| Metamath
Proof Explorer Theorem List (p. 386 of 497) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30845) |
(30846-32368) |
(32369-49617) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | cnvrefrelcoss2 38501 | Necessary and sufficient condition for a coset relation to be a converse reflexive relation. (Contributed by Peter Mazsa, 27-Jul-2021.) |
| ⊢ ( CnvRefRel ≀ 𝑅 ↔ ≀ 𝑅 ⊆ I ) | ||
| Theorem | cosselcnvrefrels2 38502 | Necessary and sufficient condition for a coset relation to be an element of the converse reflexive relation class. (Contributed by Peter Mazsa, 25-Aug-2021.) |
| ⊢ ( ≀ 𝑅 ∈ CnvRefRels ↔ ( ≀ 𝑅 ⊆ I ∧ ≀ 𝑅 ∈ Rels )) | ||
| Theorem | cosselcnvrefrels3 38503* | Necessary and sufficient condition for a coset relation to be an element of the converse reflexive relation class. (Contributed by Peter Mazsa, 30-Aug-2021.) |
| ⊢ ( ≀ 𝑅 ∈ CnvRefRels ↔ (∀𝑢∀𝑥∀𝑦((𝑢𝑅𝑥 ∧ 𝑢𝑅𝑦) → 𝑥 = 𝑦) ∧ ≀ 𝑅 ∈ Rels )) | ||
| Theorem | cosselcnvrefrels4 38504* | Necessary and sufficient condition for a coset relation to be an element of the converse reflexive relation class. (Contributed by Peter Mazsa, 31-Aug-2021.) |
| ⊢ ( ≀ 𝑅 ∈ CnvRefRels ↔ (∀𝑢∃*𝑥 𝑢𝑅𝑥 ∧ ≀ 𝑅 ∈ Rels )) | ||
| Theorem | cosselcnvrefrels5 38505* | Necessary and sufficient condition for a coset relation to be an element of the converse reflexive relation class. (Contributed by Peter Mazsa, 5-Sep-2021.) |
| ⊢ ( ≀ 𝑅 ∈ CnvRefRels ↔ (∀𝑥 ∈ ran 𝑅∀𝑦 ∈ ran 𝑅(𝑥 = 𝑦 ∨ ([𝑥]◡𝑅 ∩ [𝑦]◡𝑅) = ∅) ∧ ≀ 𝑅 ∈ Rels )) | ||
| Definition | df-syms 38506 |
Define the class of all symmetric sets. It is used only by df-symrels 38507.
Note the similarity of Definitions df-refs 38474, df-syms 38506 and df-trs 38536, cf. the comment of dfrefrels2 38477. (Contributed by Peter Mazsa, 19-Jul-2019.) |
| ⊢ Syms = {𝑥 ∣ ◡(𝑥 ∩ (dom 𝑥 × ran 𝑥)) S (𝑥 ∩ (dom 𝑥 × ran 𝑥))} | ||
| Definition | df-symrels 38507 |
Define the class of symmetric relations. For sets, being an element of
the class of symmetric relations is equivalent to satisfying the symmetric
relation predicate, see elsymrelsrel 38521. Alternate definitions are
dfsymrels2 38509, dfsymrels3 38510, dfsymrels4 38511 and dfsymrels5 38512.
This definition is similar to the definitions of the classes of reflexive (df-refrels 38475) and transitive (df-trrels 38537) relations. (Contributed by Peter Mazsa, 7-Jul-2019.) |
| ⊢ SymRels = ( Syms ∩ Rels ) | ||
| Definition | df-symrel 38508 | Define the symmetric relation predicate. (Read: 𝑅 is a symmetric relation.) For sets, being an element of the class of symmetric relations (df-symrels 38507) is equivalent to satisfying the symmetric relation predicate, see elsymrelsrel 38521. Alternate definitions are dfsymrel2 38513 and dfsymrel3 38514. (Contributed by Peter Mazsa, 16-Jul-2021.) |
| ⊢ ( SymRel 𝑅 ↔ (◡(𝑅 ∩ (dom 𝑅 × ran 𝑅)) ⊆ (𝑅 ∩ (dom 𝑅 × ran 𝑅)) ∧ Rel 𝑅)) | ||
| Theorem | dfsymrels2 38509 | Alternate definition of the class of symmetric relations. Cf. the comment of dfrefrels2 38477. (Contributed by Peter Mazsa, 20-Jul-2019.) |
| ⊢ SymRels = {𝑟 ∈ Rels ∣ ◡𝑟 ⊆ 𝑟} | ||
| Theorem | dfsymrels3 38510* | Alternate definition of the class of symmetric relations. (Contributed by Peter Mazsa, 22-Jul-2021.) |
| ⊢ SymRels = {𝑟 ∈ Rels ∣ ∀𝑥∀𝑦(𝑥𝑟𝑦 → 𝑦𝑟𝑥)} | ||
| Theorem | dfsymrels4 38511 | Alternate definition of the class of symmetric relations. (Contributed by Peter Mazsa, 20-Jul-2019.) |
| ⊢ SymRels = {𝑟 ∈ Rels ∣ ◡𝑟 = 𝑟} | ||
| Theorem | dfsymrels5 38512* | Alternate definition of the class of symmetric relations. (Contributed by Peter Mazsa, 22-Jul-2021.) |
| ⊢ SymRels = {𝑟 ∈ Rels ∣ ∀𝑥∀𝑦(𝑥𝑟𝑦 ↔ 𝑦𝑟𝑥)} | ||
| Theorem | dfsymrel2 38513 | Alternate definition of the symmetric relation predicate. (Contributed by Peter Mazsa, 19-Apr-2019.) (Revised by Peter Mazsa, 17-Aug-2021.) |
| ⊢ ( SymRel 𝑅 ↔ (◡𝑅 ⊆ 𝑅 ∧ Rel 𝑅)) | ||
| Theorem | dfsymrel3 38514* | Alternate definition of the symmetric relation predicate. (Contributed by Peter Mazsa, 21-Apr-2019.) (Revised by Peter Mazsa, 17-Aug-2021.) |
| ⊢ ( SymRel 𝑅 ↔ (∀𝑥∀𝑦(𝑥𝑅𝑦 → 𝑦𝑅𝑥) ∧ Rel 𝑅)) | ||
| Theorem | dfsymrel4 38515 | Alternate definition of the symmetric relation predicate. (Contributed by Peter Mazsa, 17-Aug-2021.) |
| ⊢ ( SymRel 𝑅 ↔ (◡𝑅 = 𝑅 ∧ Rel 𝑅)) | ||
| Theorem | dfsymrel5 38516* | Alternate definition of the symmetric relation predicate. (Contributed by Peter Mazsa, 17-Aug-2021.) |
| ⊢ ( SymRel 𝑅 ↔ (∀𝑥∀𝑦(𝑥𝑅𝑦 ↔ 𝑦𝑅𝑥) ∧ Rel 𝑅)) | ||
| Theorem | elsymrels2 38517 | Element of the class of symmetric relations. (Contributed by Peter Mazsa, 17-Aug-2021.) |
| ⊢ (𝑅 ∈ SymRels ↔ (◡𝑅 ⊆ 𝑅 ∧ 𝑅 ∈ Rels )) | ||
| Theorem | elsymrels3 38518* | Element of the class of symmetric relations. (Contributed by Peter Mazsa, 17-Aug-2021.) |
| ⊢ (𝑅 ∈ SymRels ↔ (∀𝑥∀𝑦(𝑥𝑅𝑦 → 𝑦𝑅𝑥) ∧ 𝑅 ∈ Rels )) | ||
| Theorem | elsymrels4 38519 | Element of the class of symmetric relations. (Contributed by Peter Mazsa, 17-Aug-2021.) |
| ⊢ (𝑅 ∈ SymRels ↔ (◡𝑅 = 𝑅 ∧ 𝑅 ∈ Rels )) | ||
| Theorem | elsymrels5 38520* | Element of the class of symmetric relations. (Contributed by Peter Mazsa, 17-Aug-2021.) |
| ⊢ (𝑅 ∈ SymRels ↔ (∀𝑥∀𝑦(𝑥𝑅𝑦 ↔ 𝑦𝑅𝑥) ∧ 𝑅 ∈ Rels )) | ||
| Theorem | elsymrelsrel 38521 | For sets, being an element of the class of symmetric relations (df-symrels 38507) is equivalent to satisfying the symmetric relation predicate. (Contributed by Peter Mazsa, 17-Aug-2021.) |
| ⊢ (𝑅 ∈ 𝑉 → (𝑅 ∈ SymRels ↔ SymRel 𝑅)) | ||
| Theorem | symreleq 38522 | Equality theorem for symmetric relation. (Contributed by Peter Mazsa, 15-Apr-2019.) (Revised by Peter Mazsa, 23-Sep-2021.) |
| ⊢ (𝑅 = 𝑆 → ( SymRel 𝑅 ↔ SymRel 𝑆)) | ||
| Theorem | symrelim 38523 | Symmetric relation implies that the domain and the range are equal. (Contributed by Peter Mazsa, 29-Dec-2021.) |
| ⊢ ( SymRel 𝑅 → dom 𝑅 = ran 𝑅) | ||
| Theorem | symrelcoss 38524 | The class of cosets by 𝑅 is symmetric. (Contributed by Peter Mazsa, 20-Dec-2021.) |
| ⊢ SymRel ≀ 𝑅 | ||
| Theorem | idsymrel 38525 | The identity relation is symmetric. (Contributed by AV, 19-Jun-2022.) |
| ⊢ SymRel I | ||
| Theorem | epnsymrel 38526 | The membership (epsilon) relation is not symmetric. (Contributed by AV, 18-Jun-2022.) |
| ⊢ ¬ SymRel E | ||
| Theorem | symrefref2 38527 | Symmetry is a sufficient condition for the equivalence of two versions of the reflexive relation, see also symrefref3 38528. (Contributed by Peter Mazsa, 19-Jul-2018.) |
| ⊢ (◡𝑅 ⊆ 𝑅 → (( I ∩ (dom 𝑅 × ran 𝑅)) ⊆ 𝑅 ↔ ( I ↾ dom 𝑅) ⊆ 𝑅)) | ||
| Theorem | symrefref3 38528* | Symmetry is a sufficient condition for the equivalence of two versions of the reflexive relation, see also symrefref2 38527. (Contributed by Peter Mazsa, 23-Aug-2021.) (Proof modification is discouraged.) |
| ⊢ (∀𝑥∀𝑦(𝑥𝑅𝑦 → 𝑦𝑅𝑥) → (∀𝑥 ∈ dom 𝑅∀𝑦 ∈ ran 𝑅(𝑥 = 𝑦 → 𝑥𝑅𝑦) ↔ ∀𝑥 ∈ dom 𝑅 𝑥𝑅𝑥)) | ||
| Theorem | refsymrels2 38529 | Elements of the class of reflexive relations which are elements of the class of symmetric relations as well (like the elements of the class of equivalence relations dfeqvrels2 38552) can use the restricted version for their reflexive part (see below), not just the ( I ∩ (dom 𝑟 × ran 𝑟)) ⊆ 𝑟 version of dfrefrels2 38477, cf. the comment of dfrefrels2 38477. (Contributed by Peter Mazsa, 20-Jul-2019.) |
| ⊢ ( RefRels ∩ SymRels ) = {𝑟 ∈ Rels ∣ (( I ↾ dom 𝑟) ⊆ 𝑟 ∧ ◡𝑟 ⊆ 𝑟)} | ||
| Theorem | refsymrels3 38530* | Elements of the class of reflexive relations which are elements of the class of symmetric relations as well (like the elements of the class of equivalence relations dfeqvrels3 38553) can use the ∀𝑥 ∈ dom 𝑟𝑥𝑟𝑥 version for their reflexive part, not just the ∀𝑥 ∈ dom 𝑟∀𝑦 ∈ ran 𝑟(𝑥 = 𝑦 → 𝑥𝑟𝑦) version of dfrefrels3 38478, cf. the comment of dfrefrel3 38480. (Contributed by Peter Mazsa, 22-Jul-2019.) (Proof modification is discouraged.) |
| ⊢ ( RefRels ∩ SymRels ) = {𝑟 ∈ Rels ∣ (∀𝑥 ∈ dom 𝑟 𝑥𝑟𝑥 ∧ ∀𝑥∀𝑦(𝑥𝑟𝑦 → 𝑦𝑟𝑥))} | ||
| Theorem | refsymrel2 38531 | A relation which is reflexive and symmetric (like an equivalence relation) can use the restricted version for their reflexive part (see below), not just the ( I ∩ (dom 𝑅 × ran 𝑅)) ⊆ 𝑅 version of dfrefrel2 38479, cf. the comment of dfrefrels2 38477. (Contributed by Peter Mazsa, 23-Aug-2021.) |
| ⊢ (( RefRel 𝑅 ∧ SymRel 𝑅) ↔ ((( I ↾ dom 𝑅) ⊆ 𝑅 ∧ ◡𝑅 ⊆ 𝑅) ∧ Rel 𝑅)) | ||
| Theorem | refsymrel3 38532* | A relation which is reflexive and symmetric (like an equivalence relation) can use the ∀𝑥 ∈ dom 𝑅𝑥𝑅𝑥 version for its reflexive part, not just the ∀𝑥 ∈ dom 𝑅∀𝑦 ∈ ran 𝑅(𝑥 = 𝑦 → 𝑥𝑅𝑦) version of dfrefrel3 38480, cf. the comment of dfrefrel3 38480. (Contributed by Peter Mazsa, 23-Aug-2021.) |
| ⊢ (( RefRel 𝑅 ∧ SymRel 𝑅) ↔ ((∀𝑥 ∈ dom 𝑅 𝑥𝑅𝑥 ∧ ∀𝑥∀𝑦(𝑥𝑅𝑦 → 𝑦𝑅𝑥)) ∧ Rel 𝑅)) | ||
| Theorem | elrefsymrels2 38533 | Elements of the class of reflexive relations which are elements of the class of symmetric relations as well (like the elements of the class of equivalence relations dfeqvrels2 38552) can use the restricted version for their reflexive part (see below), not just the ( I ∩ (dom 𝑅 × ran 𝑅)) ⊆ 𝑅 version of dfrefrels2 38477, cf. the comment of dfrefrels2 38477. (Contributed by Peter Mazsa, 22-Jul-2019.) |
| ⊢ (𝑅 ∈ ( RefRels ∩ SymRels ) ↔ ((( I ↾ dom 𝑅) ⊆ 𝑅 ∧ ◡𝑅 ⊆ 𝑅) ∧ 𝑅 ∈ Rels )) | ||
| Theorem | elrefsymrels3 38534* | Elements of the class of reflexive relations which are elements of the class of symmetric relations as well (like the elements of the class of equivalence relations dfeqvrels3 38553) can use the ∀𝑥 ∈ dom 𝑅𝑥𝑅𝑥 version for their reflexive part, not just the ∀𝑥 ∈ dom 𝑅∀𝑦 ∈ ran 𝑅(𝑥 = 𝑦 → 𝑥𝑅𝑦) version of dfrefrels3 38478, cf. the comment of dfrefrel3 38480. (Contributed by Peter Mazsa, 22-Jul-2019.) (Proof modification is discouraged.) |
| ⊢ (𝑅 ∈ ( RefRels ∩ SymRels ) ↔ ((∀𝑥 ∈ dom 𝑅 𝑥𝑅𝑥 ∧ ∀𝑥∀𝑦(𝑥𝑅𝑦 → 𝑦𝑅𝑥)) ∧ 𝑅 ∈ Rels )) | ||
| Theorem | elrefsymrelsrel 38535 | For sets, being an element of the class of reflexive and symmetric relations is equivalent to satisfying the reflexive and symmetric relation predicates. (Contributed by Peter Mazsa, 23-Aug-2021.) |
| ⊢ (𝑅 ∈ 𝑉 → (𝑅 ∈ ( RefRels ∩ SymRels ) ↔ ( RefRel 𝑅 ∧ SymRel 𝑅))) | ||
| Definition | df-trs 38536 |
Define the class of all transitive sets (versus the transitive class
defined in df-tr 5230). It is used only by df-trrels 38537.
Note the similarity of the definitions of df-refs 38474, df-syms 38506 and df-trs 38536. (Contributed by Peter Mazsa, 17-Jul-2021.) |
| ⊢ Trs = {𝑥 ∣ ((𝑥 ∩ (dom 𝑥 × ran 𝑥)) ∘ (𝑥 ∩ (dom 𝑥 × ran 𝑥))) S (𝑥 ∩ (dom 𝑥 × ran 𝑥))} | ||
| Definition | df-trrels 38537 |
Define the class of transitive relations. For sets, being an element of
the class of transitive relations is equivalent to satisfying the
transitive relation predicate, see eltrrelsrel 38545. Alternate definitions
are dftrrels2 38539 and dftrrels3 38540.
This definition is similar to the definitions of the classes of reflexive (df-refrels 38475) and symmetric (df-symrels 38507) relations. (Contributed by Peter Mazsa, 7-Jul-2019.) |
| ⊢ TrRels = ( Trs ∩ Rels ) | ||
| Definition | df-trrel 38538 | Define the transitive relation predicate. (Read: 𝑅 is a transitive relation.) For sets, being an element of the class of transitive relations (df-trrels 38537) is equivalent to satisfying the transitive relation predicate, see eltrrelsrel 38545. Alternate definitions are dftrrel2 38541 and dftrrel3 38542. (Contributed by Peter Mazsa, 17-Jul-2021.) |
| ⊢ ( TrRel 𝑅 ↔ (((𝑅 ∩ (dom 𝑅 × ran 𝑅)) ∘ (𝑅 ∩ (dom 𝑅 × ran 𝑅))) ⊆ (𝑅 ∩ (dom 𝑅 × ran 𝑅)) ∧ Rel 𝑅)) | ||
| Theorem | dftrrels2 38539 |
Alternate definition of the class of transitive relations.
I'd prefer to define the class of transitive relations by using the definition of composition by [Suppes] p. 63. df-coSUP (𝐴 ∘ 𝐵) = {〈𝑥, 𝑦〉 ∣ ∃𝑢(𝑥𝐴𝑢 ∧ 𝑢𝐵𝑦)} as opposed to the present definition of composition df-co 5663 (𝐴 ∘ 𝐵) = {〈𝑥, 𝑦〉 ∣ ∃𝑢(𝑥𝐵𝑢 ∧ 𝑢𝐴𝑦)} because the Suppes definition keeps the order of 𝐴, 𝐵, 𝐶, 𝑅, 𝑆, 𝑇 by default in trsinxpSUP (((𝑅 ∩ (𝐴 × 𝐵)) ∘ (𝑆 ∩ (𝐵 × 𝐶))) ⊆ (𝑇 ∩ (𝐴 × 𝐶)) ↔ ∀𝑥 ∈ 𝐴∀𝑦 ∈ 𝐵∀ 𝑧 ∈ 𝐶((𝑥𝑅𝑦 ∧ 𝑦𝑆𝑧) → 𝑥𝑇𝑧)) while the present definition of composition disarranges them: trsinxp (((𝑆 ∩ (𝐵 × 𝐶)) ∘ (𝑅 ∩ (𝐴 × 𝐵))) ⊆ (𝑇 ∩ (𝐴 × 𝐶 )) ↔ ∀𝑥 ∈ 𝐴∀𝑦 ∈ 𝐵∀𝑧 ∈ 𝐶((𝑥𝑅𝑦 ∧ 𝑦𝑆𝑧) → 𝑥𝑇𝑧) ). This is not mission critical to me, the implication of the Suppes definition is just more aesthetic, at least in the above case. If we swap to the Suppes definition of class composition, I would define the present class of all transitive sets as df-trsSUP and I would consider to switch the definition of the class of cosets by 𝑅 from the present df-coss 38375 to a df-cossSUP. But perhaps there is a mathematical reason to keep the present definition of composition. (Contributed by Peter Mazsa, 21-Jul-2021.) |
| ⊢ TrRels = {𝑟 ∈ Rels ∣ (𝑟 ∘ 𝑟) ⊆ 𝑟} | ||
| Theorem | dftrrels3 38540* | Alternate definition of the class of transitive relations. (Contributed by Peter Mazsa, 22-Jul-2021.) |
| ⊢ TrRels = {𝑟 ∈ Rels ∣ ∀𝑥∀𝑦∀𝑧((𝑥𝑟𝑦 ∧ 𝑦𝑟𝑧) → 𝑥𝑟𝑧)} | ||
| Theorem | dftrrel2 38541 | Alternate definition of the transitive relation predicate. (Contributed by Peter Mazsa, 22-Aug-2021.) |
| ⊢ ( TrRel 𝑅 ↔ ((𝑅 ∘ 𝑅) ⊆ 𝑅 ∧ Rel 𝑅)) | ||
| Theorem | dftrrel3 38542* | Alternate definition of the transitive relation predicate. (Contributed by Peter Mazsa, 22-Aug-2021.) |
| ⊢ ( TrRel 𝑅 ↔ (∀𝑥∀𝑦∀𝑧((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧) ∧ Rel 𝑅)) | ||
| Theorem | eltrrels2 38543 | Element of the class of transitive relations. (Contributed by Peter Mazsa, 22-Aug-2021.) |
| ⊢ (𝑅 ∈ TrRels ↔ ((𝑅 ∘ 𝑅) ⊆ 𝑅 ∧ 𝑅 ∈ Rels )) | ||
| Theorem | eltrrels3 38544* | Element of the class of transitive relations. (Contributed by Peter Mazsa, 22-Aug-2021.) |
| ⊢ (𝑅 ∈ TrRels ↔ (∀𝑥∀𝑦∀𝑧((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧) ∧ 𝑅 ∈ Rels )) | ||
| Theorem | eltrrelsrel 38545 | For sets, being an element of the class of transitive relations is equivalent to satisfying the transitive relation predicate. (Contributed by Peter Mazsa, 22-Aug-2021.) |
| ⊢ (𝑅 ∈ 𝑉 → (𝑅 ∈ TrRels ↔ TrRel 𝑅)) | ||
| Theorem | trreleq 38546 | Equality theorem for the transitive relation predicate. (Contributed by Peter Mazsa, 15-Apr-2019.) (Revised by Peter Mazsa, 23-Sep-2021.) |
| ⊢ (𝑅 = 𝑆 → ( TrRel 𝑅 ↔ TrRel 𝑆)) | ||
| Theorem | trrelressn 38547 | Any class ' R ' restricted to the singleton of the class ' A ' (see ressn2 38406) is transitive. (Contributed by Peter Mazsa, 17-Jun-2024.) |
| ⊢ TrRel (𝑅 ↾ {𝐴}) | ||
| Definition | df-eqvrels 38548 | Define the class of equivalence relations. For sets, being an element of the class of equivalence relations is equivalent to satisfying the equivalence relation predicate, see eleqvrelsrel 38558. Alternate definitions are dfeqvrels2 38552 and dfeqvrels3 38553. (Contributed by Peter Mazsa, 7-Nov-2018.) |
| ⊢ EqvRels = (( RefRels ∩ SymRels ) ∩ TrRels ) | ||
| Definition | df-eqvrel 38549 | Define the equivalence relation predicate. (Read: 𝑅 is an equivalence relation.) For sets, being an element of the class of equivalence relations (df-eqvrels 38548) is equivalent to satisfying the equivalence relation predicate, see eleqvrelsrel 38558. Alternate definitions are dfeqvrel2 38554 and dfeqvrel3 38555. (Contributed by Peter Mazsa, 17-Apr-2019.) |
| ⊢ ( EqvRel 𝑅 ↔ ( RefRel 𝑅 ∧ SymRel 𝑅 ∧ TrRel 𝑅)) | ||
| Definition | df-coeleqvrels 38550 | Define the coelement equivalence relations class, the class of sets with coelement equivalence relations. For sets, being an element of the class of coelement equivalence relations is equivalent to satisfying the coelement equivalence relation predicate, see elcoeleqvrelsrel 38560. Alternate definition is dfcoeleqvrels 38585. (Contributed by Peter Mazsa, 28-Nov-2022.) |
| ⊢ CoElEqvRels = {𝑎 ∣ ≀ (◡ E ↾ 𝑎) ∈ EqvRels } | ||
| Definition | df-coeleqvrel 38551 | Define the coelement equivalence relation predicate. (Read: the coelement equivalence relation on 𝐴.) Alternate definition is dfcoeleqvrel 38586. For sets, being an element of the class of coelement equivalence relations is equivalent to satisfying the coelement equivalence relation predicate, see elcoeleqvrelsrel 38560. (Contributed by Peter Mazsa, 11-Dec-2021.) |
| ⊢ ( CoElEqvRel 𝐴 ↔ EqvRel ≀ (◡ E ↾ 𝐴)) | ||
| Theorem | dfeqvrels2 38552 | Alternate definition of the class of equivalence relations. (Contributed by Peter Mazsa, 2-Dec-2019.) |
| ⊢ EqvRels = {𝑟 ∈ Rels ∣ (( I ↾ dom 𝑟) ⊆ 𝑟 ∧ ◡𝑟 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟)} | ||
| Theorem | dfeqvrels3 38553* | Alternate definition of the class of equivalence relations. (Contributed by Peter Mazsa, 2-Dec-2019.) |
| ⊢ EqvRels = {𝑟 ∈ Rels ∣ (∀𝑥 ∈ dom 𝑟 𝑥𝑟𝑥 ∧ ∀𝑥∀𝑦(𝑥𝑟𝑦 → 𝑦𝑟𝑥) ∧ ∀𝑥∀𝑦∀𝑧((𝑥𝑟𝑦 ∧ 𝑦𝑟𝑧) → 𝑥𝑟𝑧))} | ||
| Theorem | dfeqvrel2 38554 | Alternate definition of the equivalence relation predicate. (Contributed by Peter Mazsa, 22-Apr-2019.) |
| ⊢ ( EqvRel 𝑅 ↔ ((( I ↾ dom 𝑅) ⊆ 𝑅 ∧ ◡𝑅 ⊆ 𝑅 ∧ (𝑅 ∘ 𝑅) ⊆ 𝑅) ∧ Rel 𝑅)) | ||
| Theorem | dfeqvrel3 38555* | Alternate definition of the equivalence relation predicate. (Contributed by Peter Mazsa, 22-Apr-2019.) |
| ⊢ ( EqvRel 𝑅 ↔ ((∀𝑥 ∈ dom 𝑅 𝑥𝑅𝑥 ∧ ∀𝑥∀𝑦(𝑥𝑅𝑦 → 𝑦𝑅𝑥) ∧ ∀𝑥∀𝑦∀𝑧((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧)) ∧ Rel 𝑅)) | ||
| Theorem | eleqvrels2 38556 | Element of the class of equivalence relations. (Contributed by Peter Mazsa, 24-Aug-2021.) |
| ⊢ (𝑅 ∈ EqvRels ↔ ((( I ↾ dom 𝑅) ⊆ 𝑅 ∧ ◡𝑅 ⊆ 𝑅 ∧ (𝑅 ∘ 𝑅) ⊆ 𝑅) ∧ 𝑅 ∈ Rels )) | ||
| Theorem | eleqvrels3 38557* | Element of the class of equivalence relations. (Contributed by Peter Mazsa, 24-Aug-2021.) |
| ⊢ (𝑅 ∈ EqvRels ↔ ((∀𝑥 ∈ dom 𝑅 𝑥𝑅𝑥 ∧ ∀𝑥∀𝑦(𝑥𝑅𝑦 → 𝑦𝑅𝑥) ∧ ∀𝑥∀𝑦∀𝑧((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧)) ∧ 𝑅 ∈ Rels )) | ||
| Theorem | eleqvrelsrel 38558 | For sets, being an element of the class of equivalence relations is equivalent to satisfying the equivalence relation predicate. (Contributed by Peter Mazsa, 24-Aug-2021.) |
| ⊢ (𝑅 ∈ 𝑉 → (𝑅 ∈ EqvRels ↔ EqvRel 𝑅)) | ||
| Theorem | elcoeleqvrels 38559 | Elementhood in the coelement equivalence relations class. (Contributed by Peter Mazsa, 24-Jul-2023.) |
| ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ CoElEqvRels ↔ ≀ (◡ E ↾ 𝐴) ∈ EqvRels )) | ||
| Theorem | elcoeleqvrelsrel 38560 | For sets, being an element of the class of coelement equivalence relations is equivalent to satisfying the coelement equivalence relation predicate. (Contributed by Peter Mazsa, 24-Jul-2023.) |
| ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ CoElEqvRels ↔ CoElEqvRel 𝐴)) | ||
| Theorem | eqvrelrel 38561 | An equivalence relation is a relation. (Contributed by Peter Mazsa, 2-Jun-2019.) |
| ⊢ ( EqvRel 𝑅 → Rel 𝑅) | ||
| Theorem | eqvrelrefrel 38562 | An equivalence relation is reflexive. (Contributed by Peter Mazsa, 29-Dec-2021.) |
| ⊢ ( EqvRel 𝑅 → RefRel 𝑅) | ||
| Theorem | eqvrelsymrel 38563 | An equivalence relation is symmetric. (Contributed by Peter Mazsa, 29-Dec-2021.) |
| ⊢ ( EqvRel 𝑅 → SymRel 𝑅) | ||
| Theorem | eqvreltrrel 38564 | An equivalence relation is transitive. (Contributed by Peter Mazsa, 29-Dec-2021.) |
| ⊢ ( EqvRel 𝑅 → TrRel 𝑅) | ||
| Theorem | eqvrelim 38565 | Equivalence relation implies that the domain and the range are equal. (Contributed by Peter Mazsa, 29-Dec-2021.) |
| ⊢ ( EqvRel 𝑅 → dom 𝑅 = ran 𝑅) | ||
| Theorem | eqvreleq 38566 | Equality theorem for equivalence relation. (Contributed by Peter Mazsa, 19-Apr-2020.) (Revised by Peter Mazsa, 23-Sep-2021.) |
| ⊢ (𝑅 = 𝑆 → ( EqvRel 𝑅 ↔ EqvRel 𝑆)) | ||
| Theorem | eqvreleqi 38567 | Equality theorem for equivalence relation, inference version. (Contributed by Peter Mazsa, 23-Sep-2021.) |
| ⊢ 𝑅 = 𝑆 ⇒ ⊢ ( EqvRel 𝑅 ↔ EqvRel 𝑆) | ||
| Theorem | eqvreleqd 38568 | Equality theorem for equivalence relation, deduction version. (Contributed by Peter Mazsa, 23-Sep-2021.) |
| ⊢ (𝜑 → 𝑅 = 𝑆) ⇒ ⊢ (𝜑 → ( EqvRel 𝑅 ↔ EqvRel 𝑆)) | ||
| Theorem | eqvrelsym 38569 | An equivalence relation is symmetric. (Contributed by NM, 4-Jun-1995.) (Revised by Mario Carneiro, 12-Aug-2015.) (Revised by Peter Mazsa, 2-Jun-2019.) |
| ⊢ (𝜑 → EqvRel 𝑅) & ⊢ (𝜑 → 𝐴𝑅𝐵) ⇒ ⊢ (𝜑 → 𝐵𝑅𝐴) | ||
| Theorem | eqvrelsymb 38570 | An equivalence relation is symmetric. (Contributed by NM, 30-Jul-1995.) (Revised by Mario Carneiro, 12-Aug-2015.) (Revised and distinct variable conditions removed by Peter Mazsa, 2-Jun-2019.) |
| ⊢ (𝜑 → EqvRel 𝑅) ⇒ ⊢ (𝜑 → (𝐴𝑅𝐵 ↔ 𝐵𝑅𝐴)) | ||
| Theorem | eqvreltr 38571 | An equivalence relation is transitive. (Contributed by NM, 4-Jun-1995.) (Revised by Mario Carneiro, 12-Aug-2015.) (Revised by Peter Mazsa, 2-Jun-2019.) |
| ⊢ (𝜑 → EqvRel 𝑅) ⇒ ⊢ (𝜑 → ((𝐴𝑅𝐵 ∧ 𝐵𝑅𝐶) → 𝐴𝑅𝐶)) | ||
| Theorem | eqvreltrd 38572 | A transitivity relation for equivalences. (Contributed by Mario Carneiro, 9-Jul-2014.) (Revised by Peter Mazsa, 2-Jun-2019.) |
| ⊢ (𝜑 → EqvRel 𝑅) & ⊢ (𝜑 → 𝐴𝑅𝐵) & ⊢ (𝜑 → 𝐵𝑅𝐶) ⇒ ⊢ (𝜑 → 𝐴𝑅𝐶) | ||
| Theorem | eqvreltr4d 38573 | A transitivity relation for equivalences. (Contributed by Mario Carneiro, 9-Jul-2014.) (Revised by Peter Mazsa, 2-Jun-2019.) |
| ⊢ (𝜑 → EqvRel 𝑅) & ⊢ (𝜑 → 𝐴𝑅𝐵) & ⊢ (𝜑 → 𝐶𝑅𝐵) ⇒ ⊢ (𝜑 → 𝐴𝑅𝐶) | ||
| Theorem | eqvrelref 38574 | An equivalence relation is reflexive on its field. Compare Theorem 3M of [Enderton] p. 56. (Contributed by Mario Carneiro, 6-May-2013.) (Revised by Mario Carneiro, 12-Aug-2015.) (Revised by Peter Mazsa, 2-Jun-2019.) |
| ⊢ (𝜑 → EqvRel 𝑅) & ⊢ (𝜑 → 𝐴 ∈ dom 𝑅) ⇒ ⊢ (𝜑 → 𝐴𝑅𝐴) | ||
| Theorem | eqvrelth 38575 | Basic property of equivalence relations. Theorem 73 of [Suppes] p. 82. (Contributed by NM, 23-Jul-1995.) (Revised by Mario Carneiro, 6-Jul-2015.) (Revised by Peter Mazsa, 2-Jun-2019.) |
| ⊢ (𝜑 → EqvRel 𝑅) & ⊢ (𝜑 → 𝐴 ∈ dom 𝑅) ⇒ ⊢ (𝜑 → (𝐴𝑅𝐵 ↔ [𝐴]𝑅 = [𝐵]𝑅)) | ||
| Theorem | eqvrelcl 38576 | Elementhood in the field of an equivalence relation. (Contributed by Mario Carneiro, 12-Aug-2015.) (Revised by Peter Mazsa, 2-Jun-2019.) |
| ⊢ (𝜑 → EqvRel 𝑅) & ⊢ (𝜑 → 𝐴𝑅𝐵) ⇒ ⊢ (𝜑 → 𝐴 ∈ dom 𝑅) | ||
| Theorem | eqvrelthi 38577 | Basic property of equivalence relations. Part of Lemma 3N of [Enderton] p. 57. (Contributed by NM, 30-Jul-1995.) (Revised by Mario Carneiro, 9-Jul-2014.) (Revised by Peter Mazsa, 2-Jun-2019.) |
| ⊢ (𝜑 → EqvRel 𝑅) & ⊢ (𝜑 → 𝐴𝑅𝐵) ⇒ ⊢ (𝜑 → [𝐴]𝑅 = [𝐵]𝑅) | ||
| Theorem | eqvreldisj 38578 | Equivalence classes do not overlap. In other words, two equivalence classes are either equal or disjoint. Theorem 74 of [Suppes] p. 83. (Contributed by NM, 15-Jun-2004.) (Revised by Mario Carneiro, 9-Jul-2014.) (Revised by Peter Mazsa, 2-Jun-2019.) |
| ⊢ ( EqvRel 𝑅 → ([𝐴]𝑅 = [𝐵]𝑅 ∨ ([𝐴]𝑅 ∩ [𝐵]𝑅) = ∅)) | ||
| Theorem | qsdisjALTV 38579 | Elements of a quotient set do not overlap. (Contributed by Rodolfo Medina, 12-Oct-2010.) (Revised by Mario Carneiro, 11-Jul-2014.) (Revised by Peter Mazsa, 3-Jun-2019.) |
| ⊢ (𝜑 → EqvRel 𝑅) & ⊢ (𝜑 → 𝐵 ∈ (𝐴 / 𝑅)) & ⊢ (𝜑 → 𝐶 ∈ (𝐴 / 𝑅)) ⇒ ⊢ (𝜑 → (𝐵 = 𝐶 ∨ (𝐵 ∩ 𝐶) = ∅)) | ||
| Theorem | eqvrelqsel 38580 | If an element of a quotient set contains a given element, it is equal to the equivalence class of the element. (Contributed by Mario Carneiro, 12-Aug-2015.) (Revised by Peter Mazsa, 28-Dec-2019.) |
| ⊢ (( EqvRel 𝑅 ∧ 𝐵 ∈ (𝐴 / 𝑅) ∧ 𝐶 ∈ 𝐵) → 𝐵 = [𝐶]𝑅) | ||
| Theorem | eqvrelcoss 38581 | Two ways to express equivalent cosets. (Contributed by Peter Mazsa, 4-Jul-2020.) (Revised by Peter Mazsa, 20-Dec-2021.) |
| ⊢ ( EqvRel ≀ 𝑅 ↔ TrRel ≀ 𝑅) | ||
| Theorem | eqvrelcoss3 38582* | Two ways to express equivalent cosets. (Contributed by Peter Mazsa, 28-Apr-2019.) |
| ⊢ ( EqvRel ≀ 𝑅 ↔ ∀𝑥∀𝑦∀𝑧((𝑥 ≀ 𝑅𝑦 ∧ 𝑦 ≀ 𝑅𝑧) → 𝑥 ≀ 𝑅𝑧)) | ||
| Theorem | eqvrelcoss2 38583 | Two ways to express equivalent cosets. (Contributed by Peter Mazsa, 3-May-2019.) |
| ⊢ ( EqvRel ≀ 𝑅 ↔ ≀ ≀ 𝑅 ⊆ ≀ 𝑅) | ||
| Theorem | eqvrelcoss4 38584* | Two ways to express equivalent cosets. (Contributed by Peter Mazsa, 3-May-2019.) (Revised by Peter Mazsa, 30-Sep-2021.) |
| ⊢ ( EqvRel ≀ 𝑅 ↔ ∀𝑥∀𝑧(([𝑥] ≀ 𝑅 ∩ [𝑧] ≀ 𝑅) ≠ ∅ → ([𝑥]◡𝑅 ∩ [𝑧]◡𝑅) ≠ ∅)) | ||
| Theorem | dfcoeleqvrels 38585 | Alternate definition of the coelement equivalence relations class. Other alternate definitions should be based on eqvrelcoss2 38583, eqvrelcoss3 38582 and eqvrelcoss4 38584 when needed. (Contributed by Peter Mazsa, 28-Nov-2022.) |
| ⊢ CoElEqvRels = {𝑎 ∣ ∼ 𝑎 ∈ EqvRels } | ||
| Theorem | dfcoeleqvrel 38586 | Alternate definition of the coelement equivalence relation predicate: a coelement equivalence relation is an equivalence relation on coelements. Other alternate definitions should be based on eqvrelcoss2 38583, eqvrelcoss3 38582 and eqvrelcoss4 38584 when needed. (Contributed by Peter Mazsa, 28-Nov-2022.) |
| ⊢ ( CoElEqvRel 𝐴 ↔ EqvRel ∼ 𝐴) | ||
| Definition | df-redunds 38587* | Define the class of all redundant sets 𝑥 with respect to 𝑦 in 𝑧. For sets, binary relation on the class of all redundant sets (brredunds 38590) is equivalent to satisfying the redundancy predicate (df-redund 38588). (Contributed by Peter Mazsa, 23-Oct-2022.) |
| ⊢ Redunds = ◡{〈〈𝑦, 𝑧〉, 𝑥〉 ∣ (𝑥 ⊆ 𝑦 ∧ (𝑥 ∩ 𝑧) = (𝑦 ∩ 𝑧))} | ||
| Definition | df-redund 38588 | Define the redundancy predicate. Read: 𝐴 is redundant with respect to 𝐵 in 𝐶. For sets, binary relation on the class of all redundant sets (brredunds 38590) is equivalent to satisfying the redundancy predicate. (Contributed by Peter Mazsa, 23-Oct-2022.) |
| ⊢ (𝐴 Redund 〈𝐵, 𝐶〉 ↔ (𝐴 ⊆ 𝐵 ∧ (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐶))) | ||
| Definition | df-redundp 38589 | Define the redundancy operator for propositions, cf. df-redund 38588. (Contributed by Peter Mazsa, 23-Oct-2022.) |
| ⊢ ( redund (𝜑, 𝜓, 𝜒) ↔ ((𝜑 → 𝜓) ∧ ((𝜑 ∧ 𝜒) ↔ (𝜓 ∧ 𝜒)))) | ||
| Theorem | brredunds 38590 | Binary relation on the class of all redundant sets. (Contributed by Peter Mazsa, 25-Oct-2022.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → (𝐴 Redunds 〈𝐵, 𝐶〉 ↔ (𝐴 ⊆ 𝐵 ∧ (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐶)))) | ||
| Theorem | brredundsredund 38591 | For sets, binary relation on the class of all redundant sets (brredunds 38590) is equivalent to satisfying the redundancy predicate (df-redund 38588). (Contributed by Peter Mazsa, 25-Oct-2022.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → (𝐴 Redunds 〈𝐵, 𝐶〉 ↔ 𝐴 Redund 〈𝐵, 𝐶〉)) | ||
| Theorem | redundss3 38592 | Implication of redundancy predicate. (Contributed by Peter Mazsa, 26-Oct-2022.) |
| ⊢ 𝐷 ⊆ 𝐶 ⇒ ⊢ (𝐴 Redund 〈𝐵, 𝐶〉 → 𝐴 Redund 〈𝐵, 𝐷〉) | ||
| Theorem | redundeq1 38593 | Equivalence of redundancy predicates. (Contributed by Peter Mazsa, 26-Oct-2022.) |
| ⊢ 𝐴 = 𝐷 ⇒ ⊢ (𝐴 Redund 〈𝐵, 𝐶〉 ↔ 𝐷 Redund 〈𝐵, 𝐶〉) | ||
| Theorem | redundpim3 38594 | Implication of redundancy of proposition. (Contributed by Peter Mazsa, 26-Oct-2022.) |
| ⊢ (𝜃 → 𝜒) ⇒ ⊢ ( redund (𝜑, 𝜓, 𝜒) → redund (𝜑, 𝜓, 𝜃)) | ||
| Theorem | redundpbi1 38595 | Equivalence of redundancy of propositions. (Contributed by Peter Mazsa, 25-Oct-2022.) |
| ⊢ (𝜑 ↔ 𝜃) ⇒ ⊢ ( redund (𝜑, 𝜓, 𝜒) ↔ redund (𝜃, 𝜓, 𝜒)) | ||
| Theorem | refrelsredund4 38596 | The naive version of the class of reflexive relations is redundant with respect to the class of reflexive relations (see dfrefrels2 38477) if the relations are symmetric as well. (Contributed by Peter Mazsa, 26-Oct-2022.) |
| ⊢ {𝑟 ∈ Rels ∣ ( I ↾ dom 𝑟) ⊆ 𝑟} Redund 〈 RefRels , ( RefRels ∩ SymRels )〉 | ||
| Theorem | refrelsredund2 38597 | The naive version of the class of reflexive relations is redundant with respect to the class of reflexive relations (see dfrefrels2 38477) in the class of equivalence relations. (Contributed by Peter Mazsa, 26-Oct-2022.) |
| ⊢ {𝑟 ∈ Rels ∣ ( I ↾ dom 𝑟) ⊆ 𝑟} Redund 〈 RefRels , EqvRels 〉 | ||
| Theorem | refrelsredund3 38598* | The naive version of the class of reflexive relations {𝑟 ∈ Rels ∣ ∀𝑥 ∈ dom 𝑟𝑥𝑟𝑥} is redundant with respect to the class of reflexive relations (see dfrefrels3 38478) in the class of equivalence relations. (Contributed by Peter Mazsa, 26-Oct-2022.) |
| ⊢ {𝑟 ∈ Rels ∣ ∀𝑥 ∈ dom 𝑟 𝑥𝑟𝑥} Redund 〈 RefRels , EqvRels 〉 | ||
| Theorem | refrelredund4 38599 | The naive version of the definition of reflexive relation is redundant with respect to reflexive relation (see dfrefrel2 38479) if the relation is symmetric as well. (Contributed by Peter Mazsa, 26-Oct-2022.) |
| ⊢ redund ((( I ↾ dom 𝑅) ⊆ 𝑅 ∧ Rel 𝑅), RefRel 𝑅, ( RefRel 𝑅 ∧ SymRel 𝑅)) | ||
| Theorem | refrelredund2 38600 | The naive version of the definition of reflexive relation is redundant with respect to reflexive relation (see dfrefrel2 38479) in equivalence relation. (Contributed by Peter Mazsa, 25-Oct-2022.) |
| ⊢ redund ((( I ↾ dom 𝑅) ⊆ 𝑅 ∧ Rel 𝑅), RefRel 𝑅, EqvRel 𝑅) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |