MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-obs Structured version   Visualization version   GIF version

Definition df-obs 20822
Description: Define the set of all orthonormal bases for a pre-Hilbert space. An orthonormal basis is a set of mutually orthogonal vectors with norm 1 and such that the linear span is dense in the whole space. (As this is an "algebraic" definition, before we have topology available, we express this denseness by saying that the double orthocomplement is the whole space, or equivalently, the single orthocomplement is trivial.) (Contributed by Mario Carneiro, 23-Oct-2015.)
Assertion
Ref Expression
df-obs OBasis = ( ∈ PreHil ↦ {𝑏 ∈ 𝒫 (Base‘) ∣ (∀𝑥𝑏𝑦𝑏 (𝑥(·𝑖)𝑦) = if(𝑥 = 𝑦, (1r‘(Scalar‘)), (0g‘(Scalar‘))) ∧ ((ocv‘)‘𝑏) = {(0g)})})
Distinct variable group:   ,𝑏,𝑥,𝑦

Detailed syntax breakdown of Definition df-obs
StepHypRef Expression
1 cobs 20819 . 2 class OBasis
2 vh . . 3 setvar
3 cphl 20741 . . 3 class PreHil
4 vx . . . . . . . . . 10 setvar 𝑥
54cv 1538 . . . . . . . . 9 class 𝑥
6 vy . . . . . . . . . 10 setvar 𝑦
76cv 1538 . . . . . . . . 9 class 𝑦
82cv 1538 . . . . . . . . . 10 class
9 cip 16893 . . . . . . . . . 10 class ·𝑖
108, 9cfv 6418 . . . . . . . . 9 class (·𝑖)
115, 7, 10co 7255 . . . . . . . 8 class (𝑥(·𝑖)𝑦)
124, 6weq 1967 . . . . . . . . 9 wff 𝑥 = 𝑦
13 csca 16891 . . . . . . . . . . 11 class Scalar
148, 13cfv 6418 . . . . . . . . . 10 class (Scalar‘)
15 cur 19652 . . . . . . . . . 10 class 1r
1614, 15cfv 6418 . . . . . . . . 9 class (1r‘(Scalar‘))
17 c0g 17067 . . . . . . . . . 10 class 0g
1814, 17cfv 6418 . . . . . . . . 9 class (0g‘(Scalar‘))
1912, 16, 18cif 4456 . . . . . . . 8 class if(𝑥 = 𝑦, (1r‘(Scalar‘)), (0g‘(Scalar‘)))
2011, 19wceq 1539 . . . . . . 7 wff (𝑥(·𝑖)𝑦) = if(𝑥 = 𝑦, (1r‘(Scalar‘)), (0g‘(Scalar‘)))
21 vb . . . . . . . 8 setvar 𝑏
2221cv 1538 . . . . . . 7 class 𝑏
2320, 6, 22wral 3063 . . . . . 6 wff 𝑦𝑏 (𝑥(·𝑖)𝑦) = if(𝑥 = 𝑦, (1r‘(Scalar‘)), (0g‘(Scalar‘)))
2423, 4, 22wral 3063 . . . . 5 wff 𝑥𝑏𝑦𝑏 (𝑥(·𝑖)𝑦) = if(𝑥 = 𝑦, (1r‘(Scalar‘)), (0g‘(Scalar‘)))
25 cocv 20777 . . . . . . . 8 class ocv
268, 25cfv 6418 . . . . . . 7 class (ocv‘)
2722, 26cfv 6418 . . . . . 6 class ((ocv‘)‘𝑏)
288, 17cfv 6418 . . . . . . 7 class (0g)
2928csn 4558 . . . . . 6 class {(0g)}
3027, 29wceq 1539 . . . . 5 wff ((ocv‘)‘𝑏) = {(0g)}
3124, 30wa 395 . . . 4 wff (∀𝑥𝑏𝑦𝑏 (𝑥(·𝑖)𝑦) = if(𝑥 = 𝑦, (1r‘(Scalar‘)), (0g‘(Scalar‘))) ∧ ((ocv‘)‘𝑏) = {(0g)})
32 cbs 16840 . . . . . 6 class Base
338, 32cfv 6418 . . . . 5 class (Base‘)
3433cpw 4530 . . . 4 class 𝒫 (Base‘)
3531, 21, 34crab 3067 . . 3 class {𝑏 ∈ 𝒫 (Base‘) ∣ (∀𝑥𝑏𝑦𝑏 (𝑥(·𝑖)𝑦) = if(𝑥 = 𝑦, (1r‘(Scalar‘)), (0g‘(Scalar‘))) ∧ ((ocv‘)‘𝑏) = {(0g)})}
362, 3, 35cmpt 5153 . 2 class ( ∈ PreHil ↦ {𝑏 ∈ 𝒫 (Base‘) ∣ (∀𝑥𝑏𝑦𝑏 (𝑥(·𝑖)𝑦) = if(𝑥 = 𝑦, (1r‘(Scalar‘)), (0g‘(Scalar‘))) ∧ ((ocv‘)‘𝑏) = {(0g)})})
371, 36wceq 1539 1 wff OBasis = ( ∈ PreHil ↦ {𝑏 ∈ 𝒫 (Base‘) ∣ (∀𝑥𝑏𝑦𝑏 (𝑥(·𝑖)𝑦) = if(𝑥 = 𝑦, (1r‘(Scalar‘)), (0g‘(Scalar‘))) ∧ ((ocv‘)‘𝑏) = {(0g)})})
Colors of variables: wff setvar class
This definition is referenced by:  isobs  20837
  Copyright terms: Public domain W3C validator