| Metamath
Proof Explorer Theorem List (p. 386 of 500) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30900) |
(30901-32423) |
(32424-49930) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | dmsucmap 38501 | The domain of the successor map is the universe. (Contributed by Peter Mazsa, 7-Jan-2026.) |
| ⊢ dom SucMap = V | ||
| Definition | df-succl 38502 | Define Suc as the class of all successors, i.e. the range of the successor map: 𝑛 ∈ Suc iff ∃𝑚suc 𝑚 = 𝑛 (see dfsuccl2 38503). By injectivity of suc (suc11reg 9516), every 𝑛 ∈ Suc has at most one predecessor, which is exactly what pre 𝑛 (df-pre 38508) names. Cf. dfsuccl3 38506 and dfsuccl4 38507. (Contributed by Peter Mazsa, 25-Jan-2026.) |
| ⊢ Suc = ran SucMap | ||
| Theorem | dfsuccl2 38503* | Alternate definition of the class of all successors. (Contributed by Peter Mazsa, 29-Jan-2026.) |
| ⊢ Suc = {𝑛 ∣ ∃𝑚 suc 𝑚 = 𝑛} | ||
| Theorem | mopre 38504* | There is at most one predecessor of 𝑁. (Contributed by Peter Mazsa, 12-Jan-2026.) |
| ⊢ ∃*𝑚 suc 𝑚 = 𝑁 | ||
| Theorem | exeupre2 38505* | Whenever a predecessor exists, it exists alone. (Contributed by Peter Mazsa, 12-Jan-2026.) |
| ⊢ (∃𝑚 suc 𝑚 = 𝑁 ↔ ∃!𝑚 suc 𝑚 = 𝑁) | ||
| Theorem | dfsuccl3 38506* | Alternate definition of the class of all successors. (Contributed by Peter Mazsa, 30-Jan-2026.) |
| ⊢ Suc = {𝑛 ∣ ∃!𝑚 suc 𝑚 = 𝑛} | ||
| Theorem | dfsuccl4 38507* | Alternate definition that incorporates the most desirable properties of the successor class. (Contributed by Peter Mazsa, 30-Jan-2026.) |
| ⊢ Suc = {𝑛 ∣ ∃!𝑚 ∈ 𝑛 (𝑚 ⊆ 𝑛 ∧ suc 𝑚 = 𝑛)} | ||
| Definition | df-pre 38508* |
Define the term-level successor-predecessor. It is the unique 𝑚
with suc 𝑚 = 𝑁 when such an 𝑚 exists; otherwise pre 𝑁 is
the
arbitrary default chosen by ℩. See its
alternate definitions
dfpre 38509, dfpre2 38510, dfpre3 38511 and dfpre4 38513.
Our definition is a special case of the widely recognised general 𝑅 -predecessor class df-pred 6253 (the class of all elements 𝑚 of 𝐴 such that 𝑚𝑅𝑁, dfpred3g 6265, cf. also df-bnj14 34722) in several respects. Its most abstract property as a specialisation is that it has a unique existing value by default. This is in contrast to the general version. The uniqueness (conditional on existence) is implied by the property of this specific instance of the general case involving the successor map df-sucmap 38495 in place of 𝑅, so that 𝑚 SucMap 𝑁, cf. sucmapleftuniq 38522, which originates from suc11reg 9516. Existence ∃𝑚𝑚 SucMap 𝑁 holds exactly on 𝑁 ∈ ran SucMap, cf. elrng 5835. Note that dom SucMap = V (see dmsucmap 38501), so the equivalent definition dfpre 38509 uses (℩𝑚𝑚 ∈ Pred( SucMap , V, 𝑁)). (Contributed by Peter Mazsa, 27-Jan-2026.) |
| ⊢ pre 𝑁 = (℩𝑚𝑚 ∈ Pred( SucMap , dom SucMap , 𝑁)) | ||
| Theorem | dfpre 38509* | Alternate definition of the successor-predecessor. (Contributed by Peter Mazsa, 27-Jan-2026.) |
| ⊢ pre 𝑁 = (℩𝑚𝑚 ∈ Pred( SucMap , V, 𝑁)) | ||
| Theorem | dfpre2 38510* | Alternate definition of the successor-predecessor. (Contributed by Peter Mazsa, 12-Jan-2026.) |
| ⊢ (𝑁 ∈ 𝑉 → pre 𝑁 = (℩𝑚𝑚 SucMap 𝑁)) | ||
| Theorem | dfpre3 38511* | Alternate definition of the successor-predecessor. (Contributed by Peter Mazsa, 12-Jan-2026.) |
| ⊢ (𝑁 ∈ 𝑉 → pre 𝑁 = (℩𝑚 suc 𝑚 = 𝑁)) | ||
| Theorem | dfpred4 38512 | Alternate definition of the predecessor class when 𝑁 is a set. (Contributed by Peter Mazsa, 26-Jan-2026.) |
| ⊢ (𝑁 ∈ 𝑉 → Pred(𝑅, 𝐴, 𝑁) = [𝑁]◡(𝑅 ↾ 𝐴)) | ||
| Theorem | dfpre4 38513* | Alternate definition of the predecessor of the 𝑁 set. The ◡ SucMap is just the "PreMap"; we did not define it because we do not expect to use it extensively in future (cf. the comments of df-sucmap 38495). (Contributed by Peter Mazsa, 26-Jan-2026.) |
| ⊢ (𝑁 ∈ 𝑉 → pre 𝑁 = (℩𝑚𝑚 ∈ [𝑁]◡ SucMap )) | ||
| Definition | df-blockliftfix 38514* |
Define the equilibrium / fixed-point condition for "block carriers".
Start with a candidate block-family 𝑎 (a set whose elements you intend to treat as blocks). Combine it with a relation 𝑟 by forming the block-lift span 𝑇 = (𝑟 ⋉ (◡ E ↾ 𝑎)). For a block 𝑢 ∈ 𝑎, the fiber [𝑢]𝑇 is the set of all outputs produced from "external targets" of 𝑟 together with "internal members" of 𝑢; in other words, 𝑇 is the mechanism that generates new blocks from old ones. Now apply the standard quotient construction (dom 𝑇 / 𝑇). This produces the family of all T-blocks (the cosets [𝑥]𝑇 of witnesses 𝑥 in the domain of 𝑇). In general, this operation can change your carrier: starting from 𝑎, it may generate a different block-family (dom 𝑇 / 𝑇). The equation (dom (𝑟 ⋉ (◡ E ↾ 𝑎)) / (𝑟 ⋉ (◡ E ↾ 𝑎))) = 𝑎 says exactly: if you generate blocks from 𝑎 using the lift determined by 𝑟 (cf. df-blockliftmap 38493), you get back the same 𝑎. So 𝑎 is stable under the block-generation operator induced by 𝑟. This is why it is a genuine fixpoint/equilibrium condition: one application of the "make-the-blocks" operator causes no carrier drift, i.e. no hidden refinement/coarsening of what counts as a block. Here, we generate this from the df-blockliftmap 38493, taking the range of the two sides, resulting in (dom (𝑟 ⋉ (◡ E ↾ 𝑎)) / (𝑟 ⋉ (◡ E ↾ 𝑎))) (via dfqs2 42355), which you can define as "( R BlockLift A )" . In that case, you can define BlockLiftFix as "{ <. r , a >. | ( r BlockLift a ) = a }", or typed as "{ <. r , a >. | ( r e. Rels /\ ( r BlockLift a ) = a ) }". This is a relation-typed equilibrium predicate. Restricting it to 𝑟 ∈ Rels (see the explicit restriction in the alternate definition dfblockliftfix2 38756) prevents representation junk (which may contain non-ordered-pair 𝑟 that would not affect the predicate 𝑥𝑟𝑦, because that predicate only looks at ordered pairs) and makes the module composable with later Rels-based infrastructure; sethood of the quotient does not require it in itself. (Contributed by Peter Mazsa, 25-Jan-2026.) |
| ⊢ BlockLiftFix = {〈𝑟, 𝑎〉 ∣ (𝑟 ∈ Rels ∧ (dom (𝑟 ⋉ (◡ E ↾ 𝑎)) / (𝑟 ⋉ (◡ E ↾ 𝑎))) = 𝑎)} | ||
| Definition | df-shiftstable 38515 |
Define shift-stability, a general "procedure" pattern for "the
one-step
backward shift/transport of 𝐹 along 𝑆", and then ∩ 𝐹
enforces "and it already holds here".
Let 𝐹 be a relation encoding a property that depends on a "level" coordinate (for example, a feasibility condition indexed by a carrier, a grade, or a stage in a construction). Let 𝑆 be a shift relation between levels (for example, the successor map SucMap, or any other grading step). The composed relation (𝑆 ∘ 𝐹) transports 𝐹 one step along the shift: 𝑟(𝑆 ∘ 𝐹)𝑛 means there exists a predecessor level 𝑚 such that 𝑟𝐹𝑚 and 𝑚𝑆𝑛 (e.g., 𝑚 SucMap 𝑛). We do not introduce a separate notation for "Shift" because it is simply the standard relational composition df-co 5628. The intersection ((𝑆 ∘ 𝐹) ∩ 𝐹) is the locally shift-stable fragment of 𝐹: it consists exactly of those points where the property holds at some immediate predecessor that shifts to 𝑛 and also holds at level 𝑛. In other words, it isolates the part of 𝐹 that is already compatible with one-step tower coherence. This definition packages a common construction pattern used throughout the development: "constrain by one-step stability under a chosen shift, then additionally constrain by 𝐹". Iterating the operator (𝑋 ↦ ((𝑆 ∘ 𝑋) ∩ 𝑋) corresponds to multi-step/tower coherence; the one-step definition here is the economical kernel from which such "tower" readings can be developed when needed. (Contributed by Peter Mazsa, 25-Jan-2026.) |
| ⊢ (𝑆 ShiftStable 𝐹) = ((𝑆 ∘ 𝐹) ∩ 𝐹) | ||
| Theorem | suceqsneq 38516 | One-to-one relationship between the successor operation and the singleton. (Contributed by Peter Mazsa, 31-Dec-2024.) |
| ⊢ (𝐴 ∈ 𝑉 → (suc 𝐴 = suc 𝐵 ↔ {𝐴} = {𝐵})) | ||
| Theorem | sucdifsn2 38517 | Absorption of union with a singleton by difference. (Contributed by Peter Mazsa, 24-Jul-2024.) |
| ⊢ ((𝐴 ∪ {𝐴}) ∖ {𝐴}) = 𝐴 | ||
| Theorem | sucdifsn 38518 | The difference between the successor and the singleton of a class is the class. (Contributed by Peter Mazsa, 20-Sep-2024.) |
| ⊢ (suc 𝐴 ∖ {𝐴}) = 𝐴 | ||
| Theorem | ressucdifsn2 38519 | The difference between restrictions to the successor and the singleton of a class is the restriction to the class, see ressucdifsn 38520. (Contributed by Peter Mazsa, 24-Jul-2024.) |
| ⊢ ((𝑅 ↾ (𝐴 ∪ {𝐴})) ∖ (𝑅 ↾ {𝐴})) = (𝑅 ↾ 𝐴) | ||
| Theorem | ressucdifsn 38520 | The difference between restrictions to the successor and the singleton of a class is the restriction to the class. (Contributed by Peter Mazsa, 20-Sep-2024.) |
| ⊢ ((𝑅 ↾ suc 𝐴) ∖ (𝑅 ↾ {𝐴})) = (𝑅 ↾ 𝐴) | ||
| Theorem | sucmapsuc 38521 | A set is succeeded by its successor. (Contributed by Peter Mazsa, 7-Jan-2026.) |
| ⊢ (𝑀 ∈ 𝑉 → 𝑀 SucMap suc 𝑀) | ||
| Theorem | sucmapleftuniq 38522 | Left uniqueness of the successor mapping. (Contributed by Peter Mazsa, 8-Jan-2026.) |
| ⊢ ((𝐿 ∈ 𝑉 ∧ 𝑀 ∈ 𝑊 ∧ 𝑁 ∈ 𝑋) → ((𝐿 SucMap 𝑁 ∧ 𝑀 SucMap 𝑁) → 𝐿 = 𝑀)) | ||
| Theorem | exeupre 38523* | Whenever a predecessor exists, it exists alone. (Contributed by Peter Mazsa, 12-Jan-2026.) |
| ⊢ (𝑁 ∈ 𝑉 → (∃𝑚 𝑚 SucMap 𝑁 ↔ ∃!𝑚 𝑚 SucMap 𝑁)) | ||
| Theorem | preex 38524 | The successor-predecessor exists. (Contributed by Peter Mazsa, 12-Jan-2026.) |
| ⊢ pre 𝑁 ∈ V | ||
| Theorem | eupre2 38525* | Unique predecessor exists on the range of the successor map. (Contributed by Peter Mazsa, 12-Jan-2026.) |
| ⊢ (𝑁 ∈ 𝑉 → (𝑁 ∈ ran SucMap ↔ ∃!𝑚 𝑚 SucMap 𝑁)) | ||
| Theorem | eupre 38526* | Unique predecessor exists on the successor class. (Contributed by Peter Mazsa, 27-Jan-2026.) |
| ⊢ (𝑁 ∈ 𝑉 → (𝑁 ∈ Suc ↔ ∃!𝑚 𝑚 SucMap 𝑁)) | ||
| Theorem | presucmap 38527 | pre is really a predecessor (when it should be). This correctness theorem for pre makes it usable in proofs without unfolding ℩. This theorem gives one witness; preuniqval 38528 gives it is the only one. (Contributed by Peter Mazsa, 12-Jan-2026.) |
| ⊢ (𝑁 ∈ ran SucMap → pre 𝑁 SucMap 𝑁) | ||
| Theorem | preuniqval 38528* | Uniqueness/canonicity of pre. presucmap 38527 gives one witness; this theorem gives it is the only one. It turns any predecessor proof into an equality with pre 𝑁. (Contributed by Peter Mazsa, 12-Jan-2026.) |
| ⊢ (𝑁 ∈ ran SucMap → ∀𝑚(𝑚 SucMap 𝑁 → 𝑚 = pre 𝑁)) | ||
| Theorem | sucpre 38529 | suc is a right-inverse of pre on Suc. This theorem states the partial inverse relation in the direction we most often need. (Contributed by Peter Mazsa, 27-Jan-2026.) |
| ⊢ (𝑁 ∈ Suc → suc pre 𝑁 = 𝑁) | ||
| Theorem | presuc 38530 | pre is a left-inverse of suc. This theorem gives a clean rewrite rule that eliminates pre on explicit successors. (Contributed by Peter Mazsa, 12-Jan-2026.) |
| ⊢ (𝑀 ∈ 𝑉 → pre suc 𝑀 = 𝑀) | ||
| Theorem | press 38531 | Predecessor is a subset of its successor. (Contributed by Peter Mazsa, 12-Jan-2026.) |
| ⊢ (𝑁 ∈ Suc → pre 𝑁 ⊆ 𝑁) | ||
| Theorem | preel 38532 | Predecessor is a subset of its successor. (Contributed by Peter Mazsa, 12-Jan-2026.) |
| ⊢ (𝑁 ∈ Suc → pre 𝑁 ∈ 𝑁) | ||
| Definition | df-coss 38533* |
Define the class of cosets by 𝑅: 𝑥 and 𝑦 are cosets by
𝑅 iff there exists a set 𝑢 such
that both 𝑢𝑅𝑥 and
𝑢𝑅𝑦 hold, i.e., both 𝑥 and
𝑦
are are elements of the 𝑅
-coset of 𝑢 (see dfcoss2 38535 and the comment of dfec2 8631). 𝑅 is
usually a relation.
This concept simplifies theorems relating partition and equivalence: the left side of these theorems relate to 𝑅, the right side relate to ≀ 𝑅 (see e.g. pet 38969). Without the definition of ≀ 𝑅 we should have to relate the right side of these theorems to a composition of a converse (cf. dfcoss3 38536) or to the range of a range Cartesian product of classes (cf. dfcoss4 38537), which would make the theorems complicated and confusing. Alternate definition is dfcoss2 38535. Technically, we can define it via composition (dfcoss3 38536) or as the range of a range Cartesian product (dfcoss4 38537), but neither of these definitions reveal directly how the cosets by 𝑅 relate to each other. We define functions (df-funsALTV 38799, df-funALTV 38800) and disjoints (dfdisjs 38826, dfdisjs2 38827, df-disjALTV 38823, dfdisjALTV2 38832) with the help of it as well. (Contributed by Peter Mazsa, 9-Jan-2018.) |
| ⊢ ≀ 𝑅 = {〈𝑥, 𝑦〉 ∣ ∃𝑢(𝑢𝑅𝑥 ∧ 𝑢𝑅𝑦)} | ||
| Definition | df-coels 38534 | Define the class of coelements on the class 𝐴, see also the alternate definition dfcoels 38552. Possible definitions are the special cases of dfcoss3 38536 and dfcoss4 38537. (Contributed by Peter Mazsa, 20-Nov-2019.) |
| ⊢ ∼ 𝐴 = ≀ (◡ E ↾ 𝐴) | ||
| Theorem | dfcoss2 38535* | Alternate definition of the class of cosets by 𝑅: 𝑥 and 𝑦 are cosets by 𝑅 iff there exists a set 𝑢 such that both 𝑥 and 𝑦 are are elements of the 𝑅-coset of 𝑢 (see also the comment of dfec2 8631). 𝑅 is usually a relation. (Contributed by Peter Mazsa, 16-Jan-2018.) |
| ⊢ ≀ 𝑅 = {〈𝑥, 𝑦〉 ∣ ∃𝑢(𝑥 ∈ [𝑢]𝑅 ∧ 𝑦 ∈ [𝑢]𝑅)} | ||
| Theorem | dfcoss3 38536 | Alternate definition of the class of cosets by 𝑅 (see the comment of df-coss 38533). (Contributed by Peter Mazsa, 27-Dec-2018.) |
| ⊢ ≀ 𝑅 = (𝑅 ∘ ◡𝑅) | ||
| Theorem | dfcoss4 38537 | Alternate definition of the class of cosets by 𝑅 (see the comment of df-coss 38533). (Contributed by Peter Mazsa, 12-Jul-2021.) |
| ⊢ ≀ 𝑅 = ran (𝑅 ⋉ 𝑅) | ||
| Theorem | cosscnv 38538* | Class of cosets by the converse of 𝑅 (Contributed by Peter Mazsa, 17-Jun-2020.) |
| ⊢ ≀ ◡𝑅 = {〈𝑥, 𝑦〉 ∣ ∃𝑢(𝑥𝑅𝑢 ∧ 𝑦𝑅𝑢)} | ||
| Theorem | coss1cnvres 38539* | Class of cosets by the converse of a restriction. (Contributed by Peter Mazsa, 8-Jun-2020.) |
| ⊢ ≀ ◡(𝑅 ↾ 𝐴) = {〈𝑢, 𝑣〉 ∣ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ ∃𝑥(𝑢𝑅𝑥 ∧ 𝑣𝑅𝑥))} | ||
| Theorem | coss2cnvepres 38540* | Special case of coss1cnvres 38539. (Contributed by Peter Mazsa, 8-Jun-2020.) |
| ⊢ ≀ ◡(◡ E ↾ 𝐴) = {〈𝑢, 𝑣〉 ∣ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ ∃𝑥(𝑥 ∈ 𝑢 ∧ 𝑥 ∈ 𝑣))} | ||
| Theorem | cossex 38541 | If 𝐴 is a set then the class of cosets by 𝐴 is a set. (Contributed by Peter Mazsa, 4-Jan-2019.) |
| ⊢ (𝐴 ∈ 𝑉 → ≀ 𝐴 ∈ V) | ||
| Theorem | cosscnvex 38542 | If 𝐴 is a set then the class of cosets by the converse of 𝐴 is a set. (Contributed by Peter Mazsa, 18-Oct-2019.) |
| ⊢ (𝐴 ∈ 𝑉 → ≀ ◡𝐴 ∈ V) | ||
| Theorem | 1cosscnvepresex 38543 | Sufficient condition for a restricted converse epsilon coset to be a set. (Contributed by Peter Mazsa, 24-Sep-2021.) |
| ⊢ (𝐴 ∈ 𝑉 → ≀ (◡ E ↾ 𝐴) ∈ V) | ||
| Theorem | 1cossxrncnvepresex 38544 | Sufficient condition for a restricted converse epsilon range Cartesian product to be a set. (Contributed by Peter Mazsa, 23-Sep-2021.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → ≀ (𝑅 ⋉ (◡ E ↾ 𝐴)) ∈ V) | ||
| Theorem | relcoss 38545 | Cosets by 𝑅 is a relation. (Contributed by Peter Mazsa, 27-Dec-2018.) |
| ⊢ Rel ≀ 𝑅 | ||
| Theorem | relcoels 38546 | Coelements on 𝐴 is a relation. (Contributed by Peter Mazsa, 5-Oct-2021.) |
| ⊢ Rel ∼ 𝐴 | ||
| Theorem | cossss 38547 | Subclass theorem for the classes of cosets by 𝐴 and 𝐵. (Contributed by Peter Mazsa, 11-Nov-2019.) |
| ⊢ (𝐴 ⊆ 𝐵 → ≀ 𝐴 ⊆ ≀ 𝐵) | ||
| Theorem | cosseq 38548 | Equality theorem for the classes of cosets by 𝐴 and 𝐵. (Contributed by Peter Mazsa, 9-Jan-2018.) |
| ⊢ (𝐴 = 𝐵 → ≀ 𝐴 = ≀ 𝐵) | ||
| Theorem | cosseqi 38549 | Equality theorem for the classes of cosets by 𝐴 and 𝐵, inference form. (Contributed by Peter Mazsa, 9-Jan-2018.) |
| ⊢ 𝐴 = 𝐵 ⇒ ⊢ ≀ 𝐴 = ≀ 𝐵 | ||
| Theorem | cosseqd 38550 | Equality theorem for the classes of cosets by 𝐴 and 𝐵, deduction form. (Contributed by Peter Mazsa, 4-Nov-2019.) |
| ⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → ≀ 𝐴 = ≀ 𝐵) | ||
| Theorem | 1cossres 38551* | The class of cosets by a restriction. (Contributed by Peter Mazsa, 20-Apr-2019.) |
| ⊢ ≀ (𝑅 ↾ 𝐴) = {〈𝑥, 𝑦〉 ∣ ∃𝑢 ∈ 𝐴 (𝑢𝑅𝑥 ∧ 𝑢𝑅𝑦)} | ||
| Theorem | dfcoels 38552* | Alternate definition of the class of coelements on the class 𝐴. (Contributed by Peter Mazsa, 20-Apr-2019.) |
| ⊢ ∼ 𝐴 = {〈𝑥, 𝑦〉 ∣ ∃𝑢 ∈ 𝐴 (𝑥 ∈ 𝑢 ∧ 𝑦 ∈ 𝑢)} | ||
| Theorem | brcoss 38553* | 𝐴 and 𝐵 are cosets by 𝑅: a binary relation. (Contributed by Peter Mazsa, 27-Dec-2018.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ≀ 𝑅𝐵 ↔ ∃𝑢(𝑢𝑅𝐴 ∧ 𝑢𝑅𝐵))) | ||
| Theorem | brcoss2 38554* | Alternate form of the 𝐴 and 𝐵 are cosets by 𝑅 binary relation. (Contributed by Peter Mazsa, 26-Mar-2019.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ≀ 𝑅𝐵 ↔ ∃𝑢(𝐴 ∈ [𝑢]𝑅 ∧ 𝐵 ∈ [𝑢]𝑅))) | ||
| Theorem | brcoss3 38555 | Alternate form of the 𝐴 and 𝐵 are cosets by 𝑅 binary relation. (Contributed by Peter Mazsa, 26-Mar-2019.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ≀ 𝑅𝐵 ↔ ([𝐴]◡𝑅 ∩ [𝐵]◡𝑅) ≠ ∅)) | ||
| Theorem | brcosscnvcoss 38556 | For sets, the 𝐴 and 𝐵 cosets by 𝑅 binary relation and the 𝐵 and 𝐴 cosets by 𝑅 binary relation are the same. (Contributed by Peter Mazsa, 27-Dec-2018.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ≀ 𝑅𝐵 ↔ 𝐵 ≀ 𝑅𝐴)) | ||
| Theorem | brcoels 38557* | 𝐵 and 𝐶 are coelements : a binary relation. (Contributed by Peter Mazsa, 14-Jan-2020.) (Revised by Peter Mazsa, 5-Oct-2021.) |
| ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (𝐵 ∼ 𝐴𝐶 ↔ ∃𝑢 ∈ 𝐴 (𝐵 ∈ 𝑢 ∧ 𝐶 ∈ 𝑢))) | ||
| Theorem | cocossss 38558* | Two ways of saying that cosets by cosets by 𝑅 is a subclass. (Contributed by Peter Mazsa, 17-Sep-2021.) |
| ⊢ ( ≀ ≀ 𝑅 ⊆ 𝑆 ↔ ∀𝑥∀𝑦∀𝑧((𝑥 ≀ 𝑅𝑦 ∧ 𝑦 ≀ 𝑅𝑧) → 𝑥𝑆𝑧)) | ||
| Theorem | cnvcosseq 38559 | The converse of cosets by 𝑅 are cosets by 𝑅. (Contributed by Peter Mazsa, 3-May-2019.) |
| ⊢ ◡ ≀ 𝑅 = ≀ 𝑅 | ||
| Theorem | br2coss 38560 | Cosets by ≀ 𝑅 binary relation. (Contributed by Peter Mazsa, 25-Aug-2019.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ≀ ≀ 𝑅𝐵 ↔ ([𝐴] ≀ 𝑅 ∩ [𝐵] ≀ 𝑅) ≠ ∅)) | ||
| Theorem | br1cossres 38561* | 𝐵 and 𝐶 are cosets by a restriction: a binary relation. (Contributed by Peter Mazsa, 30-Dec-2018.) |
| ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (𝐵 ≀ (𝑅 ↾ 𝐴)𝐶 ↔ ∃𝑢 ∈ 𝐴 (𝑢𝑅𝐵 ∧ 𝑢𝑅𝐶))) | ||
| Theorem | br1cossres2 38562* | 𝐵 and 𝐶 are cosets by a restriction: a binary relation. (Contributed by Peter Mazsa, 3-Jan-2018.) |
| ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (𝐵 ≀ (𝑅 ↾ 𝐴)𝐶 ↔ ∃𝑥 ∈ 𝐴 (𝐵 ∈ [𝑥]𝑅 ∧ 𝐶 ∈ [𝑥]𝑅))) | ||
| Theorem | brressn 38563 | Binary relation on a restriction to a singleton. (Contributed by Peter Mazsa, 11-Jun-2024.) |
| ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (𝐵(𝑅 ↾ {𝐴})𝐶 ↔ (𝐵 = 𝐴 ∧ 𝐵𝑅𝐶))) | ||
| Theorem | ressn2 38564* | A class ' R ' restricted to the singleton of the class ' A ' is the ordered pair class abstraction of the class ' A ' and the sets in relation ' R ' to ' A ' (and not in relation to the singleton ' { A } ' ). (Contributed by Peter Mazsa, 16-Jun-2024.) |
| ⊢ (𝑅 ↾ {𝐴}) = {〈𝑎, 𝑢〉 ∣ (𝑎 = 𝐴 ∧ 𝐴𝑅𝑢)} | ||
| Theorem | refressn 38565* | Any class ' R ' restricted to the singleton of the set ' A ' (see ressn2 38564) is reflexive, see also refrelressn 38636. (Contributed by Peter Mazsa, 12-Jun-2024.) |
| ⊢ (𝐴 ∈ 𝑉 → ∀𝑥 ∈ (dom (𝑅 ↾ {𝐴}) ∩ ran (𝑅 ↾ {𝐴}))𝑥(𝑅 ↾ {𝐴})𝑥) | ||
| Theorem | antisymressn 38566 | Every class ' R ' restricted to the singleton of the class ' A ' (see ressn2 38564) is antisymmetric. (Contributed by Peter Mazsa, 11-Jun-2024.) |
| ⊢ ∀𝑥∀𝑦((𝑥(𝑅 ↾ {𝐴})𝑦 ∧ 𝑦(𝑅 ↾ {𝐴})𝑥) → 𝑥 = 𝑦) | ||
| Theorem | trressn 38567 | Any class ' R ' restricted to the singleton of the class ' A ' (see ressn2 38564) is transitive, see also trrelressn 38699. (Contributed by Peter Mazsa, 16-Jun-2024.) |
| ⊢ ∀𝑥∀𝑦∀𝑧((𝑥(𝑅 ↾ {𝐴})𝑦 ∧ 𝑦(𝑅 ↾ {𝐴})𝑧) → 𝑥(𝑅 ↾ {𝐴})𝑧) | ||
| Theorem | relbrcoss 38568* | 𝐴 and 𝐵 are cosets by relation 𝑅: a binary relation. (Contributed by Peter Mazsa, 22-Apr-2021.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (Rel 𝑅 → (𝐴 ≀ 𝑅𝐵 ↔ ∃𝑥 ∈ dom 𝑅(𝐴 ∈ [𝑥]𝑅 ∧ 𝐵 ∈ [𝑥]𝑅)))) | ||
| Theorem | br1cossinres 38569* | 𝐵 and 𝐶 are cosets by an intersection with a restriction: a binary relation. (Contributed by Peter Mazsa, 31-Dec-2021.) |
| ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (𝐵 ≀ (𝑅 ∩ (𝑆 ↾ 𝐴))𝐶 ↔ ∃𝑢 ∈ 𝐴 ((𝑢𝑆𝐵 ∧ 𝑢𝑅𝐵) ∧ (𝑢𝑆𝐶 ∧ 𝑢𝑅𝐶)))) | ||
| Theorem | br1cossxrnres 38570* | 〈𝐵, 𝐶〉 and 〈𝐷, 𝐸〉 are cosets by an range Cartesian product with a restriction: a binary relation. (Contributed by Peter Mazsa, 8-Jun-2021.) |
| ⊢ (((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) ∧ (𝐷 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌)) → (〈𝐵, 𝐶〉 ≀ (𝑅 ⋉ (𝑆 ↾ 𝐴))〈𝐷, 𝐸〉 ↔ ∃𝑢 ∈ 𝐴 ((𝑢𝑆𝐶 ∧ 𝑢𝑅𝐵) ∧ (𝑢𝑆𝐸 ∧ 𝑢𝑅𝐷)))) | ||
| Theorem | br1cossinidres 38571* | 𝐵 and 𝐶 are cosets by an intersection with the restricted identity class: a binary relation. (Contributed by Peter Mazsa, 31-Dec-2021.) |
| ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (𝐵 ≀ (𝑅 ∩ ( I ↾ 𝐴))𝐶 ↔ ∃𝑢 ∈ 𝐴 ((𝑢 = 𝐵 ∧ 𝑢𝑅𝐵) ∧ (𝑢 = 𝐶 ∧ 𝑢𝑅𝐶)))) | ||
| Theorem | br1cossincnvepres 38572* | 𝐵 and 𝐶 are cosets by an intersection with the restricted converse epsilon class: a binary relation. (Contributed by Peter Mazsa, 31-Dec-2021.) |
| ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (𝐵 ≀ (𝑅 ∩ (◡ E ↾ 𝐴))𝐶 ↔ ∃𝑢 ∈ 𝐴 ((𝐵 ∈ 𝑢 ∧ 𝑢𝑅𝐵) ∧ (𝐶 ∈ 𝑢 ∧ 𝑢𝑅𝐶)))) | ||
| Theorem | br1cossxrnidres 38573* | 〈𝐵, 𝐶〉 and 〈𝐷, 𝐸〉 are cosets by a range Cartesian product with the restricted identity class: a binary relation. (Contributed by Peter Mazsa, 8-Jun-2021.) |
| ⊢ (((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) ∧ (𝐷 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌)) → (〈𝐵, 𝐶〉 ≀ (𝑅 ⋉ ( I ↾ 𝐴))〈𝐷, 𝐸〉 ↔ ∃𝑢 ∈ 𝐴 ((𝑢 = 𝐶 ∧ 𝑢𝑅𝐵) ∧ (𝑢 = 𝐸 ∧ 𝑢𝑅𝐷)))) | ||
| Theorem | br1cossxrncnvepres 38574* | 〈𝐵, 𝐶〉 and 〈𝐷, 𝐸〉 are cosets by a range Cartesian product with the restricted converse epsilon class: a binary relation. (Contributed by Peter Mazsa, 12-May-2021.) |
| ⊢ (((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) ∧ (𝐷 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌)) → (〈𝐵, 𝐶〉 ≀ (𝑅 ⋉ (◡ E ↾ 𝐴))〈𝐷, 𝐸〉 ↔ ∃𝑢 ∈ 𝐴 ((𝐶 ∈ 𝑢 ∧ 𝑢𝑅𝐵) ∧ (𝐸 ∈ 𝑢 ∧ 𝑢𝑅𝐷)))) | ||
| Theorem | dmcoss3 38575 | The domain of cosets is the domain of converse. (Contributed by Peter Mazsa, 4-Jan-2019.) |
| ⊢ dom ≀ 𝑅 = dom ◡𝑅 | ||
| Theorem | dmcoss2 38576 | The domain of cosets is the range. (Contributed by Peter Mazsa, 27-Dec-2018.) |
| ⊢ dom ≀ 𝑅 = ran 𝑅 | ||
| Theorem | rncossdmcoss 38577 | The range of cosets is the domain of them (this should be rncoss 5920 but there exists a theorem with this name already). (Contributed by Peter Mazsa, 12-Dec-2019.) |
| ⊢ ran ≀ 𝑅 = dom ≀ 𝑅 | ||
| Theorem | dm1cosscnvepres 38578 | The domain of cosets of the restricted converse epsilon relation is the union of the restriction. (Contributed by Peter Mazsa, 18-May-2019.) (Revised by Peter Mazsa, 26-Sep-2021.) |
| ⊢ dom ≀ (◡ E ↾ 𝐴) = ∪ 𝐴 | ||
| Theorem | dmcoels 38579 | The domain of coelements in 𝐴 is the union of 𝐴. (Contributed by Rodolfo Medina, 14-Oct-2010.) (Revised by Peter Mazsa, 5-Apr-2018.) (Revised by Peter Mazsa, 26-Sep-2021.) |
| ⊢ dom ∼ 𝐴 = ∪ 𝐴 | ||
| Theorem | eldmcoss 38580* | Elementhood in the domain of cosets. (Contributed by Peter Mazsa, 29-Mar-2019.) |
| ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ dom ≀ 𝑅 ↔ ∃𝑢 𝑢𝑅𝐴)) | ||
| Theorem | eldmcoss2 38581 | Elementhood in the domain of cosets. (Contributed by Peter Mazsa, 28-Dec-2018.) |
| ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ dom ≀ 𝑅 ↔ 𝐴 ≀ 𝑅𝐴)) | ||
| Theorem | eldm1cossres 38582* | Elementhood in the domain of restricted cosets. (Contributed by Peter Mazsa, 30-Dec-2018.) |
| ⊢ (𝐵 ∈ 𝑉 → (𝐵 ∈ dom ≀ (𝑅 ↾ 𝐴) ↔ ∃𝑢 ∈ 𝐴 𝑢𝑅𝐵)) | ||
| Theorem | eldm1cossres2 38583* | Elementhood in the domain of restricted cosets. (Contributed by Peter Mazsa, 30-Dec-2018.) |
| ⊢ (𝐵 ∈ 𝑉 → (𝐵 ∈ dom ≀ (𝑅 ↾ 𝐴) ↔ ∃𝑥 ∈ 𝐴 𝐵 ∈ [𝑥]𝑅)) | ||
| Theorem | refrelcosslem 38584 | Lemma for the left side of the refrelcoss3 38585 reflexivity theorem. (Contributed by Peter Mazsa, 1-Apr-2019.) |
| ⊢ ∀𝑥 ∈ dom ≀ 𝑅𝑥 ≀ 𝑅𝑥 | ||
| Theorem | refrelcoss3 38585* | The class of cosets by 𝑅 is reflexive, see dfrefrel3 38628. (Contributed by Peter Mazsa, 30-Jul-2019.) |
| ⊢ (∀𝑥 ∈ dom ≀ 𝑅∀𝑦 ∈ ran ≀ 𝑅(𝑥 = 𝑦 → 𝑥 ≀ 𝑅𝑦) ∧ Rel ≀ 𝑅) | ||
| Theorem | refrelcoss2 38586 | The class of cosets by 𝑅 is reflexive, see dfrefrel2 38627. (Contributed by Peter Mazsa, 30-Jul-2019.) |
| ⊢ (( I ∩ (dom ≀ 𝑅 × ran ≀ 𝑅)) ⊆ ≀ 𝑅 ∧ Rel ≀ 𝑅) | ||
| Theorem | symrelcoss3 38587 | The class of cosets by 𝑅 is symmetric, see dfsymrel3 38666. (Contributed by Peter Mazsa, 28-Mar-2019.) (Revised by Peter Mazsa, 17-Sep-2021.) |
| ⊢ (∀𝑥∀𝑦(𝑥 ≀ 𝑅𝑦 → 𝑦 ≀ 𝑅𝑥) ∧ Rel ≀ 𝑅) | ||
| Theorem | symrelcoss2 38588 | The class of cosets by 𝑅 is symmetric, see dfsymrel2 38665. (Contributed by Peter Mazsa, 27-Dec-2018.) |
| ⊢ (◡ ≀ 𝑅 ⊆ ≀ 𝑅 ∧ Rel ≀ 𝑅) | ||
| Theorem | cossssid 38589 | Equivalent expressions for the class of cosets by 𝑅 to be a subset of the identity class. (Contributed by Peter Mazsa, 27-Jul-2021.) |
| ⊢ ( ≀ 𝑅 ⊆ I ↔ ≀ 𝑅 ⊆ ( I ∩ (dom ≀ 𝑅 × ran ≀ 𝑅))) | ||
| Theorem | cossssid2 38590* | Equivalent expressions for the class of cosets by 𝑅 to be a subset of the identity class. (Contributed by Peter Mazsa, 10-Mar-2019.) |
| ⊢ ( ≀ 𝑅 ⊆ I ↔ ∀𝑥∀𝑦(∃𝑢(𝑢𝑅𝑥 ∧ 𝑢𝑅𝑦) → 𝑥 = 𝑦)) | ||
| Theorem | cossssid3 38591* | Equivalent expressions for the class of cosets by 𝑅 to be a subset of the identity class. (Contributed by Peter Mazsa, 10-Mar-2019.) |
| ⊢ ( ≀ 𝑅 ⊆ I ↔ ∀𝑢∀𝑥∀𝑦((𝑢𝑅𝑥 ∧ 𝑢𝑅𝑦) → 𝑥 = 𝑦)) | ||
| Theorem | cossssid4 38592* | Equivalent expressions for the class of cosets by 𝑅 to be a subset of the identity class. (Contributed by Peter Mazsa, 31-Aug-2021.) |
| ⊢ ( ≀ 𝑅 ⊆ I ↔ ∀𝑢∃*𝑥 𝑢𝑅𝑥) | ||
| Theorem | cossssid5 38593* | Equivalent expressions for the class of cosets by 𝑅 to be a subset of the identity class. (Contributed by Peter Mazsa, 5-Sep-2021.) |
| ⊢ ( ≀ 𝑅 ⊆ I ↔ ∀𝑥 ∈ ran 𝑅∀𝑦 ∈ ran 𝑅(𝑥 = 𝑦 ∨ ([𝑥]◡𝑅 ∩ [𝑦]◡𝑅) = ∅)) | ||
| Theorem | brcosscnv 38594* | 𝐴 and 𝐵 are cosets by converse 𝑅: a binary relation. (Contributed by Peter Mazsa, 23-Jan-2019.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ≀ ◡𝑅𝐵 ↔ ∃𝑥(𝐴𝑅𝑥 ∧ 𝐵𝑅𝑥))) | ||
| Theorem | brcosscnv2 38595 | 𝐴 and 𝐵 are cosets by converse 𝑅: a binary relation. (Contributed by Peter Mazsa, 12-Mar-2019.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ≀ ◡𝑅𝐵 ↔ ([𝐴]𝑅 ∩ [𝐵]𝑅) ≠ ∅)) | ||
| Theorem | br1cosscnvxrn 38596 | 𝐴 and 𝐵 are cosets by the converse range Cartesian product: a binary relation. (Contributed by Peter Mazsa, 19-Apr-2020.) (Revised by Peter Mazsa, 21-Sep-2021.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ≀ ◡(𝑅 ⋉ 𝑆)𝐵 ↔ (𝐴 ≀ ◡𝑅𝐵 ∧ 𝐴 ≀ ◡𝑆𝐵))) | ||
| Theorem | 1cosscnvxrn 38597 | Cosets by the converse range Cartesian product. (Contributed by Peter Mazsa, 19-Apr-2020.) (Revised by Peter Mazsa, 21-Sep-2021.) |
| ⊢ ≀ ◡(𝐴 ⋉ 𝐵) = ( ≀ ◡𝐴 ∩ ≀ ◡𝐵) | ||
| Theorem | cosscnvssid3 38598* | Equivalent expressions for the class of cosets by the converse of 𝑅 to be a subset of the identity class. (Contributed by Peter Mazsa, 28-Jul-2021.) |
| ⊢ ( ≀ ◡𝑅 ⊆ I ↔ ∀𝑢∀𝑣∀𝑥((𝑢𝑅𝑥 ∧ 𝑣𝑅𝑥) → 𝑢 = 𝑣)) | ||
| Theorem | cosscnvssid4 38599* | Equivalent expressions for the class of cosets by the converse of 𝑅 to be a subset of the identity class. (Contributed by Peter Mazsa, 31-Aug-2021.) |
| ⊢ ( ≀ ◡𝑅 ⊆ I ↔ ∀𝑥∃*𝑢 𝑢𝑅𝑥) | ||
| Theorem | cosscnvssid5 38600* | Equivalent expressions for the class of cosets by the converse of the relation 𝑅 to be a subset of the identity class. (Contributed by Peter Mazsa, 5-Sep-2021.) |
| ⊢ (( ≀ ◡𝑅 ⊆ I ∧ Rel 𝑅) ↔ (∀𝑢 ∈ dom 𝑅∀𝑣 ∈ dom 𝑅(𝑢 = 𝑣 ∨ ([𝑢]𝑅 ∩ [𝑣]𝑅) = ∅) ∧ Rel 𝑅)) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |