MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ishil Structured version   Visualization version   GIF version

Theorem ishil 21005
Description: The predicate "is a Hilbert space" (over a *-division ring). A Hilbert space is a pre-Hilbert space such that all closed subspaces have a projection decomposition. (Contributed by NM, 7-Oct-2011.) (Revised by Mario Carneiro, 22-Jun-2014.)
Hypotheses
Ref Expression
ishil.k 𝐾 = (proj‘𝐻)
ishil.c 𝐶 = (ClSubSp‘𝐻)
Assertion
Ref Expression
ishil (𝐻 ∈ Hil ↔ (𝐻 ∈ PreHil ∧ dom 𝐾 = 𝐶))

Proof of Theorem ishil
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 fveq2 6811 . . . . 5 ( = 𝐻 → (proj‘) = (proj‘𝐻))
2 ishil.k . . . . 5 𝐾 = (proj‘𝐻)
31, 2eqtr4di 2794 . . . 4 ( = 𝐻 → (proj‘) = 𝐾)
43dmeqd 5834 . . 3 ( = 𝐻 → dom (proj‘) = dom 𝐾)
5 fveq2 6811 . . . 4 ( = 𝐻 → (ClSubSp‘) = (ClSubSp‘𝐻))
6 ishil.c . . . 4 𝐶 = (ClSubSp‘𝐻)
75, 6eqtr4di 2794 . . 3 ( = 𝐻 → (ClSubSp‘) = 𝐶)
84, 7eqeq12d 2752 . 2 ( = 𝐻 → (dom (proj‘) = (ClSubSp‘) ↔ dom 𝐾 = 𝐶))
9 df-hil 20991 . 2 Hil = { ∈ PreHil ∣ dom (proj‘) = (ClSubSp‘)}
108, 9elrab2 3636 1 (𝐻 ∈ Hil ↔ (𝐻 ∈ PreHil ∧ dom 𝐾 = 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396   = wceq 1540  wcel 2105  dom cdm 5607  cfv 6465  PreHilcphl 20909  ClSubSpccss 20946  projcpj 20987  Hilchil 20988
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2707
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-sb 2067  df-clab 2714  df-cleq 2728  df-clel 2814  df-rab 3404  df-v 3442  df-dif 3899  df-un 3901  df-in 3903  df-ss 3913  df-nul 4267  df-if 4471  df-sn 4571  df-pr 4573  df-op 4577  df-uni 4850  df-br 5087  df-dm 5617  df-iota 6417  df-fv 6473  df-hil 20991
This theorem is referenced by:  ishil2  21006  hlhil  24687
  Copyright terms: Public domain W3C validator