MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ishil Structured version   Visualization version   GIF version

Theorem ishil 21683
Description: The predicate "is a Hilbert space" (over a *-division ring). A Hilbert space is a pre-Hilbert space such that all closed subspaces have a projection decomposition. (Contributed by NM, 7-Oct-2011.) (Revised by Mario Carneiro, 22-Jun-2014.)
Hypotheses
Ref Expression
ishil.k 𝐾 = (proj‘𝐻)
ishil.c 𝐶 = (ClSubSp‘𝐻)
Assertion
Ref Expression
ishil (𝐻 ∈ Hil ↔ (𝐻 ∈ PreHil ∧ dom 𝐾 = 𝐶))

Proof of Theorem ishil
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 fveq2 6881 . . . . 5 ( = 𝐻 → (proj‘) = (proj‘𝐻))
2 ishil.k . . . . 5 𝐾 = (proj‘𝐻)
31, 2eqtr4di 2789 . . . 4 ( = 𝐻 → (proj‘) = 𝐾)
43dmeqd 5890 . . 3 ( = 𝐻 → dom (proj‘) = dom 𝐾)
5 fveq2 6881 . . . 4 ( = 𝐻 → (ClSubSp‘) = (ClSubSp‘𝐻))
6 ishil.c . . . 4 𝐶 = (ClSubSp‘𝐻)
75, 6eqtr4di 2789 . . 3 ( = 𝐻 → (ClSubSp‘) = 𝐶)
84, 7eqeq12d 2752 . 2 ( = 𝐻 → (dom (proj‘) = (ClSubSp‘) ↔ dom 𝐾 = 𝐶))
9 df-hil 21669 . 2 Hil = { ∈ PreHil ∣ dom (proj‘) = (ClSubSp‘)}
108, 9elrab2 3679 1 (𝐻 ∈ Hil ↔ (𝐻 ∈ PreHil ∧ dom 𝐾 = 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wcel 2109  dom cdm 5659  cfv 6536  PreHilcphl 21589  ClSubSpccss 21626  projcpj 21665  Hilchil 21666
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-dm 5669  df-iota 6489  df-fv 6544  df-hil 21669
This theorem is referenced by:  ishil2  21684  hlhil  25400
  Copyright terms: Public domain W3C validator