MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-obs Structured version   Visualization version   GIF version

Definition df-obs 20912
Description: Define the set of all orthonormal bases for a pre-Hilbert space. An orthonormal basis is a set of mutually orthogonal vectors with norm 1 and such that the linear span is dense in the whole space. (As this is an "algebraic" definition, before we have topology available, we express this denseness by saying that the double orthocomplement is the whole space, or equivalently, the single orthocomplement is trivial.) (Contributed by Mario Carneiro, 23-Oct-2015.)
Assertion
Ref Expression
df-obs OBasis = ( ∈ PreHil ↦ {𝑏 ∈ 𝒫 (Base‘) ∣ (∀𝑥𝑏𝑦𝑏 (𝑥(·𝑖)𝑦) = if(𝑥 = 𝑦, (1r‘(Scalar‘)), (0g‘(Scalar‘))) ∧ ((ocv‘)‘𝑏) = {(0g)})})
Distinct variable group:   ,𝑏,𝑥,𝑦

Detailed syntax breakdown of Definition df-obs
StepHypRef Expression
1 cobs 20909 . 2 class OBasis
2 vh . . 3 setvar
3 cphl 20829 . . 3 class PreHil
4 vx . . . . . . . . . 10 setvar 𝑥
54cv 1538 . . . . . . . . 9 class 𝑥
6 vy . . . . . . . . . 10 setvar 𝑦
76cv 1538 . . . . . . . . 9 class 𝑦
82cv 1538 . . . . . . . . . 10 class
9 cip 16967 . . . . . . . . . 10 class ·𝑖
108, 9cfv 6433 . . . . . . . . 9 class (·𝑖)
115, 7, 10co 7275 . . . . . . . 8 class (𝑥(·𝑖)𝑦)
124, 6weq 1966 . . . . . . . . 9 wff 𝑥 = 𝑦
13 csca 16965 . . . . . . . . . . 11 class Scalar
148, 13cfv 6433 . . . . . . . . . 10 class (Scalar‘)
15 cur 19737 . . . . . . . . . 10 class 1r
1614, 15cfv 6433 . . . . . . . . 9 class (1r‘(Scalar‘))
17 c0g 17150 . . . . . . . . . 10 class 0g
1814, 17cfv 6433 . . . . . . . . 9 class (0g‘(Scalar‘))
1912, 16, 18cif 4459 . . . . . . . 8 class if(𝑥 = 𝑦, (1r‘(Scalar‘)), (0g‘(Scalar‘)))
2011, 19wceq 1539 . . . . . . 7 wff (𝑥(·𝑖)𝑦) = if(𝑥 = 𝑦, (1r‘(Scalar‘)), (0g‘(Scalar‘)))
21 vb . . . . . . . 8 setvar 𝑏
2221cv 1538 . . . . . . 7 class 𝑏
2320, 6, 22wral 3064 . . . . . 6 wff 𝑦𝑏 (𝑥(·𝑖)𝑦) = if(𝑥 = 𝑦, (1r‘(Scalar‘)), (0g‘(Scalar‘)))
2423, 4, 22wral 3064 . . . . 5 wff 𝑥𝑏𝑦𝑏 (𝑥(·𝑖)𝑦) = if(𝑥 = 𝑦, (1r‘(Scalar‘)), (0g‘(Scalar‘)))
25 cocv 20865 . . . . . . . 8 class ocv
268, 25cfv 6433 . . . . . . 7 class (ocv‘)
2722, 26cfv 6433 . . . . . 6 class ((ocv‘)‘𝑏)
288, 17cfv 6433 . . . . . . 7 class (0g)
2928csn 4561 . . . . . 6 class {(0g)}
3027, 29wceq 1539 . . . . 5 wff ((ocv‘)‘𝑏) = {(0g)}
3124, 30wa 396 . . . 4 wff (∀𝑥𝑏𝑦𝑏 (𝑥(·𝑖)𝑦) = if(𝑥 = 𝑦, (1r‘(Scalar‘)), (0g‘(Scalar‘))) ∧ ((ocv‘)‘𝑏) = {(0g)})
32 cbs 16912 . . . . . 6 class Base
338, 32cfv 6433 . . . . 5 class (Base‘)
3433cpw 4533 . . . 4 class 𝒫 (Base‘)
3531, 21, 34crab 3068 . . 3 class {𝑏 ∈ 𝒫 (Base‘) ∣ (∀𝑥𝑏𝑦𝑏 (𝑥(·𝑖)𝑦) = if(𝑥 = 𝑦, (1r‘(Scalar‘)), (0g‘(Scalar‘))) ∧ ((ocv‘)‘𝑏) = {(0g)})}
362, 3, 35cmpt 5157 . 2 class ( ∈ PreHil ↦ {𝑏 ∈ 𝒫 (Base‘) ∣ (∀𝑥𝑏𝑦𝑏 (𝑥(·𝑖)𝑦) = if(𝑥 = 𝑦, (1r‘(Scalar‘)), (0g‘(Scalar‘))) ∧ ((ocv‘)‘𝑏) = {(0g)})})
371, 36wceq 1539 1 wff OBasis = ( ∈ PreHil ↦ {𝑏 ∈ 𝒫 (Base‘) ∣ (∀𝑥𝑏𝑦𝑏 (𝑥(·𝑖)𝑦) = if(𝑥 = 𝑦, (1r‘(Scalar‘)), (0g‘(Scalar‘))) ∧ ((ocv‘)‘𝑏) = {(0g)})})
Colors of variables: wff setvar class
This definition is referenced by:  isobs  20927
  Copyright terms: Public domain W3C validator