Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > df-hil | Structured version Visualization version GIF version |
Description: Define class of all Hilbert spaces. Based on Proposition 4.5, p. 176, Gudrun Kalmbach, Quantum Measures and Spaces, Kluwer, Dordrecht, 1998. (Contributed by NM, 7-Oct-2011.) (Revised by Mario Carneiro, 16-Oct-2015.) |
Ref | Expression |
---|---|
df-hil | ⊢ Hil = {ℎ ∈ PreHil ∣ dom (proj‘ℎ) = (ClSubSp‘ℎ)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | chil 20908 | . 2 class Hil | |
2 | vh | . . . . . . 7 setvar ℎ | |
3 | 2 | cv 1538 | . . . . . 6 class ℎ |
4 | cpj 20907 | . . . . . 6 class proj | |
5 | 3, 4 | cfv 6433 | . . . . 5 class (proj‘ℎ) |
6 | 5 | cdm 5589 | . . . 4 class dom (proj‘ℎ) |
7 | ccss 20866 | . . . . 5 class ClSubSp | |
8 | 3, 7 | cfv 6433 | . . . 4 class (ClSubSp‘ℎ) |
9 | 6, 8 | wceq 1539 | . . 3 wff dom (proj‘ℎ) = (ClSubSp‘ℎ) |
10 | cphl 20829 | . . 3 class PreHil | |
11 | 9, 2, 10 | crab 3068 | . 2 class {ℎ ∈ PreHil ∣ dom (proj‘ℎ) = (ClSubSp‘ℎ)} |
12 | 1, 11 | wceq 1539 | 1 wff Hil = {ℎ ∈ PreHil ∣ dom (proj‘ℎ) = (ClSubSp‘ℎ)} |
Colors of variables: wff setvar class |
This definition is referenced by: ishil 20925 |
Copyright terms: Public domain | W3C validator |