Step | Hyp | Ref
| Expression |
1 | | fveq2 6774 |
. . . . . 6
⊢ (𝑘 = 𝐾 → (Atoms‘𝑘) = (Atoms‘𝐾)) |
2 | | ishlat.a |
. . . . . 6
⊢ 𝐴 = (Atoms‘𝐾) |
3 | 1, 2 | eqtr4di 2796 |
. . . . 5
⊢ (𝑘 = 𝐾 → (Atoms‘𝑘) = 𝐴) |
4 | | fveq2 6774 |
. . . . . . . . . . . 12
⊢ (𝑘 = 𝐾 → (le‘𝑘) = (le‘𝐾)) |
5 | | ishlat.l |
. . . . . . . . . . . 12
⊢ ≤ =
(le‘𝐾) |
6 | 4, 5 | eqtr4di 2796 |
. . . . . . . . . . 11
⊢ (𝑘 = 𝐾 → (le‘𝑘) = ≤ ) |
7 | 6 | breqd 5085 |
. . . . . . . . . 10
⊢ (𝑘 = 𝐾 → (𝑧(le‘𝑘)(𝑥(join‘𝑘)𝑦) ↔ 𝑧 ≤ (𝑥(join‘𝑘)𝑦))) |
8 | | fveq2 6774 |
. . . . . . . . . . . . 13
⊢ (𝑘 = 𝐾 → (join‘𝑘) = (join‘𝐾)) |
9 | | ishlat.j |
. . . . . . . . . . . . 13
⊢ ∨ =
(join‘𝐾) |
10 | 8, 9 | eqtr4di 2796 |
. . . . . . . . . . . 12
⊢ (𝑘 = 𝐾 → (join‘𝑘) = ∨ ) |
11 | 10 | oveqd 7292 |
. . . . . . . . . . 11
⊢ (𝑘 = 𝐾 → (𝑥(join‘𝑘)𝑦) = (𝑥 ∨ 𝑦)) |
12 | 11 | breq2d 5086 |
. . . . . . . . . 10
⊢ (𝑘 = 𝐾 → (𝑧 ≤ (𝑥(join‘𝑘)𝑦) ↔ 𝑧 ≤ (𝑥 ∨ 𝑦))) |
13 | 7, 12 | bitrd 278 |
. . . . . . . . 9
⊢ (𝑘 = 𝐾 → (𝑧(le‘𝑘)(𝑥(join‘𝑘)𝑦) ↔ 𝑧 ≤ (𝑥 ∨ 𝑦))) |
14 | 13 | 3anbi3d 1441 |
. . . . . . . 8
⊢ (𝑘 = 𝐾 → ((𝑧 ≠ 𝑥 ∧ 𝑧 ≠ 𝑦 ∧ 𝑧(le‘𝑘)(𝑥(join‘𝑘)𝑦)) ↔ (𝑧 ≠ 𝑥 ∧ 𝑧 ≠ 𝑦 ∧ 𝑧 ≤ (𝑥 ∨ 𝑦)))) |
15 | 3, 14 | rexeqbidv 3337 |
. . . . . . 7
⊢ (𝑘 = 𝐾 → (∃𝑧 ∈ (Atoms‘𝑘)(𝑧 ≠ 𝑥 ∧ 𝑧 ≠ 𝑦 ∧ 𝑧(le‘𝑘)(𝑥(join‘𝑘)𝑦)) ↔ ∃𝑧 ∈ 𝐴 (𝑧 ≠ 𝑥 ∧ 𝑧 ≠ 𝑦 ∧ 𝑧 ≤ (𝑥 ∨ 𝑦)))) |
16 | 15 | imbi2d 341 |
. . . . . 6
⊢ (𝑘 = 𝐾 → ((𝑥 ≠ 𝑦 → ∃𝑧 ∈ (Atoms‘𝑘)(𝑧 ≠ 𝑥 ∧ 𝑧 ≠ 𝑦 ∧ 𝑧(le‘𝑘)(𝑥(join‘𝑘)𝑦))) ↔ (𝑥 ≠ 𝑦 → ∃𝑧 ∈ 𝐴 (𝑧 ≠ 𝑥 ∧ 𝑧 ≠ 𝑦 ∧ 𝑧 ≤ (𝑥 ∨ 𝑦))))) |
17 | 3, 16 | raleqbidv 3336 |
. . . . 5
⊢ (𝑘 = 𝐾 → (∀𝑦 ∈ (Atoms‘𝑘)(𝑥 ≠ 𝑦 → ∃𝑧 ∈ (Atoms‘𝑘)(𝑧 ≠ 𝑥 ∧ 𝑧 ≠ 𝑦 ∧ 𝑧(le‘𝑘)(𝑥(join‘𝑘)𝑦))) ↔ ∀𝑦 ∈ 𝐴 (𝑥 ≠ 𝑦 → ∃𝑧 ∈ 𝐴 (𝑧 ≠ 𝑥 ∧ 𝑧 ≠ 𝑦 ∧ 𝑧 ≤ (𝑥 ∨ 𝑦))))) |
18 | 3, 17 | raleqbidv 3336 |
. . . 4
⊢ (𝑘 = 𝐾 → (∀𝑥 ∈ (Atoms‘𝑘)∀𝑦 ∈ (Atoms‘𝑘)(𝑥 ≠ 𝑦 → ∃𝑧 ∈ (Atoms‘𝑘)(𝑧 ≠ 𝑥 ∧ 𝑧 ≠ 𝑦 ∧ 𝑧(le‘𝑘)(𝑥(join‘𝑘)𝑦))) ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≠ 𝑦 → ∃𝑧 ∈ 𝐴 (𝑧 ≠ 𝑥 ∧ 𝑧 ≠ 𝑦 ∧ 𝑧 ≤ (𝑥 ∨ 𝑦))))) |
19 | | fveq2 6774 |
. . . . . 6
⊢ (𝑘 = 𝐾 → (Base‘𝑘) = (Base‘𝐾)) |
20 | | ishlat.b |
. . . . . 6
⊢ 𝐵 = (Base‘𝐾) |
21 | 19, 20 | eqtr4di 2796 |
. . . . 5
⊢ (𝑘 = 𝐾 → (Base‘𝑘) = 𝐵) |
22 | | fveq2 6774 |
. . . . . . . . . . . 12
⊢ (𝑘 = 𝐾 → (lt‘𝑘) = (lt‘𝐾)) |
23 | | ishlat.s |
. . . . . . . . . . . 12
⊢ < =
(lt‘𝐾) |
24 | 22, 23 | eqtr4di 2796 |
. . . . . . . . . . 11
⊢ (𝑘 = 𝐾 → (lt‘𝑘) = < ) |
25 | 24 | breqd 5085 |
. . . . . . . . . 10
⊢ (𝑘 = 𝐾 → ((0.‘𝑘)(lt‘𝑘)𝑥 ↔ (0.‘𝑘) < 𝑥)) |
26 | | fveq2 6774 |
. . . . . . . . . . . 12
⊢ (𝑘 = 𝐾 → (0.‘𝑘) = (0.‘𝐾)) |
27 | | ishlat.z |
. . . . . . . . . . . 12
⊢ 0 =
(0.‘𝐾) |
28 | 26, 27 | eqtr4di 2796 |
. . . . . . . . . . 11
⊢ (𝑘 = 𝐾 → (0.‘𝑘) = 0 ) |
29 | 28 | breq1d 5084 |
. . . . . . . . . 10
⊢ (𝑘 = 𝐾 → ((0.‘𝑘) < 𝑥 ↔ 0 < 𝑥)) |
30 | 25, 29 | bitrd 278 |
. . . . . . . . 9
⊢ (𝑘 = 𝐾 → ((0.‘𝑘)(lt‘𝑘)𝑥 ↔ 0 < 𝑥)) |
31 | 24 | breqd 5085 |
. . . . . . . . 9
⊢ (𝑘 = 𝐾 → (𝑥(lt‘𝑘)𝑦 ↔ 𝑥 < 𝑦)) |
32 | 30, 31 | anbi12d 631 |
. . . . . . . 8
⊢ (𝑘 = 𝐾 → (((0.‘𝑘)(lt‘𝑘)𝑥 ∧ 𝑥(lt‘𝑘)𝑦) ↔ ( 0 < 𝑥 ∧ 𝑥 < 𝑦))) |
33 | 24 | breqd 5085 |
. . . . . . . . 9
⊢ (𝑘 = 𝐾 → (𝑦(lt‘𝑘)𝑧 ↔ 𝑦 < 𝑧)) |
34 | 24 | breqd 5085 |
. . . . . . . . . 10
⊢ (𝑘 = 𝐾 → (𝑧(lt‘𝑘)(1.‘𝑘) ↔ 𝑧 < (1.‘𝑘))) |
35 | | fveq2 6774 |
. . . . . . . . . . . 12
⊢ (𝑘 = 𝐾 → (1.‘𝑘) = (1.‘𝐾)) |
36 | | ishlat.u |
. . . . . . . . . . . 12
⊢ 1 =
(1.‘𝐾) |
37 | 35, 36 | eqtr4di 2796 |
. . . . . . . . . . 11
⊢ (𝑘 = 𝐾 → (1.‘𝑘) = 1 ) |
38 | 37 | breq2d 5086 |
. . . . . . . . . 10
⊢ (𝑘 = 𝐾 → (𝑧 < (1.‘𝑘) ↔ 𝑧 < 1 )) |
39 | 34, 38 | bitrd 278 |
. . . . . . . . 9
⊢ (𝑘 = 𝐾 → (𝑧(lt‘𝑘)(1.‘𝑘) ↔ 𝑧 < 1 )) |
40 | 33, 39 | anbi12d 631 |
. . . . . . . 8
⊢ (𝑘 = 𝐾 → ((𝑦(lt‘𝑘)𝑧 ∧ 𝑧(lt‘𝑘)(1.‘𝑘)) ↔ (𝑦 < 𝑧 ∧ 𝑧 < 1 ))) |
41 | 32, 40 | anbi12d 631 |
. . . . . . 7
⊢ (𝑘 = 𝐾 → ((((0.‘𝑘)(lt‘𝑘)𝑥 ∧ 𝑥(lt‘𝑘)𝑦) ∧ (𝑦(lt‘𝑘)𝑧 ∧ 𝑧(lt‘𝑘)(1.‘𝑘))) ↔ (( 0 < 𝑥 ∧ 𝑥 < 𝑦) ∧ (𝑦 < 𝑧 ∧ 𝑧 < 1 )))) |
42 | 21, 41 | rexeqbidv 3337 |
. . . . . 6
⊢ (𝑘 = 𝐾 → (∃𝑧 ∈ (Base‘𝑘)(((0.‘𝑘)(lt‘𝑘)𝑥 ∧ 𝑥(lt‘𝑘)𝑦) ∧ (𝑦(lt‘𝑘)𝑧 ∧ 𝑧(lt‘𝑘)(1.‘𝑘))) ↔ ∃𝑧 ∈ 𝐵 (( 0 < 𝑥 ∧ 𝑥 < 𝑦) ∧ (𝑦 < 𝑧 ∧ 𝑧 < 1 )))) |
43 | 21, 42 | rexeqbidv 3337 |
. . . . 5
⊢ (𝑘 = 𝐾 → (∃𝑦 ∈ (Base‘𝑘)∃𝑧 ∈ (Base‘𝑘)(((0.‘𝑘)(lt‘𝑘)𝑥 ∧ 𝑥(lt‘𝑘)𝑦) ∧ (𝑦(lt‘𝑘)𝑧 ∧ 𝑧(lt‘𝑘)(1.‘𝑘))) ↔ ∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐵 (( 0 < 𝑥 ∧ 𝑥 < 𝑦) ∧ (𝑦 < 𝑧 ∧ 𝑧 < 1 )))) |
44 | 21, 43 | rexeqbidv 3337 |
. . . 4
⊢ (𝑘 = 𝐾 → (∃𝑥 ∈ (Base‘𝑘)∃𝑦 ∈ (Base‘𝑘)∃𝑧 ∈ (Base‘𝑘)(((0.‘𝑘)(lt‘𝑘)𝑥 ∧ 𝑥(lt‘𝑘)𝑦) ∧ (𝑦(lt‘𝑘)𝑧 ∧ 𝑧(lt‘𝑘)(1.‘𝑘))) ↔ ∃𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐵 (( 0 < 𝑥 ∧ 𝑥 < 𝑦) ∧ (𝑦 < 𝑧 ∧ 𝑧 < 1 )))) |
45 | 18, 44 | anbi12d 631 |
. . 3
⊢ (𝑘 = 𝐾 → ((∀𝑥 ∈ (Atoms‘𝑘)∀𝑦 ∈ (Atoms‘𝑘)(𝑥 ≠ 𝑦 → ∃𝑧 ∈ (Atoms‘𝑘)(𝑧 ≠ 𝑥 ∧ 𝑧 ≠ 𝑦 ∧ 𝑧(le‘𝑘)(𝑥(join‘𝑘)𝑦))) ∧ ∃𝑥 ∈ (Base‘𝑘)∃𝑦 ∈ (Base‘𝑘)∃𝑧 ∈ (Base‘𝑘)(((0.‘𝑘)(lt‘𝑘)𝑥 ∧ 𝑥(lt‘𝑘)𝑦) ∧ (𝑦(lt‘𝑘)𝑧 ∧ 𝑧(lt‘𝑘)(1.‘𝑘)))) ↔ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≠ 𝑦 → ∃𝑧 ∈ 𝐴 (𝑧 ≠ 𝑥 ∧ 𝑧 ≠ 𝑦 ∧ 𝑧 ≤ (𝑥 ∨ 𝑦))) ∧ ∃𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐵 (( 0 < 𝑥 ∧ 𝑥 < 𝑦) ∧ (𝑦 < 𝑧 ∧ 𝑧 < 1 ))))) |
46 | | df-hlat 37365 |
. . 3
⊢ HL =
{𝑘 ∈ ((OML ∩ CLat)
∩ CvLat) ∣ (∀𝑥 ∈ (Atoms‘𝑘)∀𝑦 ∈ (Atoms‘𝑘)(𝑥 ≠ 𝑦 → ∃𝑧 ∈ (Atoms‘𝑘)(𝑧 ≠ 𝑥 ∧ 𝑧 ≠ 𝑦 ∧ 𝑧(le‘𝑘)(𝑥(join‘𝑘)𝑦))) ∧ ∃𝑥 ∈ (Base‘𝑘)∃𝑦 ∈ (Base‘𝑘)∃𝑧 ∈ (Base‘𝑘)(((0.‘𝑘)(lt‘𝑘)𝑥 ∧ 𝑥(lt‘𝑘)𝑦) ∧ (𝑦(lt‘𝑘)𝑧 ∧ 𝑧(lt‘𝑘)(1.‘𝑘))))} |
47 | 45, 46 | elrab2 3627 |
. 2
⊢ (𝐾 ∈ HL ↔ (𝐾 ∈ ((OML ∩ CLat) ∩
CvLat) ∧ (∀𝑥
∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≠ 𝑦 → ∃𝑧 ∈ 𝐴 (𝑧 ≠ 𝑥 ∧ 𝑧 ≠ 𝑦 ∧ 𝑧 ≤ (𝑥 ∨ 𝑦))) ∧ ∃𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐵 (( 0 < 𝑥 ∧ 𝑥 < 𝑦) ∧ (𝑦 < 𝑧 ∧ 𝑧 < 1 ))))) |
48 | | elin 3903 |
. . . . 5
⊢ (𝐾 ∈ (OML ∩ CLat) ↔
(𝐾 ∈ OML ∧ 𝐾 ∈ CLat)) |
49 | 48 | anbi1i 624 |
. . . 4
⊢ ((𝐾 ∈ (OML ∩ CLat) ∧
𝐾 ∈ CvLat) ↔
((𝐾 ∈ OML ∧ 𝐾 ∈ CLat) ∧ 𝐾 ∈ CvLat)) |
50 | | elin 3903 |
. . . 4
⊢ (𝐾 ∈ ((OML ∩ CLat) ∩
CvLat) ↔ (𝐾 ∈
(OML ∩ CLat) ∧ 𝐾
∈ CvLat)) |
51 | | df-3an 1088 |
. . . 4
⊢ ((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ↔ ((𝐾 ∈ OML ∧ 𝐾 ∈ CLat) ∧ 𝐾 ∈ CvLat)) |
52 | 49, 50, 51 | 3bitr4ri 304 |
. . 3
⊢ ((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ↔ 𝐾 ∈ ((OML ∩ CLat) ∩
CvLat)) |
53 | 52 | anbi1i 624 |
. 2
⊢ (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧
(∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≠ 𝑦 → ∃𝑧 ∈ 𝐴 (𝑧 ≠ 𝑥 ∧ 𝑧 ≠ 𝑦 ∧ 𝑧 ≤ (𝑥 ∨ 𝑦))) ∧ ∃𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐵 (( 0 < 𝑥 ∧ 𝑥 < 𝑦) ∧ (𝑦 < 𝑧 ∧ 𝑧 < 1 )))) ↔ (𝐾 ∈ ((OML ∩ CLat) ∩
CvLat) ∧ (∀𝑥
∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≠ 𝑦 → ∃𝑧 ∈ 𝐴 (𝑧 ≠ 𝑥 ∧ 𝑧 ≠ 𝑦 ∧ 𝑧 ≤ (𝑥 ∨ 𝑦))) ∧ ∃𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐵 (( 0 < 𝑥 ∧ 𝑥 < 𝑦) ∧ (𝑦 < 𝑧 ∧ 𝑧 < 1 ))))) |
54 | 47, 53 | bitr4i 277 |
1
⊢ (𝐾 ∈ HL ↔ ((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧
(∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≠ 𝑦 → ∃𝑧 ∈ 𝐴 (𝑧 ≠ 𝑥 ∧ 𝑧 ≠ 𝑦 ∧ 𝑧 ≤ (𝑥 ∨ 𝑦))) ∧ ∃𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐵 (( 0 < 𝑥 ∧ 𝑥 < 𝑦) ∧ (𝑦 < 𝑧 ∧ 𝑧 < 1 ))))) |