MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-obs Structured version   Visualization version   GIF version

Definition df-obs 21647
Description: Define the set of all orthonormal bases for a pre-Hilbert space. An orthonormal basis is a set of mutually orthogonal vectors with norm 1 and such that the linear span is dense in the whole space. (As this is an "algebraic" definition, before we have topology available, we express this denseness by saying that the double orthocomplement is the whole space, or equivalently, the single orthocomplement is trivial.) (Contributed by Mario Carneiro, 23-Oct-2015.)
Assertion
Ref Expression
df-obs OBasis = ( ∈ PreHil ↦ {𝑏 ∈ 𝒫 (Base‘) ∣ (∀𝑥𝑏𝑦𝑏 (𝑥(·𝑖)𝑦) = if(𝑥 = 𝑦, (1r‘(Scalar‘)), (0g‘(Scalar‘))) ∧ ((ocv‘)‘𝑏) = {(0g)})})
Distinct variable group:   ,𝑏,𝑥,𝑦

Detailed syntax breakdown of Definition df-obs
StepHypRef Expression
1 cobs 21644 . 2 class OBasis
2 vh . . 3 setvar
3 cphl 21566 . . 3 class PreHil
4 vx . . . . . . . . . 10 setvar 𝑥
54cv 1539 . . . . . . . . 9 class 𝑥
6 vy . . . . . . . . . 10 setvar 𝑦
76cv 1539 . . . . . . . . 9 class 𝑦
82cv 1539 . . . . . . . . . 10 class
9 cip 17201 . . . . . . . . . 10 class ·𝑖
108, 9cfv 6499 . . . . . . . . 9 class (·𝑖)
115, 7, 10co 7369 . . . . . . . 8 class (𝑥(·𝑖)𝑦)
124, 6weq 1962 . . . . . . . . 9 wff 𝑥 = 𝑦
13 csca 17199 . . . . . . . . . . 11 class Scalar
148, 13cfv 6499 . . . . . . . . . 10 class (Scalar‘)
15 cur 20101 . . . . . . . . . 10 class 1r
1614, 15cfv 6499 . . . . . . . . 9 class (1r‘(Scalar‘))
17 c0g 17378 . . . . . . . . . 10 class 0g
1814, 17cfv 6499 . . . . . . . . 9 class (0g‘(Scalar‘))
1912, 16, 18cif 4484 . . . . . . . 8 class if(𝑥 = 𝑦, (1r‘(Scalar‘)), (0g‘(Scalar‘)))
2011, 19wceq 1540 . . . . . . 7 wff (𝑥(·𝑖)𝑦) = if(𝑥 = 𝑦, (1r‘(Scalar‘)), (0g‘(Scalar‘)))
21 vb . . . . . . . 8 setvar 𝑏
2221cv 1539 . . . . . . 7 class 𝑏
2320, 6, 22wral 3044 . . . . . 6 wff 𝑦𝑏 (𝑥(·𝑖)𝑦) = if(𝑥 = 𝑦, (1r‘(Scalar‘)), (0g‘(Scalar‘)))
2423, 4, 22wral 3044 . . . . 5 wff 𝑥𝑏𝑦𝑏 (𝑥(·𝑖)𝑦) = if(𝑥 = 𝑦, (1r‘(Scalar‘)), (0g‘(Scalar‘)))
25 cocv 21602 . . . . . . . 8 class ocv
268, 25cfv 6499 . . . . . . 7 class (ocv‘)
2722, 26cfv 6499 . . . . . 6 class ((ocv‘)‘𝑏)
288, 17cfv 6499 . . . . . . 7 class (0g)
2928csn 4585 . . . . . 6 class {(0g)}
3027, 29wceq 1540 . . . . 5 wff ((ocv‘)‘𝑏) = {(0g)}
3124, 30wa 395 . . . 4 wff (∀𝑥𝑏𝑦𝑏 (𝑥(·𝑖)𝑦) = if(𝑥 = 𝑦, (1r‘(Scalar‘)), (0g‘(Scalar‘))) ∧ ((ocv‘)‘𝑏) = {(0g)})
32 cbs 17155 . . . . . 6 class Base
338, 32cfv 6499 . . . . 5 class (Base‘)
3433cpw 4559 . . . 4 class 𝒫 (Base‘)
3531, 21, 34crab 3402 . . 3 class {𝑏 ∈ 𝒫 (Base‘) ∣ (∀𝑥𝑏𝑦𝑏 (𝑥(·𝑖)𝑦) = if(𝑥 = 𝑦, (1r‘(Scalar‘)), (0g‘(Scalar‘))) ∧ ((ocv‘)‘𝑏) = {(0g)})}
362, 3, 35cmpt 5183 . 2 class ( ∈ PreHil ↦ {𝑏 ∈ 𝒫 (Base‘) ∣ (∀𝑥𝑏𝑦𝑏 (𝑥(·𝑖)𝑦) = if(𝑥 = 𝑦, (1r‘(Scalar‘)), (0g‘(Scalar‘))) ∧ ((ocv‘)‘𝑏) = {(0g)})})
371, 36wceq 1540 1 wff OBasis = ( ∈ PreHil ↦ {𝑏 ∈ 𝒫 (Base‘) ∣ (∀𝑥𝑏𝑦𝑏 (𝑥(·𝑖)𝑦) = if(𝑥 = 𝑦, (1r‘(Scalar‘)), (0g‘(Scalar‘))) ∧ ((ocv‘)‘𝑏) = {(0g)})})
Colors of variables: wff setvar class
This definition is referenced by:  isobs  21662
  Copyright terms: Public domain W3C validator