MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-obs Structured version   Visualization version   GIF version

Definition df-obs 21614
Description: Define the set of all orthonormal bases for a pre-Hilbert space. An orthonormal basis is a set of mutually orthogonal vectors with norm 1 and such that the linear span is dense in the whole space. (As this is an "algebraic" definition, before we have topology available, we express this denseness by saying that the double orthocomplement is the whole space, or equivalently, the single orthocomplement is trivial.) (Contributed by Mario Carneiro, 23-Oct-2015.)
Assertion
Ref Expression
df-obs OBasis = ( ∈ PreHil ↦ {𝑏 ∈ 𝒫 (Base‘) ∣ (∀𝑥𝑏𝑦𝑏 (𝑥(·𝑖)𝑦) = if(𝑥 = 𝑦, (1r‘(Scalar‘)), (0g‘(Scalar‘))) ∧ ((ocv‘)‘𝑏) = {(0g)})})
Distinct variable group:   ,𝑏,𝑥,𝑦

Detailed syntax breakdown of Definition df-obs
StepHypRef Expression
1 cobs 21611 . 2 class OBasis
2 vh . . 3 setvar
3 cphl 21533 . . 3 class PreHil
4 vx . . . . . . . . . 10 setvar 𝑥
54cv 1539 . . . . . . . . 9 class 𝑥
6 vy . . . . . . . . . 10 setvar 𝑦
76cv 1539 . . . . . . . . 9 class 𝑦
82cv 1539 . . . . . . . . . 10 class
9 cip 17225 . . . . . . . . . 10 class ·𝑖
108, 9cfv 6511 . . . . . . . . 9 class (·𝑖)
115, 7, 10co 7387 . . . . . . . 8 class (𝑥(·𝑖)𝑦)
124, 6weq 1962 . . . . . . . . 9 wff 𝑥 = 𝑦
13 csca 17223 . . . . . . . . . . 11 class Scalar
148, 13cfv 6511 . . . . . . . . . 10 class (Scalar‘)
15 cur 20090 . . . . . . . . . 10 class 1r
1614, 15cfv 6511 . . . . . . . . 9 class (1r‘(Scalar‘))
17 c0g 17402 . . . . . . . . . 10 class 0g
1814, 17cfv 6511 . . . . . . . . 9 class (0g‘(Scalar‘))
1912, 16, 18cif 4488 . . . . . . . 8 class if(𝑥 = 𝑦, (1r‘(Scalar‘)), (0g‘(Scalar‘)))
2011, 19wceq 1540 . . . . . . 7 wff (𝑥(·𝑖)𝑦) = if(𝑥 = 𝑦, (1r‘(Scalar‘)), (0g‘(Scalar‘)))
21 vb . . . . . . . 8 setvar 𝑏
2221cv 1539 . . . . . . 7 class 𝑏
2320, 6, 22wral 3044 . . . . . 6 wff 𝑦𝑏 (𝑥(·𝑖)𝑦) = if(𝑥 = 𝑦, (1r‘(Scalar‘)), (0g‘(Scalar‘)))
2423, 4, 22wral 3044 . . . . 5 wff 𝑥𝑏𝑦𝑏 (𝑥(·𝑖)𝑦) = if(𝑥 = 𝑦, (1r‘(Scalar‘)), (0g‘(Scalar‘)))
25 cocv 21569 . . . . . . . 8 class ocv
268, 25cfv 6511 . . . . . . 7 class (ocv‘)
2722, 26cfv 6511 . . . . . 6 class ((ocv‘)‘𝑏)
288, 17cfv 6511 . . . . . . 7 class (0g)
2928csn 4589 . . . . . 6 class {(0g)}
3027, 29wceq 1540 . . . . 5 wff ((ocv‘)‘𝑏) = {(0g)}
3124, 30wa 395 . . . 4 wff (∀𝑥𝑏𝑦𝑏 (𝑥(·𝑖)𝑦) = if(𝑥 = 𝑦, (1r‘(Scalar‘)), (0g‘(Scalar‘))) ∧ ((ocv‘)‘𝑏) = {(0g)})
32 cbs 17179 . . . . . 6 class Base
338, 32cfv 6511 . . . . 5 class (Base‘)
3433cpw 4563 . . . 4 class 𝒫 (Base‘)
3531, 21, 34crab 3405 . . 3 class {𝑏 ∈ 𝒫 (Base‘) ∣ (∀𝑥𝑏𝑦𝑏 (𝑥(·𝑖)𝑦) = if(𝑥 = 𝑦, (1r‘(Scalar‘)), (0g‘(Scalar‘))) ∧ ((ocv‘)‘𝑏) = {(0g)})}
362, 3, 35cmpt 5188 . 2 class ( ∈ PreHil ↦ {𝑏 ∈ 𝒫 (Base‘) ∣ (∀𝑥𝑏𝑦𝑏 (𝑥(·𝑖)𝑦) = if(𝑥 = 𝑦, (1r‘(Scalar‘)), (0g‘(Scalar‘))) ∧ ((ocv‘)‘𝑏) = {(0g)})})
371, 36wceq 1540 1 wff OBasis = ( ∈ PreHil ↦ {𝑏 ∈ 𝒫 (Base‘) ∣ (∀𝑥𝑏𝑦𝑏 (𝑥(·𝑖)𝑦) = if(𝑥 = 𝑦, (1r‘(Scalar‘)), (0g‘(Scalar‘))) ∧ ((ocv‘)‘𝑏) = {(0g)})})
Colors of variables: wff setvar class
This definition is referenced by:  isobs  21629
  Copyright terms: Public domain W3C validator