Detailed syntax breakdown of Definition df-hlat
Step | Hyp | Ref
| Expression |
1 | | chlt 37291 |
. 2
class
HL |
2 | | va |
. . . . . . . . 9
setvar 𝑎 |
3 | 2 | cv 1538 |
. . . . . . . 8
class 𝑎 |
4 | | vb |
. . . . . . . . 9
setvar 𝑏 |
5 | 4 | cv 1538 |
. . . . . . . 8
class 𝑏 |
6 | 3, 5 | wne 2942 |
. . . . . . 7
wff 𝑎 ≠ 𝑏 |
7 | | vc |
. . . . . . . . . . 11
setvar 𝑐 |
8 | 7 | cv 1538 |
. . . . . . . . . 10
class 𝑐 |
9 | 8, 3 | wne 2942 |
. . . . . . . . 9
wff 𝑐 ≠ 𝑎 |
10 | 8, 5 | wne 2942 |
. . . . . . . . 9
wff 𝑐 ≠ 𝑏 |
11 | | vl |
. . . . . . . . . . . . 13
setvar 𝑙 |
12 | 11 | cv 1538 |
. . . . . . . . . . . 12
class 𝑙 |
13 | | cjn 17944 |
. . . . . . . . . . . 12
class
join |
14 | 12, 13 | cfv 6418 |
. . . . . . . . . . 11
class
(join‘𝑙) |
15 | 3, 5, 14 | co 7255 |
. . . . . . . . . 10
class (𝑎(join‘𝑙)𝑏) |
16 | | cple 16895 |
. . . . . . . . . . 11
class
le |
17 | 12, 16 | cfv 6418 |
. . . . . . . . . 10
class
(le‘𝑙) |
18 | 8, 15, 17 | wbr 5070 |
. . . . . . . . 9
wff 𝑐(le‘𝑙)(𝑎(join‘𝑙)𝑏) |
19 | 9, 10, 18 | w3a 1085 |
. . . . . . . 8
wff (𝑐 ≠ 𝑎 ∧ 𝑐 ≠ 𝑏 ∧ 𝑐(le‘𝑙)(𝑎(join‘𝑙)𝑏)) |
20 | | catm 37204 |
. . . . . . . . 9
class
Atoms |
21 | 12, 20 | cfv 6418 |
. . . . . . . 8
class
(Atoms‘𝑙) |
22 | 19, 7, 21 | wrex 3064 |
. . . . . . 7
wff
∃𝑐 ∈
(Atoms‘𝑙)(𝑐 ≠ 𝑎 ∧ 𝑐 ≠ 𝑏 ∧ 𝑐(le‘𝑙)(𝑎(join‘𝑙)𝑏)) |
23 | 6, 22 | wi 4 |
. . . . . 6
wff (𝑎 ≠ 𝑏 → ∃𝑐 ∈ (Atoms‘𝑙)(𝑐 ≠ 𝑎 ∧ 𝑐 ≠ 𝑏 ∧ 𝑐(le‘𝑙)(𝑎(join‘𝑙)𝑏))) |
24 | 23, 4, 21 | wral 3063 |
. . . . 5
wff
∀𝑏 ∈
(Atoms‘𝑙)(𝑎 ≠ 𝑏 → ∃𝑐 ∈ (Atoms‘𝑙)(𝑐 ≠ 𝑎 ∧ 𝑐 ≠ 𝑏 ∧ 𝑐(le‘𝑙)(𝑎(join‘𝑙)𝑏))) |
25 | 24, 2, 21 | wral 3063 |
. . . 4
wff
∀𝑎 ∈
(Atoms‘𝑙)∀𝑏 ∈ (Atoms‘𝑙)(𝑎 ≠ 𝑏 → ∃𝑐 ∈ (Atoms‘𝑙)(𝑐 ≠ 𝑎 ∧ 𝑐 ≠ 𝑏 ∧ 𝑐(le‘𝑙)(𝑎(join‘𝑙)𝑏))) |
26 | | cp0 18056 |
. . . . . . . . . . 11
class
0. |
27 | 12, 26 | cfv 6418 |
. . . . . . . . . 10
class
(0.‘𝑙) |
28 | | cplt 17941 |
. . . . . . . . . . 11
class
lt |
29 | 12, 28 | cfv 6418 |
. . . . . . . . . 10
class
(lt‘𝑙) |
30 | 27, 3, 29 | wbr 5070 |
. . . . . . . . 9
wff
(0.‘𝑙)(lt‘𝑙)𝑎 |
31 | 3, 5, 29 | wbr 5070 |
. . . . . . . . 9
wff 𝑎(lt‘𝑙)𝑏 |
32 | 30, 31 | wa 395 |
. . . . . . . 8
wff
((0.‘𝑙)(lt‘𝑙)𝑎 ∧ 𝑎(lt‘𝑙)𝑏) |
33 | 5, 8, 29 | wbr 5070 |
. . . . . . . . 9
wff 𝑏(lt‘𝑙)𝑐 |
34 | | cp1 18057 |
. . . . . . . . . . 11
class
1. |
35 | 12, 34 | cfv 6418 |
. . . . . . . . . 10
class
(1.‘𝑙) |
36 | 8, 35, 29 | wbr 5070 |
. . . . . . . . 9
wff 𝑐(lt‘𝑙)(1.‘𝑙) |
37 | 33, 36 | wa 395 |
. . . . . . . 8
wff (𝑏(lt‘𝑙)𝑐 ∧ 𝑐(lt‘𝑙)(1.‘𝑙)) |
38 | 32, 37 | wa 395 |
. . . . . . 7
wff
(((0.‘𝑙)(lt‘𝑙)𝑎 ∧ 𝑎(lt‘𝑙)𝑏) ∧ (𝑏(lt‘𝑙)𝑐 ∧ 𝑐(lt‘𝑙)(1.‘𝑙))) |
39 | | cbs 16840 |
. . . . . . . 8
class
Base |
40 | 12, 39 | cfv 6418 |
. . . . . . 7
class
(Base‘𝑙) |
41 | 38, 7, 40 | wrex 3064 |
. . . . . 6
wff
∃𝑐 ∈
(Base‘𝑙)(((0.‘𝑙)(lt‘𝑙)𝑎 ∧ 𝑎(lt‘𝑙)𝑏) ∧ (𝑏(lt‘𝑙)𝑐 ∧ 𝑐(lt‘𝑙)(1.‘𝑙))) |
42 | 41, 4, 40 | wrex 3064 |
. . . . 5
wff
∃𝑏 ∈
(Base‘𝑙)∃𝑐 ∈ (Base‘𝑙)(((0.‘𝑙)(lt‘𝑙)𝑎 ∧ 𝑎(lt‘𝑙)𝑏) ∧ (𝑏(lt‘𝑙)𝑐 ∧ 𝑐(lt‘𝑙)(1.‘𝑙))) |
43 | 42, 2, 40 | wrex 3064 |
. . . 4
wff
∃𝑎 ∈
(Base‘𝑙)∃𝑏 ∈ (Base‘𝑙)∃𝑐 ∈ (Base‘𝑙)(((0.‘𝑙)(lt‘𝑙)𝑎 ∧ 𝑎(lt‘𝑙)𝑏) ∧ (𝑏(lt‘𝑙)𝑐 ∧ 𝑐(lt‘𝑙)(1.‘𝑙))) |
44 | 25, 43 | wa 395 |
. . 3
wff
(∀𝑎 ∈
(Atoms‘𝑙)∀𝑏 ∈ (Atoms‘𝑙)(𝑎 ≠ 𝑏 → ∃𝑐 ∈ (Atoms‘𝑙)(𝑐 ≠ 𝑎 ∧ 𝑐 ≠ 𝑏 ∧ 𝑐(le‘𝑙)(𝑎(join‘𝑙)𝑏))) ∧ ∃𝑎 ∈ (Base‘𝑙)∃𝑏 ∈ (Base‘𝑙)∃𝑐 ∈ (Base‘𝑙)(((0.‘𝑙)(lt‘𝑙)𝑎 ∧ 𝑎(lt‘𝑙)𝑏) ∧ (𝑏(lt‘𝑙)𝑐 ∧ 𝑐(lt‘𝑙)(1.‘𝑙)))) |
45 | | coml 37116 |
. . . . 5
class
OML |
46 | | ccla 18131 |
. . . . 5
class
CLat |
47 | 45, 46 | cin 3882 |
. . . 4
class (OML
∩ CLat) |
48 | | clc 37206 |
. . . 4
class
CvLat |
49 | 47, 48 | cin 3882 |
. . 3
class ((OML
∩ CLat) ∩ CvLat) |
50 | 44, 11, 49 | crab 3067 |
. 2
class {𝑙 ∈ ((OML ∩ CLat) ∩
CvLat) ∣ (∀𝑎
∈ (Atoms‘𝑙)∀𝑏 ∈ (Atoms‘𝑙)(𝑎 ≠ 𝑏 → ∃𝑐 ∈ (Atoms‘𝑙)(𝑐 ≠ 𝑎 ∧ 𝑐 ≠ 𝑏 ∧ 𝑐(le‘𝑙)(𝑎(join‘𝑙)𝑏))) ∧ ∃𝑎 ∈ (Base‘𝑙)∃𝑏 ∈ (Base‘𝑙)∃𝑐 ∈ (Base‘𝑙)(((0.‘𝑙)(lt‘𝑙)𝑎 ∧ 𝑎(lt‘𝑙)𝑏) ∧ (𝑏(lt‘𝑙)𝑐 ∧ 𝑐(lt‘𝑙)(1.‘𝑙))))} |
51 | 1, 50 | wceq 1539 |
1
wff HL = {𝑙 ∈ ((OML ∩ CLat) ∩
CvLat) ∣ (∀𝑎
∈ (Atoms‘𝑙)∀𝑏 ∈ (Atoms‘𝑙)(𝑎 ≠ 𝑏 → ∃𝑐 ∈ (Atoms‘𝑙)(𝑐 ≠ 𝑎 ∧ 𝑐 ≠ 𝑏 ∧ 𝑐(le‘𝑙)(𝑎(join‘𝑙)𝑏))) ∧ ∃𝑎 ∈ (Base‘𝑙)∃𝑏 ∈ (Base‘𝑙)∃𝑐 ∈ (Base‘𝑙)(((0.‘𝑙)(lt‘𝑙)𝑎 ∧ 𝑎(lt‘𝑙)𝑏) ∧ (𝑏(lt‘𝑙)𝑐 ∧ 𝑐(lt‘𝑙)(1.‘𝑙))))} |