Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ishlat1 Structured version   Visualization version   GIF version

Theorem ishlat1 37366
Description: The predicate "is a Hilbert lattice", which is: is orthomodular (𝐾 ∈ OML), complete (𝐾 ∈ CLat), atomic and satisfies the exchange (or covering) property (𝐾 ∈ CvLat), satisfies the superposition principle, and has a minimum height of 4 (witnessed here by 0, x, y, z, 1). (Contributed by NM, 5-Nov-2012.)
Hypotheses
Ref Expression
ishlat.b 𝐵 = (Base‘𝐾)
ishlat.l = (le‘𝐾)
ishlat.s < = (lt‘𝐾)
ishlat.j = (join‘𝐾)
ishlat.z 0 = (0.‘𝐾)
ishlat.u 1 = (1.‘𝐾)
ishlat.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
ishlat1 (𝐾 ∈ HL ↔ ((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ (∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → ∃𝑧𝐴 (𝑧𝑥𝑧𝑦𝑧 (𝑥 𝑦))) ∧ ∃𝑥𝐵𝑦𝐵𝑧𝐵 (( 0 < 𝑥𝑥 < 𝑦) ∧ (𝑦 < 𝑧𝑧 < 1 )))))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦,𝑧   𝑥,𝐾,𝑦,𝑧
Allowed substitution hints:   < (𝑥,𝑦,𝑧)   1 (𝑥,𝑦,𝑧)   (𝑥,𝑦,𝑧)   (𝑥,𝑦,𝑧)   0 (𝑥,𝑦,𝑧)

Proof of Theorem ishlat1
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6774 . . . . . 6 (𝑘 = 𝐾 → (Atoms‘𝑘) = (Atoms‘𝐾))
2 ishlat.a . . . . . 6 𝐴 = (Atoms‘𝐾)
31, 2eqtr4di 2796 . . . . 5 (𝑘 = 𝐾 → (Atoms‘𝑘) = 𝐴)
4 fveq2 6774 . . . . . . . . . . . 12 (𝑘 = 𝐾 → (le‘𝑘) = (le‘𝐾))
5 ishlat.l . . . . . . . . . . . 12 = (le‘𝐾)
64, 5eqtr4di 2796 . . . . . . . . . . 11 (𝑘 = 𝐾 → (le‘𝑘) = )
76breqd 5085 . . . . . . . . . 10 (𝑘 = 𝐾 → (𝑧(le‘𝑘)(𝑥(join‘𝑘)𝑦) ↔ 𝑧 (𝑥(join‘𝑘)𝑦)))
8 fveq2 6774 . . . . . . . . . . . . 13 (𝑘 = 𝐾 → (join‘𝑘) = (join‘𝐾))
9 ishlat.j . . . . . . . . . . . . 13 = (join‘𝐾)
108, 9eqtr4di 2796 . . . . . . . . . . . 12 (𝑘 = 𝐾 → (join‘𝑘) = )
1110oveqd 7292 . . . . . . . . . . 11 (𝑘 = 𝐾 → (𝑥(join‘𝑘)𝑦) = (𝑥 𝑦))
1211breq2d 5086 . . . . . . . . . 10 (𝑘 = 𝐾 → (𝑧 (𝑥(join‘𝑘)𝑦) ↔ 𝑧 (𝑥 𝑦)))
137, 12bitrd 278 . . . . . . . . 9 (𝑘 = 𝐾 → (𝑧(le‘𝑘)(𝑥(join‘𝑘)𝑦) ↔ 𝑧 (𝑥 𝑦)))
14133anbi3d 1441 . . . . . . . 8 (𝑘 = 𝐾 → ((𝑧𝑥𝑧𝑦𝑧(le‘𝑘)(𝑥(join‘𝑘)𝑦)) ↔ (𝑧𝑥𝑧𝑦𝑧 (𝑥 𝑦))))
153, 14rexeqbidv 3337 . . . . . . 7 (𝑘 = 𝐾 → (∃𝑧 ∈ (Atoms‘𝑘)(𝑧𝑥𝑧𝑦𝑧(le‘𝑘)(𝑥(join‘𝑘)𝑦)) ↔ ∃𝑧𝐴 (𝑧𝑥𝑧𝑦𝑧 (𝑥 𝑦))))
1615imbi2d 341 . . . . . 6 (𝑘 = 𝐾 → ((𝑥𝑦 → ∃𝑧 ∈ (Atoms‘𝑘)(𝑧𝑥𝑧𝑦𝑧(le‘𝑘)(𝑥(join‘𝑘)𝑦))) ↔ (𝑥𝑦 → ∃𝑧𝐴 (𝑧𝑥𝑧𝑦𝑧 (𝑥 𝑦)))))
173, 16raleqbidv 3336 . . . . 5 (𝑘 = 𝐾 → (∀𝑦 ∈ (Atoms‘𝑘)(𝑥𝑦 → ∃𝑧 ∈ (Atoms‘𝑘)(𝑧𝑥𝑧𝑦𝑧(le‘𝑘)(𝑥(join‘𝑘)𝑦))) ↔ ∀𝑦𝐴 (𝑥𝑦 → ∃𝑧𝐴 (𝑧𝑥𝑧𝑦𝑧 (𝑥 𝑦)))))
183, 17raleqbidv 3336 . . . 4 (𝑘 = 𝐾 → (∀𝑥 ∈ (Atoms‘𝑘)∀𝑦 ∈ (Atoms‘𝑘)(𝑥𝑦 → ∃𝑧 ∈ (Atoms‘𝑘)(𝑧𝑥𝑧𝑦𝑧(le‘𝑘)(𝑥(join‘𝑘)𝑦))) ↔ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → ∃𝑧𝐴 (𝑧𝑥𝑧𝑦𝑧 (𝑥 𝑦)))))
19 fveq2 6774 . . . . . 6 (𝑘 = 𝐾 → (Base‘𝑘) = (Base‘𝐾))
20 ishlat.b . . . . . 6 𝐵 = (Base‘𝐾)
2119, 20eqtr4di 2796 . . . . 5 (𝑘 = 𝐾 → (Base‘𝑘) = 𝐵)
22 fveq2 6774 . . . . . . . . . . . 12 (𝑘 = 𝐾 → (lt‘𝑘) = (lt‘𝐾))
23 ishlat.s . . . . . . . . . . . 12 < = (lt‘𝐾)
2422, 23eqtr4di 2796 . . . . . . . . . . 11 (𝑘 = 𝐾 → (lt‘𝑘) = < )
2524breqd 5085 . . . . . . . . . 10 (𝑘 = 𝐾 → ((0.‘𝑘)(lt‘𝑘)𝑥 ↔ (0.‘𝑘) < 𝑥))
26 fveq2 6774 . . . . . . . . . . . 12 (𝑘 = 𝐾 → (0.‘𝑘) = (0.‘𝐾))
27 ishlat.z . . . . . . . . . . . 12 0 = (0.‘𝐾)
2826, 27eqtr4di 2796 . . . . . . . . . . 11 (𝑘 = 𝐾 → (0.‘𝑘) = 0 )
2928breq1d 5084 . . . . . . . . . 10 (𝑘 = 𝐾 → ((0.‘𝑘) < 𝑥0 < 𝑥))
3025, 29bitrd 278 . . . . . . . . 9 (𝑘 = 𝐾 → ((0.‘𝑘)(lt‘𝑘)𝑥0 < 𝑥))
3124breqd 5085 . . . . . . . . 9 (𝑘 = 𝐾 → (𝑥(lt‘𝑘)𝑦𝑥 < 𝑦))
3230, 31anbi12d 631 . . . . . . . 8 (𝑘 = 𝐾 → (((0.‘𝑘)(lt‘𝑘)𝑥𝑥(lt‘𝑘)𝑦) ↔ ( 0 < 𝑥𝑥 < 𝑦)))
3324breqd 5085 . . . . . . . . 9 (𝑘 = 𝐾 → (𝑦(lt‘𝑘)𝑧𝑦 < 𝑧))
3424breqd 5085 . . . . . . . . . 10 (𝑘 = 𝐾 → (𝑧(lt‘𝑘)(1.‘𝑘) ↔ 𝑧 < (1.‘𝑘)))
35 fveq2 6774 . . . . . . . . . . . 12 (𝑘 = 𝐾 → (1.‘𝑘) = (1.‘𝐾))
36 ishlat.u . . . . . . . . . . . 12 1 = (1.‘𝐾)
3735, 36eqtr4di 2796 . . . . . . . . . . 11 (𝑘 = 𝐾 → (1.‘𝑘) = 1 )
3837breq2d 5086 . . . . . . . . . 10 (𝑘 = 𝐾 → (𝑧 < (1.‘𝑘) ↔ 𝑧 < 1 ))
3934, 38bitrd 278 . . . . . . . . 9 (𝑘 = 𝐾 → (𝑧(lt‘𝑘)(1.‘𝑘) ↔ 𝑧 < 1 ))
4033, 39anbi12d 631 . . . . . . . 8 (𝑘 = 𝐾 → ((𝑦(lt‘𝑘)𝑧𝑧(lt‘𝑘)(1.‘𝑘)) ↔ (𝑦 < 𝑧𝑧 < 1 )))
4132, 40anbi12d 631 . . . . . . 7 (𝑘 = 𝐾 → ((((0.‘𝑘)(lt‘𝑘)𝑥𝑥(lt‘𝑘)𝑦) ∧ (𝑦(lt‘𝑘)𝑧𝑧(lt‘𝑘)(1.‘𝑘))) ↔ (( 0 < 𝑥𝑥 < 𝑦) ∧ (𝑦 < 𝑧𝑧 < 1 ))))
4221, 41rexeqbidv 3337 . . . . . 6 (𝑘 = 𝐾 → (∃𝑧 ∈ (Base‘𝑘)(((0.‘𝑘)(lt‘𝑘)𝑥𝑥(lt‘𝑘)𝑦) ∧ (𝑦(lt‘𝑘)𝑧𝑧(lt‘𝑘)(1.‘𝑘))) ↔ ∃𝑧𝐵 (( 0 < 𝑥𝑥 < 𝑦) ∧ (𝑦 < 𝑧𝑧 < 1 ))))
4321, 42rexeqbidv 3337 . . . . 5 (𝑘 = 𝐾 → (∃𝑦 ∈ (Base‘𝑘)∃𝑧 ∈ (Base‘𝑘)(((0.‘𝑘)(lt‘𝑘)𝑥𝑥(lt‘𝑘)𝑦) ∧ (𝑦(lt‘𝑘)𝑧𝑧(lt‘𝑘)(1.‘𝑘))) ↔ ∃𝑦𝐵𝑧𝐵 (( 0 < 𝑥𝑥 < 𝑦) ∧ (𝑦 < 𝑧𝑧 < 1 ))))
4421, 43rexeqbidv 3337 . . . 4 (𝑘 = 𝐾 → (∃𝑥 ∈ (Base‘𝑘)∃𝑦 ∈ (Base‘𝑘)∃𝑧 ∈ (Base‘𝑘)(((0.‘𝑘)(lt‘𝑘)𝑥𝑥(lt‘𝑘)𝑦) ∧ (𝑦(lt‘𝑘)𝑧𝑧(lt‘𝑘)(1.‘𝑘))) ↔ ∃𝑥𝐵𝑦𝐵𝑧𝐵 (( 0 < 𝑥𝑥 < 𝑦) ∧ (𝑦 < 𝑧𝑧 < 1 ))))
4518, 44anbi12d 631 . . 3 (𝑘 = 𝐾 → ((∀𝑥 ∈ (Atoms‘𝑘)∀𝑦 ∈ (Atoms‘𝑘)(𝑥𝑦 → ∃𝑧 ∈ (Atoms‘𝑘)(𝑧𝑥𝑧𝑦𝑧(le‘𝑘)(𝑥(join‘𝑘)𝑦))) ∧ ∃𝑥 ∈ (Base‘𝑘)∃𝑦 ∈ (Base‘𝑘)∃𝑧 ∈ (Base‘𝑘)(((0.‘𝑘)(lt‘𝑘)𝑥𝑥(lt‘𝑘)𝑦) ∧ (𝑦(lt‘𝑘)𝑧𝑧(lt‘𝑘)(1.‘𝑘)))) ↔ (∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → ∃𝑧𝐴 (𝑧𝑥𝑧𝑦𝑧 (𝑥 𝑦))) ∧ ∃𝑥𝐵𝑦𝐵𝑧𝐵 (( 0 < 𝑥𝑥 < 𝑦) ∧ (𝑦 < 𝑧𝑧 < 1 )))))
46 df-hlat 37365 . . 3 HL = {𝑘 ∈ ((OML ∩ CLat) ∩ CvLat) ∣ (∀𝑥 ∈ (Atoms‘𝑘)∀𝑦 ∈ (Atoms‘𝑘)(𝑥𝑦 → ∃𝑧 ∈ (Atoms‘𝑘)(𝑧𝑥𝑧𝑦𝑧(le‘𝑘)(𝑥(join‘𝑘)𝑦))) ∧ ∃𝑥 ∈ (Base‘𝑘)∃𝑦 ∈ (Base‘𝑘)∃𝑧 ∈ (Base‘𝑘)(((0.‘𝑘)(lt‘𝑘)𝑥𝑥(lt‘𝑘)𝑦) ∧ (𝑦(lt‘𝑘)𝑧𝑧(lt‘𝑘)(1.‘𝑘))))}
4745, 46elrab2 3627 . 2 (𝐾 ∈ HL ↔ (𝐾 ∈ ((OML ∩ CLat) ∩ CvLat) ∧ (∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → ∃𝑧𝐴 (𝑧𝑥𝑧𝑦𝑧 (𝑥 𝑦))) ∧ ∃𝑥𝐵𝑦𝐵𝑧𝐵 (( 0 < 𝑥𝑥 < 𝑦) ∧ (𝑦 < 𝑧𝑧 < 1 )))))
48 elin 3903 . . . . 5 (𝐾 ∈ (OML ∩ CLat) ↔ (𝐾 ∈ OML ∧ 𝐾 ∈ CLat))
4948anbi1i 624 . . . 4 ((𝐾 ∈ (OML ∩ CLat) ∧ 𝐾 ∈ CvLat) ↔ ((𝐾 ∈ OML ∧ 𝐾 ∈ CLat) ∧ 𝐾 ∈ CvLat))
50 elin 3903 . . . 4 (𝐾 ∈ ((OML ∩ CLat) ∩ CvLat) ↔ (𝐾 ∈ (OML ∩ CLat) ∧ 𝐾 ∈ CvLat))
51 df-3an 1088 . . . 4 ((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ↔ ((𝐾 ∈ OML ∧ 𝐾 ∈ CLat) ∧ 𝐾 ∈ CvLat))
5249, 50, 513bitr4ri 304 . . 3 ((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ↔ 𝐾 ∈ ((OML ∩ CLat) ∩ CvLat))
5352anbi1i 624 . 2 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ (∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → ∃𝑧𝐴 (𝑧𝑥𝑧𝑦𝑧 (𝑥 𝑦))) ∧ ∃𝑥𝐵𝑦𝐵𝑧𝐵 (( 0 < 𝑥𝑥 < 𝑦) ∧ (𝑦 < 𝑧𝑧 < 1 )))) ↔ (𝐾 ∈ ((OML ∩ CLat) ∩ CvLat) ∧ (∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → ∃𝑧𝐴 (𝑧𝑥𝑧𝑦𝑧 (𝑥 𝑦))) ∧ ∃𝑥𝐵𝑦𝐵𝑧𝐵 (( 0 < 𝑥𝑥 < 𝑦) ∧ (𝑦 < 𝑧𝑧 < 1 )))))
5447, 53bitr4i 277 1 (𝐾 ∈ HL ↔ ((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ (∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → ∃𝑧𝐴 (𝑧𝑥𝑧𝑦𝑧 (𝑥 𝑦))) ∧ ∃𝑥𝐵𝑦𝐵𝑧𝐵 (( 0 < 𝑥𝑥 < 𝑦) ∧ (𝑦 < 𝑧𝑧 < 1 )))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wne 2943  wral 3064  wrex 3065  cin 3886   class class class wbr 5074  cfv 6433  (class class class)co 7275  Basecbs 16912  lecple 16969  ltcplt 18026  joincjn 18029  0.cp0 18141  1.cp1 18142  CLatccla 18216  OMLcoml 37189  Atomscatm 37277  CvLatclc 37279  HLchlt 37364
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-iota 6391  df-fv 6441  df-ov 7278  df-hlat 37365
This theorem is referenced by:  ishlat2  37367  ishlat3N  37368  hlomcmcv  37370
  Copyright terms: Public domain W3C validator