MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-obs Structured version   Visualization version   GIF version

Definition df-obs 21644
Description: Define the set of all orthonormal bases for a pre-Hilbert space. An orthonormal basis is a set of mutually orthogonal vectors with norm 1 and such that the linear span is dense in the whole space. (As this is an "algebraic" definition, before we have topology available, we express this denseness by saying that the double orthocomplement is the whole space, or equivalently, the single orthocomplement is trivial.) (Contributed by Mario Carneiro, 23-Oct-2015.)
Assertion
Ref Expression
df-obs OBasis = ( ∈ PreHil ↦ {𝑏 ∈ 𝒫 (Base‘) ∣ (∀𝑥𝑏𝑦𝑏 (𝑥(·𝑖)𝑦) = if(𝑥 = 𝑦, (1r‘(Scalar‘)), (0g‘(Scalar‘))) ∧ ((ocv‘)‘𝑏) = {(0g)})})
Distinct variable group:   ,𝑏,𝑥,𝑦

Detailed syntax breakdown of Definition df-obs
StepHypRef Expression
1 cobs 21641 . 2 class OBasis
2 vh . . 3 setvar
3 cphl 21563 . . 3 class PreHil
4 vx . . . . . . . . . 10 setvar 𝑥
54cv 1540 . . . . . . . . 9 class 𝑥
6 vy . . . . . . . . . 10 setvar 𝑦
76cv 1540 . . . . . . . . 9 class 𝑦
82cv 1540 . . . . . . . . . 10 class
9 cip 17168 . . . . . . . . . 10 class ·𝑖
108, 9cfv 6486 . . . . . . . . 9 class (·𝑖)
115, 7, 10co 7352 . . . . . . . 8 class (𝑥(·𝑖)𝑦)
124, 6weq 1963 . . . . . . . . 9 wff 𝑥 = 𝑦
13 csca 17166 . . . . . . . . . . 11 class Scalar
148, 13cfv 6486 . . . . . . . . . 10 class (Scalar‘)
15 cur 20101 . . . . . . . . . 10 class 1r
1614, 15cfv 6486 . . . . . . . . 9 class (1r‘(Scalar‘))
17 c0g 17345 . . . . . . . . . 10 class 0g
1814, 17cfv 6486 . . . . . . . . 9 class (0g‘(Scalar‘))
1912, 16, 18cif 4474 . . . . . . . 8 class if(𝑥 = 𝑦, (1r‘(Scalar‘)), (0g‘(Scalar‘)))
2011, 19wceq 1541 . . . . . . 7 wff (𝑥(·𝑖)𝑦) = if(𝑥 = 𝑦, (1r‘(Scalar‘)), (0g‘(Scalar‘)))
21 vb . . . . . . . 8 setvar 𝑏
2221cv 1540 . . . . . . 7 class 𝑏
2320, 6, 22wral 3048 . . . . . 6 wff 𝑦𝑏 (𝑥(·𝑖)𝑦) = if(𝑥 = 𝑦, (1r‘(Scalar‘)), (0g‘(Scalar‘)))
2423, 4, 22wral 3048 . . . . 5 wff 𝑥𝑏𝑦𝑏 (𝑥(·𝑖)𝑦) = if(𝑥 = 𝑦, (1r‘(Scalar‘)), (0g‘(Scalar‘)))
25 cocv 21599 . . . . . . . 8 class ocv
268, 25cfv 6486 . . . . . . 7 class (ocv‘)
2722, 26cfv 6486 . . . . . 6 class ((ocv‘)‘𝑏)
288, 17cfv 6486 . . . . . . 7 class (0g)
2928csn 4575 . . . . . 6 class {(0g)}
3027, 29wceq 1541 . . . . 5 wff ((ocv‘)‘𝑏) = {(0g)}
3124, 30wa 395 . . . 4 wff (∀𝑥𝑏𝑦𝑏 (𝑥(·𝑖)𝑦) = if(𝑥 = 𝑦, (1r‘(Scalar‘)), (0g‘(Scalar‘))) ∧ ((ocv‘)‘𝑏) = {(0g)})
32 cbs 17122 . . . . . 6 class Base
338, 32cfv 6486 . . . . 5 class (Base‘)
3433cpw 4549 . . . 4 class 𝒫 (Base‘)
3531, 21, 34crab 3396 . . 3 class {𝑏 ∈ 𝒫 (Base‘) ∣ (∀𝑥𝑏𝑦𝑏 (𝑥(·𝑖)𝑦) = if(𝑥 = 𝑦, (1r‘(Scalar‘)), (0g‘(Scalar‘))) ∧ ((ocv‘)‘𝑏) = {(0g)})}
362, 3, 35cmpt 5174 . 2 class ( ∈ PreHil ↦ {𝑏 ∈ 𝒫 (Base‘) ∣ (∀𝑥𝑏𝑦𝑏 (𝑥(·𝑖)𝑦) = if(𝑥 = 𝑦, (1r‘(Scalar‘)), (0g‘(Scalar‘))) ∧ ((ocv‘)‘𝑏) = {(0g)})})
371, 36wceq 1541 1 wff OBasis = ( ∈ PreHil ↦ {𝑏 ∈ 𝒫 (Base‘) ∣ (∀𝑥𝑏𝑦𝑏 (𝑥(·𝑖)𝑦) = if(𝑥 = 𝑦, (1r‘(Scalar‘)), (0g‘(Scalar‘))) ∧ ((ocv‘)‘𝑏) = {(0g)})})
Colors of variables: wff setvar class
This definition is referenced by:  isobs  21659
  Copyright terms: Public domain W3C validator