MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-obs Structured version   Visualization version   GIF version

Definition df-obs 21670
Description: Define the set of all orthonormal bases for a pre-Hilbert space. An orthonormal basis is a set of mutually orthogonal vectors with norm 1 and such that the linear span is dense in the whole space. (As this is an "algebraic" definition, before we have topology available, we express this denseness by saying that the double orthocomplement is the whole space, or equivalently, the single orthocomplement is trivial.) (Contributed by Mario Carneiro, 23-Oct-2015.)
Assertion
Ref Expression
df-obs OBasis = ( ∈ PreHil ↦ {𝑏 ∈ 𝒫 (Base‘) ∣ (∀𝑥𝑏𝑦𝑏 (𝑥(·𝑖)𝑦) = if(𝑥 = 𝑦, (1r‘(Scalar‘)), (0g‘(Scalar‘))) ∧ ((ocv‘)‘𝑏) = {(0g)})})
Distinct variable group:   ,𝑏,𝑥,𝑦

Detailed syntax breakdown of Definition df-obs
StepHypRef Expression
1 cobs 21667 . 2 class OBasis
2 vh . . 3 setvar
3 cphl 21589 . . 3 class PreHil
4 vx . . . . . . . . . 10 setvar 𝑥
54cv 1539 . . . . . . . . 9 class 𝑥
6 vy . . . . . . . . . 10 setvar 𝑦
76cv 1539 . . . . . . . . 9 class 𝑦
82cv 1539 . . . . . . . . . 10 class
9 cip 17281 . . . . . . . . . 10 class ·𝑖
108, 9cfv 6536 . . . . . . . . 9 class (·𝑖)
115, 7, 10co 7410 . . . . . . . 8 class (𝑥(·𝑖)𝑦)
124, 6weq 1962 . . . . . . . . 9 wff 𝑥 = 𝑦
13 csca 17279 . . . . . . . . . . 11 class Scalar
148, 13cfv 6536 . . . . . . . . . 10 class (Scalar‘)
15 cur 20146 . . . . . . . . . 10 class 1r
1614, 15cfv 6536 . . . . . . . . 9 class (1r‘(Scalar‘))
17 c0g 17458 . . . . . . . . . 10 class 0g
1814, 17cfv 6536 . . . . . . . . 9 class (0g‘(Scalar‘))
1912, 16, 18cif 4505 . . . . . . . 8 class if(𝑥 = 𝑦, (1r‘(Scalar‘)), (0g‘(Scalar‘)))
2011, 19wceq 1540 . . . . . . 7 wff (𝑥(·𝑖)𝑦) = if(𝑥 = 𝑦, (1r‘(Scalar‘)), (0g‘(Scalar‘)))
21 vb . . . . . . . 8 setvar 𝑏
2221cv 1539 . . . . . . 7 class 𝑏
2320, 6, 22wral 3052 . . . . . 6 wff 𝑦𝑏 (𝑥(·𝑖)𝑦) = if(𝑥 = 𝑦, (1r‘(Scalar‘)), (0g‘(Scalar‘)))
2423, 4, 22wral 3052 . . . . 5 wff 𝑥𝑏𝑦𝑏 (𝑥(·𝑖)𝑦) = if(𝑥 = 𝑦, (1r‘(Scalar‘)), (0g‘(Scalar‘)))
25 cocv 21625 . . . . . . . 8 class ocv
268, 25cfv 6536 . . . . . . 7 class (ocv‘)
2722, 26cfv 6536 . . . . . 6 class ((ocv‘)‘𝑏)
288, 17cfv 6536 . . . . . . 7 class (0g)
2928csn 4606 . . . . . 6 class {(0g)}
3027, 29wceq 1540 . . . . 5 wff ((ocv‘)‘𝑏) = {(0g)}
3124, 30wa 395 . . . 4 wff (∀𝑥𝑏𝑦𝑏 (𝑥(·𝑖)𝑦) = if(𝑥 = 𝑦, (1r‘(Scalar‘)), (0g‘(Scalar‘))) ∧ ((ocv‘)‘𝑏) = {(0g)})
32 cbs 17233 . . . . . 6 class Base
338, 32cfv 6536 . . . . 5 class (Base‘)
3433cpw 4580 . . . 4 class 𝒫 (Base‘)
3531, 21, 34crab 3420 . . 3 class {𝑏 ∈ 𝒫 (Base‘) ∣ (∀𝑥𝑏𝑦𝑏 (𝑥(·𝑖)𝑦) = if(𝑥 = 𝑦, (1r‘(Scalar‘)), (0g‘(Scalar‘))) ∧ ((ocv‘)‘𝑏) = {(0g)})}
362, 3, 35cmpt 5206 . 2 class ( ∈ PreHil ↦ {𝑏 ∈ 𝒫 (Base‘) ∣ (∀𝑥𝑏𝑦𝑏 (𝑥(·𝑖)𝑦) = if(𝑥 = 𝑦, (1r‘(Scalar‘)), (0g‘(Scalar‘))) ∧ ((ocv‘)‘𝑏) = {(0g)})})
371, 36wceq 1540 1 wff OBasis = ( ∈ PreHil ↦ {𝑏 ∈ 𝒫 (Base‘) ∣ (∀𝑥𝑏𝑦𝑏 (𝑥(·𝑖)𝑦) = if(𝑥 = 𝑦, (1r‘(Scalar‘)), (0g‘(Scalar‘))) ∧ ((ocv‘)‘𝑏) = {(0g)})})
Colors of variables: wff setvar class
This definition is referenced by:  isobs  21685
  Copyright terms: Public domain W3C validator