| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ishil | Structured version Visualization version GIF version | ||
| Description: The predicate "is a Hilbert space" (over a *-division ring). A Hilbert space is a pre-Hilbert space such that all closed subspaces have a projection decomposition. (Contributed by NM, 7-Oct-2011.) (Revised by Mario Carneiro, 22-Jun-2014.) |
| Ref | Expression |
|---|---|
| ishil.k | ⊢ 𝐾 = (proj‘𝐻) |
| ishil.c | ⊢ 𝐶 = (ClSubSp‘𝐻) |
| Ref | Expression |
|---|---|
| ishil | ⊢ (𝐻 ∈ Hil ↔ (𝐻 ∈ PreHil ∧ dom 𝐾 = 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6881 | . . . . 5 ⊢ (ℎ = 𝐻 → (proj‘ℎ) = (proj‘𝐻)) | |
| 2 | ishil.k | . . . . 5 ⊢ 𝐾 = (proj‘𝐻) | |
| 3 | 1, 2 | eqtr4di 2789 | . . . 4 ⊢ (ℎ = 𝐻 → (proj‘ℎ) = 𝐾) |
| 4 | 3 | dmeqd 5890 | . . 3 ⊢ (ℎ = 𝐻 → dom (proj‘ℎ) = dom 𝐾) |
| 5 | fveq2 6881 | . . . 4 ⊢ (ℎ = 𝐻 → (ClSubSp‘ℎ) = (ClSubSp‘𝐻)) | |
| 6 | ishil.c | . . . 4 ⊢ 𝐶 = (ClSubSp‘𝐻) | |
| 7 | 5, 6 | eqtr4di 2789 | . . 3 ⊢ (ℎ = 𝐻 → (ClSubSp‘ℎ) = 𝐶) |
| 8 | 4, 7 | eqeq12d 2752 | . 2 ⊢ (ℎ = 𝐻 → (dom (proj‘ℎ) = (ClSubSp‘ℎ) ↔ dom 𝐾 = 𝐶)) |
| 9 | df-hil 21669 | . 2 ⊢ Hil = {ℎ ∈ PreHil ∣ dom (proj‘ℎ) = (ClSubSp‘ℎ)} | |
| 10 | 8, 9 | elrab2 3679 | 1 ⊢ (𝐻 ∈ Hil ↔ (𝐻 ∈ PreHil ∧ dom 𝐾 = 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 dom cdm 5659 ‘cfv 6536 PreHilcphl 21589 ClSubSpccss 21626 projcpj 21665 Hilchil 21666 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-dm 5669 df-iota 6489 df-fv 6544 df-hil 21669 |
| This theorem is referenced by: ishil2 21684 hlhil 25400 |
| Copyright terms: Public domain | W3C validator |