Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ishlat1 Structured version   Visualization version   GIF version

Theorem ishlat1 39338
Description: The predicate "is a Hilbert lattice", which is: is orthomodular (𝐾 ∈ OML), complete (𝐾 ∈ CLat), atomic and satisfies the exchange (or covering) property (𝐾 ∈ CvLat), satisfies the superposition principle, and has a minimum height of 4 (witnessed here by 0, x, y, z, 1). (Contributed by NM, 5-Nov-2012.)
Hypotheses
Ref Expression
ishlat.b 𝐵 = (Base‘𝐾)
ishlat.l = (le‘𝐾)
ishlat.s < = (lt‘𝐾)
ishlat.j = (join‘𝐾)
ishlat.z 0 = (0.‘𝐾)
ishlat.u 1 = (1.‘𝐾)
ishlat.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
ishlat1 (𝐾 ∈ HL ↔ ((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ (∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → ∃𝑧𝐴 (𝑧𝑥𝑧𝑦𝑧 (𝑥 𝑦))) ∧ ∃𝑥𝐵𝑦𝐵𝑧𝐵 (( 0 < 𝑥𝑥 < 𝑦) ∧ (𝑦 < 𝑧𝑧 < 1 )))))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦,𝑧   𝑥,𝐾,𝑦,𝑧
Allowed substitution hints:   < (𝑥,𝑦,𝑧)   1 (𝑥,𝑦,𝑧)   (𝑥,𝑦,𝑧)   (𝑥,𝑦,𝑧)   0 (𝑥,𝑦,𝑧)

Proof of Theorem ishlat1
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6840 . . . . . 6 (𝑘 = 𝐾 → (Atoms‘𝑘) = (Atoms‘𝐾))
2 ishlat.a . . . . . 6 𝐴 = (Atoms‘𝐾)
31, 2eqtr4di 2782 . . . . 5 (𝑘 = 𝐾 → (Atoms‘𝑘) = 𝐴)
4 fveq2 6840 . . . . . . . . . . . 12 (𝑘 = 𝐾 → (le‘𝑘) = (le‘𝐾))
5 ishlat.l . . . . . . . . . . . 12 = (le‘𝐾)
64, 5eqtr4di 2782 . . . . . . . . . . 11 (𝑘 = 𝐾 → (le‘𝑘) = )
76breqd 5113 . . . . . . . . . 10 (𝑘 = 𝐾 → (𝑧(le‘𝑘)(𝑥(join‘𝑘)𝑦) ↔ 𝑧 (𝑥(join‘𝑘)𝑦)))
8 fveq2 6840 . . . . . . . . . . . . 13 (𝑘 = 𝐾 → (join‘𝑘) = (join‘𝐾))
9 ishlat.j . . . . . . . . . . . . 13 = (join‘𝐾)
108, 9eqtr4di 2782 . . . . . . . . . . . 12 (𝑘 = 𝐾 → (join‘𝑘) = )
1110oveqd 7386 . . . . . . . . . . 11 (𝑘 = 𝐾 → (𝑥(join‘𝑘)𝑦) = (𝑥 𝑦))
1211breq2d 5114 . . . . . . . . . 10 (𝑘 = 𝐾 → (𝑧 (𝑥(join‘𝑘)𝑦) ↔ 𝑧 (𝑥 𝑦)))
137, 12bitrd 279 . . . . . . . . 9 (𝑘 = 𝐾 → (𝑧(le‘𝑘)(𝑥(join‘𝑘)𝑦) ↔ 𝑧 (𝑥 𝑦)))
14133anbi3d 1444 . . . . . . . 8 (𝑘 = 𝐾 → ((𝑧𝑥𝑧𝑦𝑧(le‘𝑘)(𝑥(join‘𝑘)𝑦)) ↔ (𝑧𝑥𝑧𝑦𝑧 (𝑥 𝑦))))
153, 14rexeqbidv 3317 . . . . . . 7 (𝑘 = 𝐾 → (∃𝑧 ∈ (Atoms‘𝑘)(𝑧𝑥𝑧𝑦𝑧(le‘𝑘)(𝑥(join‘𝑘)𝑦)) ↔ ∃𝑧𝐴 (𝑧𝑥𝑧𝑦𝑧 (𝑥 𝑦))))
1615imbi2d 340 . . . . . 6 (𝑘 = 𝐾 → ((𝑥𝑦 → ∃𝑧 ∈ (Atoms‘𝑘)(𝑧𝑥𝑧𝑦𝑧(le‘𝑘)(𝑥(join‘𝑘)𝑦))) ↔ (𝑥𝑦 → ∃𝑧𝐴 (𝑧𝑥𝑧𝑦𝑧 (𝑥 𝑦)))))
173, 16raleqbidv 3316 . . . . 5 (𝑘 = 𝐾 → (∀𝑦 ∈ (Atoms‘𝑘)(𝑥𝑦 → ∃𝑧 ∈ (Atoms‘𝑘)(𝑧𝑥𝑧𝑦𝑧(le‘𝑘)(𝑥(join‘𝑘)𝑦))) ↔ ∀𝑦𝐴 (𝑥𝑦 → ∃𝑧𝐴 (𝑧𝑥𝑧𝑦𝑧 (𝑥 𝑦)))))
183, 17raleqbidv 3316 . . . 4 (𝑘 = 𝐾 → (∀𝑥 ∈ (Atoms‘𝑘)∀𝑦 ∈ (Atoms‘𝑘)(𝑥𝑦 → ∃𝑧 ∈ (Atoms‘𝑘)(𝑧𝑥𝑧𝑦𝑧(le‘𝑘)(𝑥(join‘𝑘)𝑦))) ↔ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → ∃𝑧𝐴 (𝑧𝑥𝑧𝑦𝑧 (𝑥 𝑦)))))
19 fveq2 6840 . . . . . 6 (𝑘 = 𝐾 → (Base‘𝑘) = (Base‘𝐾))
20 ishlat.b . . . . . 6 𝐵 = (Base‘𝐾)
2119, 20eqtr4di 2782 . . . . 5 (𝑘 = 𝐾 → (Base‘𝑘) = 𝐵)
22 fveq2 6840 . . . . . . . . . . . 12 (𝑘 = 𝐾 → (lt‘𝑘) = (lt‘𝐾))
23 ishlat.s . . . . . . . . . . . 12 < = (lt‘𝐾)
2422, 23eqtr4di 2782 . . . . . . . . . . 11 (𝑘 = 𝐾 → (lt‘𝑘) = < )
2524breqd 5113 . . . . . . . . . 10 (𝑘 = 𝐾 → ((0.‘𝑘)(lt‘𝑘)𝑥 ↔ (0.‘𝑘) < 𝑥))
26 fveq2 6840 . . . . . . . . . . . 12 (𝑘 = 𝐾 → (0.‘𝑘) = (0.‘𝐾))
27 ishlat.z . . . . . . . . . . . 12 0 = (0.‘𝐾)
2826, 27eqtr4di 2782 . . . . . . . . . . 11 (𝑘 = 𝐾 → (0.‘𝑘) = 0 )
2928breq1d 5112 . . . . . . . . . 10 (𝑘 = 𝐾 → ((0.‘𝑘) < 𝑥0 < 𝑥))
3025, 29bitrd 279 . . . . . . . . 9 (𝑘 = 𝐾 → ((0.‘𝑘)(lt‘𝑘)𝑥0 < 𝑥))
3124breqd 5113 . . . . . . . . 9 (𝑘 = 𝐾 → (𝑥(lt‘𝑘)𝑦𝑥 < 𝑦))
3230, 31anbi12d 632 . . . . . . . 8 (𝑘 = 𝐾 → (((0.‘𝑘)(lt‘𝑘)𝑥𝑥(lt‘𝑘)𝑦) ↔ ( 0 < 𝑥𝑥 < 𝑦)))
3324breqd 5113 . . . . . . . . 9 (𝑘 = 𝐾 → (𝑦(lt‘𝑘)𝑧𝑦 < 𝑧))
3424breqd 5113 . . . . . . . . . 10 (𝑘 = 𝐾 → (𝑧(lt‘𝑘)(1.‘𝑘) ↔ 𝑧 < (1.‘𝑘)))
35 fveq2 6840 . . . . . . . . . . . 12 (𝑘 = 𝐾 → (1.‘𝑘) = (1.‘𝐾))
36 ishlat.u . . . . . . . . . . . 12 1 = (1.‘𝐾)
3735, 36eqtr4di 2782 . . . . . . . . . . 11 (𝑘 = 𝐾 → (1.‘𝑘) = 1 )
3837breq2d 5114 . . . . . . . . . 10 (𝑘 = 𝐾 → (𝑧 < (1.‘𝑘) ↔ 𝑧 < 1 ))
3934, 38bitrd 279 . . . . . . . . 9 (𝑘 = 𝐾 → (𝑧(lt‘𝑘)(1.‘𝑘) ↔ 𝑧 < 1 ))
4033, 39anbi12d 632 . . . . . . . 8 (𝑘 = 𝐾 → ((𝑦(lt‘𝑘)𝑧𝑧(lt‘𝑘)(1.‘𝑘)) ↔ (𝑦 < 𝑧𝑧 < 1 )))
4132, 40anbi12d 632 . . . . . . 7 (𝑘 = 𝐾 → ((((0.‘𝑘)(lt‘𝑘)𝑥𝑥(lt‘𝑘)𝑦) ∧ (𝑦(lt‘𝑘)𝑧𝑧(lt‘𝑘)(1.‘𝑘))) ↔ (( 0 < 𝑥𝑥 < 𝑦) ∧ (𝑦 < 𝑧𝑧 < 1 ))))
4221, 41rexeqbidv 3317 . . . . . 6 (𝑘 = 𝐾 → (∃𝑧 ∈ (Base‘𝑘)(((0.‘𝑘)(lt‘𝑘)𝑥𝑥(lt‘𝑘)𝑦) ∧ (𝑦(lt‘𝑘)𝑧𝑧(lt‘𝑘)(1.‘𝑘))) ↔ ∃𝑧𝐵 (( 0 < 𝑥𝑥 < 𝑦) ∧ (𝑦 < 𝑧𝑧 < 1 ))))
4321, 42rexeqbidv 3317 . . . . 5 (𝑘 = 𝐾 → (∃𝑦 ∈ (Base‘𝑘)∃𝑧 ∈ (Base‘𝑘)(((0.‘𝑘)(lt‘𝑘)𝑥𝑥(lt‘𝑘)𝑦) ∧ (𝑦(lt‘𝑘)𝑧𝑧(lt‘𝑘)(1.‘𝑘))) ↔ ∃𝑦𝐵𝑧𝐵 (( 0 < 𝑥𝑥 < 𝑦) ∧ (𝑦 < 𝑧𝑧 < 1 ))))
4421, 43rexeqbidv 3317 . . . 4 (𝑘 = 𝐾 → (∃𝑥 ∈ (Base‘𝑘)∃𝑦 ∈ (Base‘𝑘)∃𝑧 ∈ (Base‘𝑘)(((0.‘𝑘)(lt‘𝑘)𝑥𝑥(lt‘𝑘)𝑦) ∧ (𝑦(lt‘𝑘)𝑧𝑧(lt‘𝑘)(1.‘𝑘))) ↔ ∃𝑥𝐵𝑦𝐵𝑧𝐵 (( 0 < 𝑥𝑥 < 𝑦) ∧ (𝑦 < 𝑧𝑧 < 1 ))))
4518, 44anbi12d 632 . . 3 (𝑘 = 𝐾 → ((∀𝑥 ∈ (Atoms‘𝑘)∀𝑦 ∈ (Atoms‘𝑘)(𝑥𝑦 → ∃𝑧 ∈ (Atoms‘𝑘)(𝑧𝑥𝑧𝑦𝑧(le‘𝑘)(𝑥(join‘𝑘)𝑦))) ∧ ∃𝑥 ∈ (Base‘𝑘)∃𝑦 ∈ (Base‘𝑘)∃𝑧 ∈ (Base‘𝑘)(((0.‘𝑘)(lt‘𝑘)𝑥𝑥(lt‘𝑘)𝑦) ∧ (𝑦(lt‘𝑘)𝑧𝑧(lt‘𝑘)(1.‘𝑘)))) ↔ (∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → ∃𝑧𝐴 (𝑧𝑥𝑧𝑦𝑧 (𝑥 𝑦))) ∧ ∃𝑥𝐵𝑦𝐵𝑧𝐵 (( 0 < 𝑥𝑥 < 𝑦) ∧ (𝑦 < 𝑧𝑧 < 1 )))))
46 df-hlat 39337 . . 3 HL = {𝑘 ∈ ((OML ∩ CLat) ∩ CvLat) ∣ (∀𝑥 ∈ (Atoms‘𝑘)∀𝑦 ∈ (Atoms‘𝑘)(𝑥𝑦 → ∃𝑧 ∈ (Atoms‘𝑘)(𝑧𝑥𝑧𝑦𝑧(le‘𝑘)(𝑥(join‘𝑘)𝑦))) ∧ ∃𝑥 ∈ (Base‘𝑘)∃𝑦 ∈ (Base‘𝑘)∃𝑧 ∈ (Base‘𝑘)(((0.‘𝑘)(lt‘𝑘)𝑥𝑥(lt‘𝑘)𝑦) ∧ (𝑦(lt‘𝑘)𝑧𝑧(lt‘𝑘)(1.‘𝑘))))}
4745, 46elrab2 3659 . 2 (𝐾 ∈ HL ↔ (𝐾 ∈ ((OML ∩ CLat) ∩ CvLat) ∧ (∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → ∃𝑧𝐴 (𝑧𝑥𝑧𝑦𝑧 (𝑥 𝑦))) ∧ ∃𝑥𝐵𝑦𝐵𝑧𝐵 (( 0 < 𝑥𝑥 < 𝑦) ∧ (𝑦 < 𝑧𝑧 < 1 )))))
48 elin 3927 . . . . 5 (𝐾 ∈ (OML ∩ CLat) ↔ (𝐾 ∈ OML ∧ 𝐾 ∈ CLat))
4948anbi1i 624 . . . 4 ((𝐾 ∈ (OML ∩ CLat) ∧ 𝐾 ∈ CvLat) ↔ ((𝐾 ∈ OML ∧ 𝐾 ∈ CLat) ∧ 𝐾 ∈ CvLat))
50 elin 3927 . . . 4 (𝐾 ∈ ((OML ∩ CLat) ∩ CvLat) ↔ (𝐾 ∈ (OML ∩ CLat) ∧ 𝐾 ∈ CvLat))
51 df-3an 1088 . . . 4 ((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ↔ ((𝐾 ∈ OML ∧ 𝐾 ∈ CLat) ∧ 𝐾 ∈ CvLat))
5249, 50, 513bitr4ri 304 . . 3 ((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ↔ 𝐾 ∈ ((OML ∩ CLat) ∩ CvLat))
5352anbi1i 624 . 2 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ (∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → ∃𝑧𝐴 (𝑧𝑥𝑧𝑦𝑧 (𝑥 𝑦))) ∧ ∃𝑥𝐵𝑦𝐵𝑧𝐵 (( 0 < 𝑥𝑥 < 𝑦) ∧ (𝑦 < 𝑧𝑧 < 1 )))) ↔ (𝐾 ∈ ((OML ∩ CLat) ∩ CvLat) ∧ (∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → ∃𝑧𝐴 (𝑧𝑥𝑧𝑦𝑧 (𝑥 𝑦))) ∧ ∃𝑥𝐵𝑦𝐵𝑧𝐵 (( 0 < 𝑥𝑥 < 𝑦) ∧ (𝑦 < 𝑧𝑧 < 1 )))))
5447, 53bitr4i 278 1 (𝐾 ∈ HL ↔ ((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ (∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → ∃𝑧𝐴 (𝑧𝑥𝑧𝑦𝑧 (𝑥 𝑦))) ∧ ∃𝑥𝐵𝑦𝐵𝑧𝐵 (( 0 < 𝑥𝑥 < 𝑦) ∧ (𝑦 < 𝑧𝑧 < 1 )))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  cin 3910   class class class wbr 5102  cfv 6499  (class class class)co 7369  Basecbs 17155  lecple 17203  ltcplt 18249  joincjn 18252  0.cp0 18362  1.cp1 18363  CLatccla 18439  OMLcoml 39161  Atomscatm 39249  CvLatclc 39251  HLchlt 39336
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-iota 6452  df-fv 6507  df-ov 7372  df-hlat 39337
This theorem is referenced by:  ishlat2  39339  ishlat3N  39340  hlomcmcv  39342
  Copyright terms: Public domain W3C validator