Detailed syntax breakdown of Definition df-obs
Step | Hyp | Ref
| Expression |
1 | | cobs 20909 |
. 2
class
OBasis |
2 | | vh |
. . 3
setvar ℎ |
3 | | cphl 20829 |
. . 3
class
PreHil |
4 | | vx |
. . . . . . . . . 10
setvar 𝑥 |
5 | 4 | cv 1538 |
. . . . . . . . 9
class 𝑥 |
6 | | vy |
. . . . . . . . . 10
setvar 𝑦 |
7 | 6 | cv 1538 |
. . . . . . . . 9
class 𝑦 |
8 | 2 | cv 1538 |
. . . . . . . . . 10
class ℎ |
9 | | cip 16967 |
. . . . . . . . . 10
class
·𝑖 |
10 | 8, 9 | cfv 6433 |
. . . . . . . . 9
class
(·𝑖‘ℎ) |
11 | 5, 7, 10 | co 7275 |
. . . . . . . 8
class (𝑥(·𝑖‘ℎ)𝑦) |
12 | 4, 6 | weq 1966 |
. . . . . . . . 9
wff 𝑥 = 𝑦 |
13 | | csca 16965 |
. . . . . . . . . . 11
class
Scalar |
14 | 8, 13 | cfv 6433 |
. . . . . . . . . 10
class
(Scalar‘ℎ) |
15 | | cur 19737 |
. . . . . . . . . 10
class
1r |
16 | 14, 15 | cfv 6433 |
. . . . . . . . 9
class
(1r‘(Scalar‘ℎ)) |
17 | | c0g 17150 |
. . . . . . . . . 10
class
0g |
18 | 14, 17 | cfv 6433 |
. . . . . . . . 9
class
(0g‘(Scalar‘ℎ)) |
19 | 12, 16, 18 | cif 4459 |
. . . . . . . 8
class if(𝑥 = 𝑦, (1r‘(Scalar‘ℎ)),
(0g‘(Scalar‘ℎ))) |
20 | 11, 19 | wceq 1539 |
. . . . . . 7
wff (𝑥(·𝑖‘ℎ)𝑦) = if(𝑥 = 𝑦, (1r‘(Scalar‘ℎ)),
(0g‘(Scalar‘ℎ))) |
21 | | vb |
. . . . . . . 8
setvar 𝑏 |
22 | 21 | cv 1538 |
. . . . . . 7
class 𝑏 |
23 | 20, 6, 22 | wral 3064 |
. . . . . 6
wff
∀𝑦 ∈
𝑏 (𝑥(·𝑖‘ℎ)𝑦) = if(𝑥 = 𝑦, (1r‘(Scalar‘ℎ)),
(0g‘(Scalar‘ℎ))) |
24 | 23, 4, 22 | wral 3064 |
. . . . 5
wff
∀𝑥 ∈
𝑏 ∀𝑦 ∈ 𝑏 (𝑥(·𝑖‘ℎ)𝑦) = if(𝑥 = 𝑦, (1r‘(Scalar‘ℎ)),
(0g‘(Scalar‘ℎ))) |
25 | | cocv 20865 |
. . . . . . . 8
class
ocv |
26 | 8, 25 | cfv 6433 |
. . . . . . 7
class
(ocv‘ℎ) |
27 | 22, 26 | cfv 6433 |
. . . . . 6
class
((ocv‘ℎ)‘𝑏) |
28 | 8, 17 | cfv 6433 |
. . . . . . 7
class
(0g‘ℎ) |
29 | 28 | csn 4561 |
. . . . . 6
class
{(0g‘ℎ)} |
30 | 27, 29 | wceq 1539 |
. . . . 5
wff
((ocv‘ℎ)‘𝑏) = {(0g‘ℎ)} |
31 | 24, 30 | wa 396 |
. . . 4
wff
(∀𝑥 ∈
𝑏 ∀𝑦 ∈ 𝑏 (𝑥(·𝑖‘ℎ)𝑦) = if(𝑥 = 𝑦, (1r‘(Scalar‘ℎ)),
(0g‘(Scalar‘ℎ))) ∧ ((ocv‘ℎ)‘𝑏) = {(0g‘ℎ)}) |
32 | | cbs 16912 |
. . . . . 6
class
Base |
33 | 8, 32 | cfv 6433 |
. . . . 5
class
(Base‘ℎ) |
34 | 33 | cpw 4533 |
. . . 4
class 𝒫
(Base‘ℎ) |
35 | 31, 21, 34 | crab 3068 |
. . 3
class {𝑏 ∈ 𝒫
(Base‘ℎ) ∣
(∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 (𝑥(·𝑖‘ℎ)𝑦) = if(𝑥 = 𝑦, (1r‘(Scalar‘ℎ)),
(0g‘(Scalar‘ℎ))) ∧ ((ocv‘ℎ)‘𝑏) = {(0g‘ℎ)})} |
36 | 2, 3, 35 | cmpt 5157 |
. 2
class (ℎ ∈ PreHil ↦ {𝑏 ∈ 𝒫
(Base‘ℎ) ∣
(∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 (𝑥(·𝑖‘ℎ)𝑦) = if(𝑥 = 𝑦, (1r‘(Scalar‘ℎ)),
(0g‘(Scalar‘ℎ))) ∧ ((ocv‘ℎ)‘𝑏) = {(0g‘ℎ)})}) |
37 | 1, 36 | wceq 1539 |
1
wff OBasis =
(ℎ ∈ PreHil ↦
{𝑏 ∈ 𝒫
(Base‘ℎ) ∣
(∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 (𝑥(·𝑖‘ℎ)𝑦) = if(𝑥 = 𝑦, (1r‘(Scalar‘ℎ)),
(0g‘(Scalar‘ℎ))) ∧ ((ocv‘ℎ)‘𝑏) = {(0g‘ℎ)})}) |