![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ishil | Structured version Visualization version GIF version |
Description: The predicate "is a Hilbert space" (over a *-division ring). A Hilbert space is a pre-Hilbert space such that all closed subspaces have a projection decomposition. (Contributed by NM, 7-Oct-2011.) (Revised by Mario Carneiro, 22-Jun-2014.) |
Ref | Expression |
---|---|
ishil.k | ⊢ 𝐾 = (proj‘𝐻) |
ishil.c | ⊢ 𝐶 = (ClSubSp‘𝐻) |
Ref | Expression |
---|---|
ishil | ⊢ (𝐻 ∈ Hil ↔ (𝐻 ∈ PreHil ∧ dom 𝐾 = 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6888 | . . . . 5 ⊢ (ℎ = 𝐻 → (proj‘ℎ) = (proj‘𝐻)) | |
2 | ishil.k | . . . . 5 ⊢ 𝐾 = (proj‘𝐻) | |
3 | 1, 2 | eqtr4di 2790 | . . . 4 ⊢ (ℎ = 𝐻 → (proj‘ℎ) = 𝐾) |
4 | 3 | dmeqd 5903 | . . 3 ⊢ (ℎ = 𝐻 → dom (proj‘ℎ) = dom 𝐾) |
5 | fveq2 6888 | . . . 4 ⊢ (ℎ = 𝐻 → (ClSubSp‘ℎ) = (ClSubSp‘𝐻)) | |
6 | ishil.c | . . . 4 ⊢ 𝐶 = (ClSubSp‘𝐻) | |
7 | 5, 6 | eqtr4di 2790 | . . 3 ⊢ (ℎ = 𝐻 → (ClSubSp‘ℎ) = 𝐶) |
8 | 4, 7 | eqeq12d 2748 | . 2 ⊢ (ℎ = 𝐻 → (dom (proj‘ℎ) = (ClSubSp‘ℎ) ↔ dom 𝐾 = 𝐶)) |
9 | df-hil 21250 | . 2 ⊢ Hil = {ℎ ∈ PreHil ∣ dom (proj‘ℎ) = (ClSubSp‘ℎ)} | |
10 | 8, 9 | elrab2 3685 | 1 ⊢ (𝐻 ∈ Hil ↔ (𝐻 ∈ PreHil ∧ dom 𝐾 = 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 = wceq 1541 ∈ wcel 2106 dom cdm 5675 ‘cfv 6540 PreHilcphl 21168 ClSubSpccss 21205 projcpj 21246 Hilchil 21247 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-rab 3433 df-v 3476 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-dm 5685 df-iota 6492 df-fv 6548 df-hil 21250 |
This theorem is referenced by: ishil2 21265 hlhil 24951 |
Copyright terms: Public domain | W3C validator |