![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > zringnm | Structured version Visualization version GIF version |
Description: The norm (function) for a ring of integers is the absolute value function (restricted to the integers). (Contributed by AV, 13-Jun-2019.) |
Ref | Expression |
---|---|
zringnm | ⊢ (norm‘ℤring) = (abs ↾ ℤ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnring 21256 | . . 3 ⊢ ℂfld ∈ Ring | |
2 | ringmnd 20144 | . . 3 ⊢ (ℂfld ∈ Ring → ℂfld ∈ Mnd) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ ℂfld ∈ Mnd |
4 | 0z 12576 | . 2 ⊢ 0 ∈ ℤ | |
5 | zsscn 12573 | . 2 ⊢ ℤ ⊆ ℂ | |
6 | df-zring 21307 | . . . 4 ⊢ ℤring = (ℂfld ↾s ℤ) | |
7 | cnfldbas 21237 | . . . 4 ⊢ ℂ = (Base‘ℂfld) | |
8 | cnfld0 21258 | . . . 4 ⊢ 0 = (0g‘ℂfld) | |
9 | cnfldnm 24615 | . . . 4 ⊢ abs = (norm‘ℂfld) | |
10 | 6, 7, 8, 9 | ressnm 32562 | . . 3 ⊢ ((ℂfld ∈ Mnd ∧ 0 ∈ ℤ ∧ ℤ ⊆ ℂ) → (abs ↾ ℤ) = (norm‘ℤring)) |
11 | 10 | eqcomd 2737 | . 2 ⊢ ((ℂfld ∈ Mnd ∧ 0 ∈ ℤ ∧ ℤ ⊆ ℂ) → (norm‘ℤring) = (abs ↾ ℤ)) |
12 | 3, 4, 5, 11 | mp3an 1460 | 1 ⊢ (norm‘ℤring) = (abs ↾ ℤ) |
Colors of variables: wff setvar class |
Syntax hints: ∧ w3a 1086 = wceq 1540 ∈ wcel 2105 ⊆ wss 3948 ↾ cres 5678 ‘cfv 6543 ℂcc 11114 0cc0 11116 ℤcz 12565 abscabs 15188 Mndcmnd 18665 Ringcrg 20134 ℂfldccnfld 21233 ℤringczring 21306 normcnm 24405 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-cnex 11172 ax-resscn 11173 ax-1cn 11174 ax-icn 11175 ax-addcl 11176 ax-addrcl 11177 ax-mulcl 11178 ax-mulrcl 11179 ax-mulcom 11180 ax-addass 11181 ax-mulass 11182 ax-distr 11183 ax-i2m1 11184 ax-1ne0 11185 ax-1rid 11186 ax-rnegex 11187 ax-rrecex 11188 ax-cnre 11189 ax-pre-lttri 11190 ax-pre-lttrn 11191 ax-pre-ltadd 11192 ax-pre-mulgt0 11193 ax-pre-sup 11194 ax-addf 11195 ax-mulf 11196 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7860 df-1st 7979 df-2nd 7980 df-frecs 8272 df-wrecs 8303 df-recs 8377 df-rdg 8416 df-1o 8472 df-er 8709 df-en 8946 df-dom 8947 df-sdom 8948 df-fin 8949 df-sup 9443 df-pnf 11257 df-mnf 11258 df-xr 11259 df-ltxr 11260 df-le 11261 df-sub 11453 df-neg 11454 df-div 11879 df-nn 12220 df-2 12282 df-3 12283 df-4 12284 df-5 12285 df-6 12286 df-7 12287 df-8 12288 df-9 12289 df-n0 12480 df-z 12566 df-dec 12685 df-uz 12830 df-rp 12982 df-fz 13492 df-seq 13974 df-exp 14035 df-cj 15053 df-re 15054 df-im 15055 df-sqrt 15189 df-abs 15190 df-struct 17087 df-sets 17104 df-slot 17122 df-ndx 17134 df-base 17152 df-ress 17181 df-plusg 17217 df-mulr 17218 df-starv 17219 df-tset 17223 df-ple 17224 df-ds 17226 df-unif 17227 df-0g 17394 df-mgm 18571 df-sgrp 18650 df-mnd 18666 df-grp 18864 df-cmn 19698 df-mgp 20036 df-ring 20136 df-cring 20137 df-cnfld 21234 df-zring 21307 df-nm 24411 |
This theorem is referenced by: zzsnm 33404 cnzh 33415 rezh 33416 |
Copyright terms: Public domain | W3C validator |