MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-obs Structured version   Visualization version   GIF version

Definition df-obs 21640
Description: Define the set of all orthonormal bases for a pre-Hilbert space. An orthonormal basis is a set of mutually orthogonal vectors with norm 1 and such that the linear span is dense in the whole space. (As this is an "algebraic" definition, before we have topology available, we express this denseness by saying that the double orthocomplement is the whole space, or equivalently, the single orthocomplement is trivial.) (Contributed by Mario Carneiro, 23-Oct-2015.)
Assertion
Ref Expression
df-obs OBasis = ( ∈ PreHil ↦ {𝑏 ∈ 𝒫 (Base‘) ∣ (∀𝑥𝑏𝑦𝑏 (𝑥(·𝑖)𝑦) = if(𝑥 = 𝑦, (1r‘(Scalar‘)), (0g‘(Scalar‘))) ∧ ((ocv‘)‘𝑏) = {(0g)})})
Distinct variable group:   ,𝑏,𝑥,𝑦

Detailed syntax breakdown of Definition df-obs
StepHypRef Expression
1 cobs 21637 . 2 class OBasis
2 vh . . 3 setvar
3 cphl 21559 . . 3 class PreHil
4 vx . . . . . . . . . 10 setvar 𝑥
54cv 1540 . . . . . . . . 9 class 𝑥
6 vy . . . . . . . . . 10 setvar 𝑦
76cv 1540 . . . . . . . . 9 class 𝑦
82cv 1540 . . . . . . . . . 10 class
9 cip 17163 . . . . . . . . . 10 class ·𝑖
108, 9cfv 6481 . . . . . . . . 9 class (·𝑖)
115, 7, 10co 7346 . . . . . . . 8 class (𝑥(·𝑖)𝑦)
124, 6weq 1963 . . . . . . . . 9 wff 𝑥 = 𝑦
13 csca 17161 . . . . . . . . . . 11 class Scalar
148, 13cfv 6481 . . . . . . . . . 10 class (Scalar‘)
15 cur 20097 . . . . . . . . . 10 class 1r
1614, 15cfv 6481 . . . . . . . . 9 class (1r‘(Scalar‘))
17 c0g 17340 . . . . . . . . . 10 class 0g
1814, 17cfv 6481 . . . . . . . . 9 class (0g‘(Scalar‘))
1912, 16, 18cif 4475 . . . . . . . 8 class if(𝑥 = 𝑦, (1r‘(Scalar‘)), (0g‘(Scalar‘)))
2011, 19wceq 1541 . . . . . . 7 wff (𝑥(·𝑖)𝑦) = if(𝑥 = 𝑦, (1r‘(Scalar‘)), (0g‘(Scalar‘)))
21 vb . . . . . . . 8 setvar 𝑏
2221cv 1540 . . . . . . 7 class 𝑏
2320, 6, 22wral 3047 . . . . . 6 wff 𝑦𝑏 (𝑥(·𝑖)𝑦) = if(𝑥 = 𝑦, (1r‘(Scalar‘)), (0g‘(Scalar‘)))
2423, 4, 22wral 3047 . . . . 5 wff 𝑥𝑏𝑦𝑏 (𝑥(·𝑖)𝑦) = if(𝑥 = 𝑦, (1r‘(Scalar‘)), (0g‘(Scalar‘)))
25 cocv 21595 . . . . . . . 8 class ocv
268, 25cfv 6481 . . . . . . 7 class (ocv‘)
2722, 26cfv 6481 . . . . . 6 class ((ocv‘)‘𝑏)
288, 17cfv 6481 . . . . . . 7 class (0g)
2928csn 4576 . . . . . 6 class {(0g)}
3027, 29wceq 1541 . . . . 5 wff ((ocv‘)‘𝑏) = {(0g)}
3124, 30wa 395 . . . 4 wff (∀𝑥𝑏𝑦𝑏 (𝑥(·𝑖)𝑦) = if(𝑥 = 𝑦, (1r‘(Scalar‘)), (0g‘(Scalar‘))) ∧ ((ocv‘)‘𝑏) = {(0g)})
32 cbs 17117 . . . . . 6 class Base
338, 32cfv 6481 . . . . 5 class (Base‘)
3433cpw 4550 . . . 4 class 𝒫 (Base‘)
3531, 21, 34crab 3395 . . 3 class {𝑏 ∈ 𝒫 (Base‘) ∣ (∀𝑥𝑏𝑦𝑏 (𝑥(·𝑖)𝑦) = if(𝑥 = 𝑦, (1r‘(Scalar‘)), (0g‘(Scalar‘))) ∧ ((ocv‘)‘𝑏) = {(0g)})}
362, 3, 35cmpt 5172 . 2 class ( ∈ PreHil ↦ {𝑏 ∈ 𝒫 (Base‘) ∣ (∀𝑥𝑏𝑦𝑏 (𝑥(·𝑖)𝑦) = if(𝑥 = 𝑦, (1r‘(Scalar‘)), (0g‘(Scalar‘))) ∧ ((ocv‘)‘𝑏) = {(0g)})})
371, 36wceq 1541 1 wff OBasis = ( ∈ PreHil ↦ {𝑏 ∈ 𝒫 (Base‘) ∣ (∀𝑥𝑏𝑦𝑏 (𝑥(·𝑖)𝑦) = if(𝑥 = 𝑦, (1r‘(Scalar‘)), (0g‘(Scalar‘))) ∧ ((ocv‘)‘𝑏) = {(0g)})})
Colors of variables: wff setvar class
This definition is referenced by:  isobs  21655
  Copyright terms: Public domain W3C validator