Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ishlat1 Structured version   Visualization version   GIF version

Theorem ishlat1 39375
Description: The predicate "is a Hilbert lattice", which is: is orthomodular (𝐾 ∈ OML), complete (𝐾 ∈ CLat), atomic and satisfies the exchange (or covering) property (𝐾 ∈ CvLat), satisfies the superposition principle, and has a minimum height of 4 (witnessed here by 0, x, y, z, 1). (Contributed by NM, 5-Nov-2012.)
Hypotheses
Ref Expression
ishlat.b 𝐵 = (Base‘𝐾)
ishlat.l = (le‘𝐾)
ishlat.s < = (lt‘𝐾)
ishlat.j = (join‘𝐾)
ishlat.z 0 = (0.‘𝐾)
ishlat.u 1 = (1.‘𝐾)
ishlat.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
ishlat1 (𝐾 ∈ HL ↔ ((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ (∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → ∃𝑧𝐴 (𝑧𝑥𝑧𝑦𝑧 (𝑥 𝑦))) ∧ ∃𝑥𝐵𝑦𝐵𝑧𝐵 (( 0 < 𝑥𝑥 < 𝑦) ∧ (𝑦 < 𝑧𝑧 < 1 )))))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦,𝑧   𝑥,𝐾,𝑦,𝑧
Allowed substitution hints:   < (𝑥,𝑦,𝑧)   1 (𝑥,𝑦,𝑧)   (𝑥,𝑦,𝑧)   (𝑥,𝑦,𝑧)   0 (𝑥,𝑦,𝑧)

Proof of Theorem ishlat1
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6881 . . . . . 6 (𝑘 = 𝐾 → (Atoms‘𝑘) = (Atoms‘𝐾))
2 ishlat.a . . . . . 6 𝐴 = (Atoms‘𝐾)
31, 2eqtr4di 2789 . . . . 5 (𝑘 = 𝐾 → (Atoms‘𝑘) = 𝐴)
4 fveq2 6881 . . . . . . . . . . . 12 (𝑘 = 𝐾 → (le‘𝑘) = (le‘𝐾))
5 ishlat.l . . . . . . . . . . . 12 = (le‘𝐾)
64, 5eqtr4di 2789 . . . . . . . . . . 11 (𝑘 = 𝐾 → (le‘𝑘) = )
76breqd 5135 . . . . . . . . . 10 (𝑘 = 𝐾 → (𝑧(le‘𝑘)(𝑥(join‘𝑘)𝑦) ↔ 𝑧 (𝑥(join‘𝑘)𝑦)))
8 fveq2 6881 . . . . . . . . . . . . 13 (𝑘 = 𝐾 → (join‘𝑘) = (join‘𝐾))
9 ishlat.j . . . . . . . . . . . . 13 = (join‘𝐾)
108, 9eqtr4di 2789 . . . . . . . . . . . 12 (𝑘 = 𝐾 → (join‘𝑘) = )
1110oveqd 7427 . . . . . . . . . . 11 (𝑘 = 𝐾 → (𝑥(join‘𝑘)𝑦) = (𝑥 𝑦))
1211breq2d 5136 . . . . . . . . . 10 (𝑘 = 𝐾 → (𝑧 (𝑥(join‘𝑘)𝑦) ↔ 𝑧 (𝑥 𝑦)))
137, 12bitrd 279 . . . . . . . . 9 (𝑘 = 𝐾 → (𝑧(le‘𝑘)(𝑥(join‘𝑘)𝑦) ↔ 𝑧 (𝑥 𝑦)))
14133anbi3d 1444 . . . . . . . 8 (𝑘 = 𝐾 → ((𝑧𝑥𝑧𝑦𝑧(le‘𝑘)(𝑥(join‘𝑘)𝑦)) ↔ (𝑧𝑥𝑧𝑦𝑧 (𝑥 𝑦))))
153, 14rexeqbidv 3330 . . . . . . 7 (𝑘 = 𝐾 → (∃𝑧 ∈ (Atoms‘𝑘)(𝑧𝑥𝑧𝑦𝑧(le‘𝑘)(𝑥(join‘𝑘)𝑦)) ↔ ∃𝑧𝐴 (𝑧𝑥𝑧𝑦𝑧 (𝑥 𝑦))))
1615imbi2d 340 . . . . . 6 (𝑘 = 𝐾 → ((𝑥𝑦 → ∃𝑧 ∈ (Atoms‘𝑘)(𝑧𝑥𝑧𝑦𝑧(le‘𝑘)(𝑥(join‘𝑘)𝑦))) ↔ (𝑥𝑦 → ∃𝑧𝐴 (𝑧𝑥𝑧𝑦𝑧 (𝑥 𝑦)))))
173, 16raleqbidv 3329 . . . . 5 (𝑘 = 𝐾 → (∀𝑦 ∈ (Atoms‘𝑘)(𝑥𝑦 → ∃𝑧 ∈ (Atoms‘𝑘)(𝑧𝑥𝑧𝑦𝑧(le‘𝑘)(𝑥(join‘𝑘)𝑦))) ↔ ∀𝑦𝐴 (𝑥𝑦 → ∃𝑧𝐴 (𝑧𝑥𝑧𝑦𝑧 (𝑥 𝑦)))))
183, 17raleqbidv 3329 . . . 4 (𝑘 = 𝐾 → (∀𝑥 ∈ (Atoms‘𝑘)∀𝑦 ∈ (Atoms‘𝑘)(𝑥𝑦 → ∃𝑧 ∈ (Atoms‘𝑘)(𝑧𝑥𝑧𝑦𝑧(le‘𝑘)(𝑥(join‘𝑘)𝑦))) ↔ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → ∃𝑧𝐴 (𝑧𝑥𝑧𝑦𝑧 (𝑥 𝑦)))))
19 fveq2 6881 . . . . . 6 (𝑘 = 𝐾 → (Base‘𝑘) = (Base‘𝐾))
20 ishlat.b . . . . . 6 𝐵 = (Base‘𝐾)
2119, 20eqtr4di 2789 . . . . 5 (𝑘 = 𝐾 → (Base‘𝑘) = 𝐵)
22 fveq2 6881 . . . . . . . . . . . 12 (𝑘 = 𝐾 → (lt‘𝑘) = (lt‘𝐾))
23 ishlat.s . . . . . . . . . . . 12 < = (lt‘𝐾)
2422, 23eqtr4di 2789 . . . . . . . . . . 11 (𝑘 = 𝐾 → (lt‘𝑘) = < )
2524breqd 5135 . . . . . . . . . 10 (𝑘 = 𝐾 → ((0.‘𝑘)(lt‘𝑘)𝑥 ↔ (0.‘𝑘) < 𝑥))
26 fveq2 6881 . . . . . . . . . . . 12 (𝑘 = 𝐾 → (0.‘𝑘) = (0.‘𝐾))
27 ishlat.z . . . . . . . . . . . 12 0 = (0.‘𝐾)
2826, 27eqtr4di 2789 . . . . . . . . . . 11 (𝑘 = 𝐾 → (0.‘𝑘) = 0 )
2928breq1d 5134 . . . . . . . . . 10 (𝑘 = 𝐾 → ((0.‘𝑘) < 𝑥0 < 𝑥))
3025, 29bitrd 279 . . . . . . . . 9 (𝑘 = 𝐾 → ((0.‘𝑘)(lt‘𝑘)𝑥0 < 𝑥))
3124breqd 5135 . . . . . . . . 9 (𝑘 = 𝐾 → (𝑥(lt‘𝑘)𝑦𝑥 < 𝑦))
3230, 31anbi12d 632 . . . . . . . 8 (𝑘 = 𝐾 → (((0.‘𝑘)(lt‘𝑘)𝑥𝑥(lt‘𝑘)𝑦) ↔ ( 0 < 𝑥𝑥 < 𝑦)))
3324breqd 5135 . . . . . . . . 9 (𝑘 = 𝐾 → (𝑦(lt‘𝑘)𝑧𝑦 < 𝑧))
3424breqd 5135 . . . . . . . . . 10 (𝑘 = 𝐾 → (𝑧(lt‘𝑘)(1.‘𝑘) ↔ 𝑧 < (1.‘𝑘)))
35 fveq2 6881 . . . . . . . . . . . 12 (𝑘 = 𝐾 → (1.‘𝑘) = (1.‘𝐾))
36 ishlat.u . . . . . . . . . . . 12 1 = (1.‘𝐾)
3735, 36eqtr4di 2789 . . . . . . . . . . 11 (𝑘 = 𝐾 → (1.‘𝑘) = 1 )
3837breq2d 5136 . . . . . . . . . 10 (𝑘 = 𝐾 → (𝑧 < (1.‘𝑘) ↔ 𝑧 < 1 ))
3934, 38bitrd 279 . . . . . . . . 9 (𝑘 = 𝐾 → (𝑧(lt‘𝑘)(1.‘𝑘) ↔ 𝑧 < 1 ))
4033, 39anbi12d 632 . . . . . . . 8 (𝑘 = 𝐾 → ((𝑦(lt‘𝑘)𝑧𝑧(lt‘𝑘)(1.‘𝑘)) ↔ (𝑦 < 𝑧𝑧 < 1 )))
4132, 40anbi12d 632 . . . . . . 7 (𝑘 = 𝐾 → ((((0.‘𝑘)(lt‘𝑘)𝑥𝑥(lt‘𝑘)𝑦) ∧ (𝑦(lt‘𝑘)𝑧𝑧(lt‘𝑘)(1.‘𝑘))) ↔ (( 0 < 𝑥𝑥 < 𝑦) ∧ (𝑦 < 𝑧𝑧 < 1 ))))
4221, 41rexeqbidv 3330 . . . . . 6 (𝑘 = 𝐾 → (∃𝑧 ∈ (Base‘𝑘)(((0.‘𝑘)(lt‘𝑘)𝑥𝑥(lt‘𝑘)𝑦) ∧ (𝑦(lt‘𝑘)𝑧𝑧(lt‘𝑘)(1.‘𝑘))) ↔ ∃𝑧𝐵 (( 0 < 𝑥𝑥 < 𝑦) ∧ (𝑦 < 𝑧𝑧 < 1 ))))
4321, 42rexeqbidv 3330 . . . . 5 (𝑘 = 𝐾 → (∃𝑦 ∈ (Base‘𝑘)∃𝑧 ∈ (Base‘𝑘)(((0.‘𝑘)(lt‘𝑘)𝑥𝑥(lt‘𝑘)𝑦) ∧ (𝑦(lt‘𝑘)𝑧𝑧(lt‘𝑘)(1.‘𝑘))) ↔ ∃𝑦𝐵𝑧𝐵 (( 0 < 𝑥𝑥 < 𝑦) ∧ (𝑦 < 𝑧𝑧 < 1 ))))
4421, 43rexeqbidv 3330 . . . 4 (𝑘 = 𝐾 → (∃𝑥 ∈ (Base‘𝑘)∃𝑦 ∈ (Base‘𝑘)∃𝑧 ∈ (Base‘𝑘)(((0.‘𝑘)(lt‘𝑘)𝑥𝑥(lt‘𝑘)𝑦) ∧ (𝑦(lt‘𝑘)𝑧𝑧(lt‘𝑘)(1.‘𝑘))) ↔ ∃𝑥𝐵𝑦𝐵𝑧𝐵 (( 0 < 𝑥𝑥 < 𝑦) ∧ (𝑦 < 𝑧𝑧 < 1 ))))
4518, 44anbi12d 632 . . 3 (𝑘 = 𝐾 → ((∀𝑥 ∈ (Atoms‘𝑘)∀𝑦 ∈ (Atoms‘𝑘)(𝑥𝑦 → ∃𝑧 ∈ (Atoms‘𝑘)(𝑧𝑥𝑧𝑦𝑧(le‘𝑘)(𝑥(join‘𝑘)𝑦))) ∧ ∃𝑥 ∈ (Base‘𝑘)∃𝑦 ∈ (Base‘𝑘)∃𝑧 ∈ (Base‘𝑘)(((0.‘𝑘)(lt‘𝑘)𝑥𝑥(lt‘𝑘)𝑦) ∧ (𝑦(lt‘𝑘)𝑧𝑧(lt‘𝑘)(1.‘𝑘)))) ↔ (∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → ∃𝑧𝐴 (𝑧𝑥𝑧𝑦𝑧 (𝑥 𝑦))) ∧ ∃𝑥𝐵𝑦𝐵𝑧𝐵 (( 0 < 𝑥𝑥 < 𝑦) ∧ (𝑦 < 𝑧𝑧 < 1 )))))
46 df-hlat 39374 . . 3 HL = {𝑘 ∈ ((OML ∩ CLat) ∩ CvLat) ∣ (∀𝑥 ∈ (Atoms‘𝑘)∀𝑦 ∈ (Atoms‘𝑘)(𝑥𝑦 → ∃𝑧 ∈ (Atoms‘𝑘)(𝑧𝑥𝑧𝑦𝑧(le‘𝑘)(𝑥(join‘𝑘)𝑦))) ∧ ∃𝑥 ∈ (Base‘𝑘)∃𝑦 ∈ (Base‘𝑘)∃𝑧 ∈ (Base‘𝑘)(((0.‘𝑘)(lt‘𝑘)𝑥𝑥(lt‘𝑘)𝑦) ∧ (𝑦(lt‘𝑘)𝑧𝑧(lt‘𝑘)(1.‘𝑘))))}
4745, 46elrab2 3679 . 2 (𝐾 ∈ HL ↔ (𝐾 ∈ ((OML ∩ CLat) ∩ CvLat) ∧ (∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → ∃𝑧𝐴 (𝑧𝑥𝑧𝑦𝑧 (𝑥 𝑦))) ∧ ∃𝑥𝐵𝑦𝐵𝑧𝐵 (( 0 < 𝑥𝑥 < 𝑦) ∧ (𝑦 < 𝑧𝑧 < 1 )))))
48 elin 3947 . . . . 5 (𝐾 ∈ (OML ∩ CLat) ↔ (𝐾 ∈ OML ∧ 𝐾 ∈ CLat))
4948anbi1i 624 . . . 4 ((𝐾 ∈ (OML ∩ CLat) ∧ 𝐾 ∈ CvLat) ↔ ((𝐾 ∈ OML ∧ 𝐾 ∈ CLat) ∧ 𝐾 ∈ CvLat))
50 elin 3947 . . . 4 (𝐾 ∈ ((OML ∩ CLat) ∩ CvLat) ↔ (𝐾 ∈ (OML ∩ CLat) ∧ 𝐾 ∈ CvLat))
51 df-3an 1088 . . . 4 ((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ↔ ((𝐾 ∈ OML ∧ 𝐾 ∈ CLat) ∧ 𝐾 ∈ CvLat))
5249, 50, 513bitr4ri 304 . . 3 ((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ↔ 𝐾 ∈ ((OML ∩ CLat) ∩ CvLat))
5352anbi1i 624 . 2 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ (∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → ∃𝑧𝐴 (𝑧𝑥𝑧𝑦𝑧 (𝑥 𝑦))) ∧ ∃𝑥𝐵𝑦𝐵𝑧𝐵 (( 0 < 𝑥𝑥 < 𝑦) ∧ (𝑦 < 𝑧𝑧 < 1 )))) ↔ (𝐾 ∈ ((OML ∩ CLat) ∩ CvLat) ∧ (∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → ∃𝑧𝐴 (𝑧𝑥𝑧𝑦𝑧 (𝑥 𝑦))) ∧ ∃𝑥𝐵𝑦𝐵𝑧𝐵 (( 0 < 𝑥𝑥 < 𝑦) ∧ (𝑦 < 𝑧𝑧 < 1 )))))
5447, 53bitr4i 278 1 (𝐾 ∈ HL ↔ ((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ (∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → ∃𝑧𝐴 (𝑧𝑥𝑧𝑦𝑧 (𝑥 𝑦))) ∧ ∃𝑥𝐵𝑦𝐵𝑧𝐵 (( 0 < 𝑥𝑥 < 𝑦) ∧ (𝑦 < 𝑧𝑧 < 1 )))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2933  wral 3052  wrex 3061  cin 3930   class class class wbr 5124  cfv 6536  (class class class)co 7410  Basecbs 17233  lecple 17283  ltcplt 18325  joincjn 18328  0.cp0 18438  1.cp1 18439  CLatccla 18513  OMLcoml 39198  Atomscatm 39286  CvLatclc 39288  HLchlt 39373
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-iota 6489  df-fv 6544  df-ov 7413  df-hlat 39374
This theorem is referenced by:  ishlat2  39376  ishlat3N  39377  hlomcmcv  39379
  Copyright terms: Public domain W3C validator