls‘(TopOpen‘𝑤)) |
| 24 | 16, 23 | cfv 6561 |
. . . . 5
class
((cls‘(TopOpen‘𝑤))‘dom ∪
𝑢) |
| 25 | | cbs 17247 |
. . . . . 6
class
Base |
| 26 | 9, 25 | cfv 6561 |
. . . . 5
class
(Base‘𝑤) |
| 27 | 24, 26 | wceq 1540 |
. . . 4
wff
((cls‘(TopOpen‘𝑤))‘dom ∪
𝑢) = (Base‘𝑤) |
| 28 | 12, 19, 27 | w3a 1087 |
. . 3
wff ((𝑢 ∈ ∪ ran UnifOn ∧ 𝑤 ∈ CUnifSp) ∧ ((UnifSt‘𝑤) ↾t dom ∪ 𝑢) =
𝑢 ∧
((cls‘(TopOpen‘𝑤))‘dom ∪
𝑢) = (Base‘𝑤)) |
| 29 | 28, 2, 8 | copab 5205 |
. 2
class
{〈𝑢, 𝑤〉 ∣ ((𝑢 ∈ ∪ ran UnifOn ∧ 𝑤 ∈ CUnifSp) ∧ ((UnifSt‘𝑤) ↾t dom ∪ 𝑢) =
𝑢 ∧
((cls‘(TopOpen‘𝑤))‘dom ∪
𝑢) = (Base‘𝑤))} |
| 30 | 1, 29 | wceq 1540 |
1
wff HCmp =
{〈𝑢, 𝑤〉 ∣ ((𝑢 ∈ ∪ ran UnifOn ∧ 𝑤 ∈ CUnifSp) ∧ ((UnifSt‘𝑤) ↾t dom ∪ 𝑢) =
𝑢 ∧
((cls‘(TopOpen‘𝑤))‘dom ∪
𝑢) = (Base‘𝑤))} |