Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ishlat1 Structured version   Visualization version   GIF version

Theorem ishlat1 36647
Description: The predicate "is a Hilbert lattice", which is: is orthomodular (𝐾 ∈ OML), complete (𝐾 ∈ CLat), atomic and satisfies the exchange (or covering) property (𝐾 ∈ CvLat), satisfies the superposition principle, and has a minimum height of 4 (witnessed here by 0, x, y, z, 1). (Contributed by NM, 5-Nov-2012.)
Hypotheses
Ref Expression
ishlat.b 𝐵 = (Base‘𝐾)
ishlat.l = (le‘𝐾)
ishlat.s < = (lt‘𝐾)
ishlat.j = (join‘𝐾)
ishlat.z 0 = (0.‘𝐾)
ishlat.u 1 = (1.‘𝐾)
ishlat.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
ishlat1 (𝐾 ∈ HL ↔ ((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ (∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → ∃𝑧𝐴 (𝑧𝑥𝑧𝑦𝑧 (𝑥 𝑦))) ∧ ∃𝑥𝐵𝑦𝐵𝑧𝐵 (( 0 < 𝑥𝑥 < 𝑦) ∧ (𝑦 < 𝑧𝑧 < 1 )))))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦,𝑧   𝑥,𝐾,𝑦,𝑧
Allowed substitution hints:   < (𝑥,𝑦,𝑧)   1 (𝑥,𝑦,𝑧)   (𝑥,𝑦,𝑧)   (𝑥,𝑦,𝑧)   0 (𝑥,𝑦,𝑧)

Proof of Theorem ishlat1
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6649 . . . . . 6 (𝑘 = 𝐾 → (Atoms‘𝑘) = (Atoms‘𝐾))
2 ishlat.a . . . . . 6 𝐴 = (Atoms‘𝐾)
31, 2eqtr4di 2854 . . . . 5 (𝑘 = 𝐾 → (Atoms‘𝑘) = 𝐴)
4 fveq2 6649 . . . . . . . . . . . 12 (𝑘 = 𝐾 → (le‘𝑘) = (le‘𝐾))
5 ishlat.l . . . . . . . . . . . 12 = (le‘𝐾)
64, 5eqtr4di 2854 . . . . . . . . . . 11 (𝑘 = 𝐾 → (le‘𝑘) = )
76breqd 5044 . . . . . . . . . 10 (𝑘 = 𝐾 → (𝑧(le‘𝑘)(𝑥(join‘𝑘)𝑦) ↔ 𝑧 (𝑥(join‘𝑘)𝑦)))
8 fveq2 6649 . . . . . . . . . . . . 13 (𝑘 = 𝐾 → (join‘𝑘) = (join‘𝐾))
9 ishlat.j . . . . . . . . . . . . 13 = (join‘𝐾)
108, 9eqtr4di 2854 . . . . . . . . . . . 12 (𝑘 = 𝐾 → (join‘𝑘) = )
1110oveqd 7156 . . . . . . . . . . 11 (𝑘 = 𝐾 → (𝑥(join‘𝑘)𝑦) = (𝑥 𝑦))
1211breq2d 5045 . . . . . . . . . 10 (𝑘 = 𝐾 → (𝑧 (𝑥(join‘𝑘)𝑦) ↔ 𝑧 (𝑥 𝑦)))
137, 12bitrd 282 . . . . . . . . 9 (𝑘 = 𝐾 → (𝑧(le‘𝑘)(𝑥(join‘𝑘)𝑦) ↔ 𝑧 (𝑥 𝑦)))
14133anbi3d 1439 . . . . . . . 8 (𝑘 = 𝐾 → ((𝑧𝑥𝑧𝑦𝑧(le‘𝑘)(𝑥(join‘𝑘)𝑦)) ↔ (𝑧𝑥𝑧𝑦𝑧 (𝑥 𝑦))))
153, 14rexeqbidv 3358 . . . . . . 7 (𝑘 = 𝐾 → (∃𝑧 ∈ (Atoms‘𝑘)(𝑧𝑥𝑧𝑦𝑧(le‘𝑘)(𝑥(join‘𝑘)𝑦)) ↔ ∃𝑧𝐴 (𝑧𝑥𝑧𝑦𝑧 (𝑥 𝑦))))
1615imbi2d 344 . . . . . 6 (𝑘 = 𝐾 → ((𝑥𝑦 → ∃𝑧 ∈ (Atoms‘𝑘)(𝑧𝑥𝑧𝑦𝑧(le‘𝑘)(𝑥(join‘𝑘)𝑦))) ↔ (𝑥𝑦 → ∃𝑧𝐴 (𝑧𝑥𝑧𝑦𝑧 (𝑥 𝑦)))))
173, 16raleqbidv 3357 . . . . 5 (𝑘 = 𝐾 → (∀𝑦 ∈ (Atoms‘𝑘)(𝑥𝑦 → ∃𝑧 ∈ (Atoms‘𝑘)(𝑧𝑥𝑧𝑦𝑧(le‘𝑘)(𝑥(join‘𝑘)𝑦))) ↔ ∀𝑦𝐴 (𝑥𝑦 → ∃𝑧𝐴 (𝑧𝑥𝑧𝑦𝑧 (𝑥 𝑦)))))
183, 17raleqbidv 3357 . . . 4 (𝑘 = 𝐾 → (∀𝑥 ∈ (Atoms‘𝑘)∀𝑦 ∈ (Atoms‘𝑘)(𝑥𝑦 → ∃𝑧 ∈ (Atoms‘𝑘)(𝑧𝑥𝑧𝑦𝑧(le‘𝑘)(𝑥(join‘𝑘)𝑦))) ↔ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → ∃𝑧𝐴 (𝑧𝑥𝑧𝑦𝑧 (𝑥 𝑦)))))
19 fveq2 6649 . . . . . 6 (𝑘 = 𝐾 → (Base‘𝑘) = (Base‘𝐾))
20 ishlat.b . . . . . 6 𝐵 = (Base‘𝐾)
2119, 20eqtr4di 2854 . . . . 5 (𝑘 = 𝐾 → (Base‘𝑘) = 𝐵)
22 fveq2 6649 . . . . . . . . . . . 12 (𝑘 = 𝐾 → (lt‘𝑘) = (lt‘𝐾))
23 ishlat.s . . . . . . . . . . . 12 < = (lt‘𝐾)
2422, 23eqtr4di 2854 . . . . . . . . . . 11 (𝑘 = 𝐾 → (lt‘𝑘) = < )
2524breqd 5044 . . . . . . . . . 10 (𝑘 = 𝐾 → ((0.‘𝑘)(lt‘𝑘)𝑥 ↔ (0.‘𝑘) < 𝑥))
26 fveq2 6649 . . . . . . . . . . . 12 (𝑘 = 𝐾 → (0.‘𝑘) = (0.‘𝐾))
27 ishlat.z . . . . . . . . . . . 12 0 = (0.‘𝐾)
2826, 27eqtr4di 2854 . . . . . . . . . . 11 (𝑘 = 𝐾 → (0.‘𝑘) = 0 )
2928breq1d 5043 . . . . . . . . . 10 (𝑘 = 𝐾 → ((0.‘𝑘) < 𝑥0 < 𝑥))
3025, 29bitrd 282 . . . . . . . . 9 (𝑘 = 𝐾 → ((0.‘𝑘)(lt‘𝑘)𝑥0 < 𝑥))
3124breqd 5044 . . . . . . . . 9 (𝑘 = 𝐾 → (𝑥(lt‘𝑘)𝑦𝑥 < 𝑦))
3230, 31anbi12d 633 . . . . . . . 8 (𝑘 = 𝐾 → (((0.‘𝑘)(lt‘𝑘)𝑥𝑥(lt‘𝑘)𝑦) ↔ ( 0 < 𝑥𝑥 < 𝑦)))
3324breqd 5044 . . . . . . . . 9 (𝑘 = 𝐾 → (𝑦(lt‘𝑘)𝑧𝑦 < 𝑧))
3424breqd 5044 . . . . . . . . . 10 (𝑘 = 𝐾 → (𝑧(lt‘𝑘)(1.‘𝑘) ↔ 𝑧 < (1.‘𝑘)))
35 fveq2 6649 . . . . . . . . . . . 12 (𝑘 = 𝐾 → (1.‘𝑘) = (1.‘𝐾))
36 ishlat.u . . . . . . . . . . . 12 1 = (1.‘𝐾)
3735, 36eqtr4di 2854 . . . . . . . . . . 11 (𝑘 = 𝐾 → (1.‘𝑘) = 1 )
3837breq2d 5045 . . . . . . . . . 10 (𝑘 = 𝐾 → (𝑧 < (1.‘𝑘) ↔ 𝑧 < 1 ))
3934, 38bitrd 282 . . . . . . . . 9 (𝑘 = 𝐾 → (𝑧(lt‘𝑘)(1.‘𝑘) ↔ 𝑧 < 1 ))
4033, 39anbi12d 633 . . . . . . . 8 (𝑘 = 𝐾 → ((𝑦(lt‘𝑘)𝑧𝑧(lt‘𝑘)(1.‘𝑘)) ↔ (𝑦 < 𝑧𝑧 < 1 )))
4132, 40anbi12d 633 . . . . . . 7 (𝑘 = 𝐾 → ((((0.‘𝑘)(lt‘𝑘)𝑥𝑥(lt‘𝑘)𝑦) ∧ (𝑦(lt‘𝑘)𝑧𝑧(lt‘𝑘)(1.‘𝑘))) ↔ (( 0 < 𝑥𝑥 < 𝑦) ∧ (𝑦 < 𝑧𝑧 < 1 ))))
4221, 41rexeqbidv 3358 . . . . . 6 (𝑘 = 𝐾 → (∃𝑧 ∈ (Base‘𝑘)(((0.‘𝑘)(lt‘𝑘)𝑥𝑥(lt‘𝑘)𝑦) ∧ (𝑦(lt‘𝑘)𝑧𝑧(lt‘𝑘)(1.‘𝑘))) ↔ ∃𝑧𝐵 (( 0 < 𝑥𝑥 < 𝑦) ∧ (𝑦 < 𝑧𝑧 < 1 ))))
4321, 42rexeqbidv 3358 . . . . 5 (𝑘 = 𝐾 → (∃𝑦 ∈ (Base‘𝑘)∃𝑧 ∈ (Base‘𝑘)(((0.‘𝑘)(lt‘𝑘)𝑥𝑥(lt‘𝑘)𝑦) ∧ (𝑦(lt‘𝑘)𝑧𝑧(lt‘𝑘)(1.‘𝑘))) ↔ ∃𝑦𝐵𝑧𝐵 (( 0 < 𝑥𝑥 < 𝑦) ∧ (𝑦 < 𝑧𝑧 < 1 ))))
4421, 43rexeqbidv 3358 . . . 4 (𝑘 = 𝐾 → (∃𝑥 ∈ (Base‘𝑘)∃𝑦 ∈ (Base‘𝑘)∃𝑧 ∈ (Base‘𝑘)(((0.‘𝑘)(lt‘𝑘)𝑥𝑥(lt‘𝑘)𝑦) ∧ (𝑦(lt‘𝑘)𝑧𝑧(lt‘𝑘)(1.‘𝑘))) ↔ ∃𝑥𝐵𝑦𝐵𝑧𝐵 (( 0 < 𝑥𝑥 < 𝑦) ∧ (𝑦 < 𝑧𝑧 < 1 ))))
4518, 44anbi12d 633 . . 3 (𝑘 = 𝐾 → ((∀𝑥 ∈ (Atoms‘𝑘)∀𝑦 ∈ (Atoms‘𝑘)(𝑥𝑦 → ∃𝑧 ∈ (Atoms‘𝑘)(𝑧𝑥𝑧𝑦𝑧(le‘𝑘)(𝑥(join‘𝑘)𝑦))) ∧ ∃𝑥 ∈ (Base‘𝑘)∃𝑦 ∈ (Base‘𝑘)∃𝑧 ∈ (Base‘𝑘)(((0.‘𝑘)(lt‘𝑘)𝑥𝑥(lt‘𝑘)𝑦) ∧ (𝑦(lt‘𝑘)𝑧𝑧(lt‘𝑘)(1.‘𝑘)))) ↔ (∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → ∃𝑧𝐴 (𝑧𝑥𝑧𝑦𝑧 (𝑥 𝑦))) ∧ ∃𝑥𝐵𝑦𝐵𝑧𝐵 (( 0 < 𝑥𝑥 < 𝑦) ∧ (𝑦 < 𝑧𝑧 < 1 )))))
46 df-hlat 36646 . . 3 HL = {𝑘 ∈ ((OML ∩ CLat) ∩ CvLat) ∣ (∀𝑥 ∈ (Atoms‘𝑘)∀𝑦 ∈ (Atoms‘𝑘)(𝑥𝑦 → ∃𝑧 ∈ (Atoms‘𝑘)(𝑧𝑥𝑧𝑦𝑧(le‘𝑘)(𝑥(join‘𝑘)𝑦))) ∧ ∃𝑥 ∈ (Base‘𝑘)∃𝑦 ∈ (Base‘𝑘)∃𝑧 ∈ (Base‘𝑘)(((0.‘𝑘)(lt‘𝑘)𝑥𝑥(lt‘𝑘)𝑦) ∧ (𝑦(lt‘𝑘)𝑧𝑧(lt‘𝑘)(1.‘𝑘))))}
4745, 46elrab2 3634 . 2 (𝐾 ∈ HL ↔ (𝐾 ∈ ((OML ∩ CLat) ∩ CvLat) ∧ (∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → ∃𝑧𝐴 (𝑧𝑥𝑧𝑦𝑧 (𝑥 𝑦))) ∧ ∃𝑥𝐵𝑦𝐵𝑧𝐵 (( 0 < 𝑥𝑥 < 𝑦) ∧ (𝑦 < 𝑧𝑧 < 1 )))))
48 elin 3900 . . . . 5 (𝐾 ∈ (OML ∩ CLat) ↔ (𝐾 ∈ OML ∧ 𝐾 ∈ CLat))
4948anbi1i 626 . . . 4 ((𝐾 ∈ (OML ∩ CLat) ∧ 𝐾 ∈ CvLat) ↔ ((𝐾 ∈ OML ∧ 𝐾 ∈ CLat) ∧ 𝐾 ∈ CvLat))
50 elin 3900 . . . 4 (𝐾 ∈ ((OML ∩ CLat) ∩ CvLat) ↔ (𝐾 ∈ (OML ∩ CLat) ∧ 𝐾 ∈ CvLat))
51 df-3an 1086 . . . 4 ((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ↔ ((𝐾 ∈ OML ∧ 𝐾 ∈ CLat) ∧ 𝐾 ∈ CvLat))
5249, 50, 513bitr4ri 307 . . 3 ((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ↔ 𝐾 ∈ ((OML ∩ CLat) ∩ CvLat))
5352anbi1i 626 . 2 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ (∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → ∃𝑧𝐴 (𝑧𝑥𝑧𝑦𝑧 (𝑥 𝑦))) ∧ ∃𝑥𝐵𝑦𝐵𝑧𝐵 (( 0 < 𝑥𝑥 < 𝑦) ∧ (𝑦 < 𝑧𝑧 < 1 )))) ↔ (𝐾 ∈ ((OML ∩ CLat) ∩ CvLat) ∧ (∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → ∃𝑧𝐴 (𝑧𝑥𝑧𝑦𝑧 (𝑥 𝑦))) ∧ ∃𝑥𝐵𝑦𝐵𝑧𝐵 (( 0 < 𝑥𝑥 < 𝑦) ∧ (𝑦 < 𝑧𝑧 < 1 )))))
5447, 53bitr4i 281 1 (𝐾 ∈ HL ↔ ((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ (∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → ∃𝑧𝐴 (𝑧𝑥𝑧𝑦𝑧 (𝑥 𝑦))) ∧ ∃𝑥𝐵𝑦𝐵𝑧𝐵 (( 0 < 𝑥𝑥 < 𝑦) ∧ (𝑦 < 𝑧𝑧 < 1 )))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2112  wne 2990  wral 3109  wrex 3110  cin 3883   class class class wbr 5033  cfv 6328  (class class class)co 7139  Basecbs 16479  lecple 16568  ltcplt 17547  joincjn 17550  0.cp0 17643  1.cp1 17644  CLatccla 17713  OMLcoml 36470  Atomscatm 36558  CvLatclc 36560  HLchlt 36645
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ral 3114  df-rex 3115  df-rab 3118  df-v 3446  df-un 3889  df-in 3891  df-ss 3901  df-sn 4529  df-pr 4531  df-op 4535  df-uni 4804  df-br 5034  df-iota 6287  df-fv 6336  df-ov 7142  df-hlat 36646
This theorem is referenced by:  ishlat2  36648  ishlat3N  36649  hlomcmcv  36651
  Copyright terms: Public domain W3C validator