MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-obs Structured version   Visualization version   GIF version

Definition df-obs 21748
Description: Define the set of all orthonormal bases for a pre-Hilbert space. An orthonormal basis is a set of mutually orthogonal vectors with norm 1 and such that the linear span is dense in the whole space. (As this is an "algebraic" definition, before we have topology available, we express this denseness by saying that the double orthocomplement is the whole space, or equivalently, the single orthocomplement is trivial.) (Contributed by Mario Carneiro, 23-Oct-2015.)
Assertion
Ref Expression
df-obs OBasis = ( ∈ PreHil ↦ {𝑏 ∈ 𝒫 (Base‘) ∣ (∀𝑥𝑏𝑦𝑏 (𝑥(·𝑖)𝑦) = if(𝑥 = 𝑦, (1r‘(Scalar‘)), (0g‘(Scalar‘))) ∧ ((ocv‘)‘𝑏) = {(0g)})})
Distinct variable group:   ,𝑏,𝑥,𝑦

Detailed syntax breakdown of Definition df-obs
StepHypRef Expression
1 cobs 21745 . 2 class OBasis
2 vh . . 3 setvar
3 cphl 21665 . . 3 class PreHil
4 vx . . . . . . . . . 10 setvar 𝑥
54cv 1536 . . . . . . . . 9 class 𝑥
6 vy . . . . . . . . . 10 setvar 𝑦
76cv 1536 . . . . . . . . 9 class 𝑦
82cv 1536 . . . . . . . . . 10 class
9 cip 17316 . . . . . . . . . 10 class ·𝑖
108, 9cfv 6573 . . . . . . . . 9 class (·𝑖)
115, 7, 10co 7448 . . . . . . . 8 class (𝑥(·𝑖)𝑦)
124, 6weq 1962 . . . . . . . . 9 wff 𝑥 = 𝑦
13 csca 17314 . . . . . . . . . . 11 class Scalar
148, 13cfv 6573 . . . . . . . . . 10 class (Scalar‘)
15 cur 20208 . . . . . . . . . 10 class 1r
1614, 15cfv 6573 . . . . . . . . 9 class (1r‘(Scalar‘))
17 c0g 17499 . . . . . . . . . 10 class 0g
1814, 17cfv 6573 . . . . . . . . 9 class (0g‘(Scalar‘))
1912, 16, 18cif 4548 . . . . . . . 8 class if(𝑥 = 𝑦, (1r‘(Scalar‘)), (0g‘(Scalar‘)))
2011, 19wceq 1537 . . . . . . 7 wff (𝑥(·𝑖)𝑦) = if(𝑥 = 𝑦, (1r‘(Scalar‘)), (0g‘(Scalar‘)))
21 vb . . . . . . . 8 setvar 𝑏
2221cv 1536 . . . . . . 7 class 𝑏
2320, 6, 22wral 3067 . . . . . 6 wff 𝑦𝑏 (𝑥(·𝑖)𝑦) = if(𝑥 = 𝑦, (1r‘(Scalar‘)), (0g‘(Scalar‘)))
2423, 4, 22wral 3067 . . . . 5 wff 𝑥𝑏𝑦𝑏 (𝑥(·𝑖)𝑦) = if(𝑥 = 𝑦, (1r‘(Scalar‘)), (0g‘(Scalar‘)))
25 cocv 21701 . . . . . . . 8 class ocv
268, 25cfv 6573 . . . . . . 7 class (ocv‘)
2722, 26cfv 6573 . . . . . 6 class ((ocv‘)‘𝑏)
288, 17cfv 6573 . . . . . . 7 class (0g)
2928csn 4648 . . . . . 6 class {(0g)}
3027, 29wceq 1537 . . . . 5 wff ((ocv‘)‘𝑏) = {(0g)}
3124, 30wa 395 . . . 4 wff (∀𝑥𝑏𝑦𝑏 (𝑥(·𝑖)𝑦) = if(𝑥 = 𝑦, (1r‘(Scalar‘)), (0g‘(Scalar‘))) ∧ ((ocv‘)‘𝑏) = {(0g)})
32 cbs 17258 . . . . . 6 class Base
338, 32cfv 6573 . . . . 5 class (Base‘)
3433cpw 4622 . . . 4 class 𝒫 (Base‘)
3531, 21, 34crab 3443 . . 3 class {𝑏 ∈ 𝒫 (Base‘) ∣ (∀𝑥𝑏𝑦𝑏 (𝑥(·𝑖)𝑦) = if(𝑥 = 𝑦, (1r‘(Scalar‘)), (0g‘(Scalar‘))) ∧ ((ocv‘)‘𝑏) = {(0g)})}
362, 3, 35cmpt 5249 . 2 class ( ∈ PreHil ↦ {𝑏 ∈ 𝒫 (Base‘) ∣ (∀𝑥𝑏𝑦𝑏 (𝑥(·𝑖)𝑦) = if(𝑥 = 𝑦, (1r‘(Scalar‘)), (0g‘(Scalar‘))) ∧ ((ocv‘)‘𝑏) = {(0g)})})
371, 36wceq 1537 1 wff OBasis = ( ∈ PreHil ↦ {𝑏 ∈ 𝒫 (Base‘) ∣ (∀𝑥𝑏𝑦𝑏 (𝑥(·𝑖)𝑦) = if(𝑥 = 𝑦, (1r‘(Scalar‘)), (0g‘(Scalar‘))) ∧ ((ocv‘)‘𝑏) = {(0g)})})
Colors of variables: wff setvar class
This definition is referenced by:  isobs  21763
  Copyright terms: Public domain W3C validator