![]() |
Metamath
Proof Explorer Theorem List (p. 386 of 489) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30950) |
![]() (30951-32473) |
![]() (32474-48899) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | dfsymrels2 38501 | Alternate definition of the class of symmetric relations. Cf. the comment of dfrefrels2 38469. (Contributed by Peter Mazsa, 20-Jul-2019.) |
⊢ SymRels = {𝑟 ∈ Rels ∣ ◡𝑟 ⊆ 𝑟} | ||
Theorem | dfsymrels3 38502* | Alternate definition of the class of symmetric relations. (Contributed by Peter Mazsa, 22-Jul-2021.) |
⊢ SymRels = {𝑟 ∈ Rels ∣ ∀𝑥∀𝑦(𝑥𝑟𝑦 → 𝑦𝑟𝑥)} | ||
Theorem | dfsymrels4 38503 | Alternate definition of the class of symmetric relations. (Contributed by Peter Mazsa, 20-Jul-2019.) |
⊢ SymRels = {𝑟 ∈ Rels ∣ ◡𝑟 = 𝑟} | ||
Theorem | dfsymrels5 38504* | Alternate definition of the class of symmetric relations. (Contributed by Peter Mazsa, 22-Jul-2021.) |
⊢ SymRels = {𝑟 ∈ Rels ∣ ∀𝑥∀𝑦(𝑥𝑟𝑦 ↔ 𝑦𝑟𝑥)} | ||
Theorem | dfsymrel2 38505 | Alternate definition of the symmetric relation predicate. (Contributed by Peter Mazsa, 19-Apr-2019.) (Revised by Peter Mazsa, 17-Aug-2021.) |
⊢ ( SymRel 𝑅 ↔ (◡𝑅 ⊆ 𝑅 ∧ Rel 𝑅)) | ||
Theorem | dfsymrel3 38506* | Alternate definition of the symmetric relation predicate. (Contributed by Peter Mazsa, 21-Apr-2019.) (Revised by Peter Mazsa, 17-Aug-2021.) |
⊢ ( SymRel 𝑅 ↔ (∀𝑥∀𝑦(𝑥𝑅𝑦 → 𝑦𝑅𝑥) ∧ Rel 𝑅)) | ||
Theorem | dfsymrel4 38507 | Alternate definition of the symmetric relation predicate. (Contributed by Peter Mazsa, 17-Aug-2021.) |
⊢ ( SymRel 𝑅 ↔ (◡𝑅 = 𝑅 ∧ Rel 𝑅)) | ||
Theorem | dfsymrel5 38508* | Alternate definition of the symmetric relation predicate. (Contributed by Peter Mazsa, 17-Aug-2021.) |
⊢ ( SymRel 𝑅 ↔ (∀𝑥∀𝑦(𝑥𝑅𝑦 ↔ 𝑦𝑅𝑥) ∧ Rel 𝑅)) | ||
Theorem | elsymrels2 38509 | Element of the class of symmetric relations. (Contributed by Peter Mazsa, 17-Aug-2021.) |
⊢ (𝑅 ∈ SymRels ↔ (◡𝑅 ⊆ 𝑅 ∧ 𝑅 ∈ Rels )) | ||
Theorem | elsymrels3 38510* | Element of the class of symmetric relations. (Contributed by Peter Mazsa, 17-Aug-2021.) |
⊢ (𝑅 ∈ SymRels ↔ (∀𝑥∀𝑦(𝑥𝑅𝑦 → 𝑦𝑅𝑥) ∧ 𝑅 ∈ Rels )) | ||
Theorem | elsymrels4 38511 | Element of the class of symmetric relations. (Contributed by Peter Mazsa, 17-Aug-2021.) |
⊢ (𝑅 ∈ SymRels ↔ (◡𝑅 = 𝑅 ∧ 𝑅 ∈ Rels )) | ||
Theorem | elsymrels5 38512* | Element of the class of symmetric relations. (Contributed by Peter Mazsa, 17-Aug-2021.) |
⊢ (𝑅 ∈ SymRels ↔ (∀𝑥∀𝑦(𝑥𝑅𝑦 ↔ 𝑦𝑅𝑥) ∧ 𝑅 ∈ Rels )) | ||
Theorem | elsymrelsrel 38513 | For sets, being an element of the class of symmetric relations (df-symrels 38499) is equivalent to satisfying the symmetric relation predicate. (Contributed by Peter Mazsa, 17-Aug-2021.) |
⊢ (𝑅 ∈ 𝑉 → (𝑅 ∈ SymRels ↔ SymRel 𝑅)) | ||
Theorem | symreleq 38514 | Equality theorem for symmetric relation. (Contributed by Peter Mazsa, 15-Apr-2019.) (Revised by Peter Mazsa, 23-Sep-2021.) |
⊢ (𝑅 = 𝑆 → ( SymRel 𝑅 ↔ SymRel 𝑆)) | ||
Theorem | symrelim 38515 | Symmetric relation implies that the domain and the range are equal. (Contributed by Peter Mazsa, 29-Dec-2021.) |
⊢ ( SymRel 𝑅 → dom 𝑅 = ran 𝑅) | ||
Theorem | symrelcoss 38516 | The class of cosets by 𝑅 is symmetric. (Contributed by Peter Mazsa, 20-Dec-2021.) |
⊢ SymRel ≀ 𝑅 | ||
Theorem | idsymrel 38517 | The identity relation is symmetric. (Contributed by AV, 19-Jun-2022.) |
⊢ SymRel I | ||
Theorem | epnsymrel 38518 | The membership (epsilon) relation is not symmetric. (Contributed by AV, 18-Jun-2022.) |
⊢ ¬ SymRel E | ||
Theorem | symrefref2 38519 | Symmetry is a sufficient condition for the equivalence of two versions of the reflexive relation, see also symrefref3 38520. (Contributed by Peter Mazsa, 19-Jul-2018.) |
⊢ (◡𝑅 ⊆ 𝑅 → (( I ∩ (dom 𝑅 × ran 𝑅)) ⊆ 𝑅 ↔ ( I ↾ dom 𝑅) ⊆ 𝑅)) | ||
Theorem | symrefref3 38520* | Symmetry is a sufficient condition for the equivalence of two versions of the reflexive relation, see also symrefref2 38519. (Contributed by Peter Mazsa, 23-Aug-2021.) (Proof modification is discouraged.) |
⊢ (∀𝑥∀𝑦(𝑥𝑅𝑦 → 𝑦𝑅𝑥) → (∀𝑥 ∈ dom 𝑅∀𝑦 ∈ ran 𝑅(𝑥 = 𝑦 → 𝑥𝑅𝑦) ↔ ∀𝑥 ∈ dom 𝑅 𝑥𝑅𝑥)) | ||
Theorem | refsymrels2 38521 | Elements of the class of reflexive relations which are elements of the class of symmetric relations as well (like the elements of the class of equivalence relations dfeqvrels2 38544) can use the restricted version for their reflexive part (see below), not just the ( I ∩ (dom 𝑟 × ran 𝑟)) ⊆ 𝑟 version of dfrefrels2 38469, cf. the comment of dfrefrels2 38469. (Contributed by Peter Mazsa, 20-Jul-2019.) |
⊢ ( RefRels ∩ SymRels ) = {𝑟 ∈ Rels ∣ (( I ↾ dom 𝑟) ⊆ 𝑟 ∧ ◡𝑟 ⊆ 𝑟)} | ||
Theorem | refsymrels3 38522* | Elements of the class of reflexive relations which are elements of the class of symmetric relations as well (like the elements of the class of equivalence relations dfeqvrels3 38545) can use the ∀𝑥 ∈ dom 𝑟𝑥𝑟𝑥 version for their reflexive part, not just the ∀𝑥 ∈ dom 𝑟∀𝑦 ∈ ran 𝑟(𝑥 = 𝑦 → 𝑥𝑟𝑦) version of dfrefrels3 38470, cf. the comment of dfrefrel3 38472. (Contributed by Peter Mazsa, 22-Jul-2019.) (Proof modification is discouraged.) |
⊢ ( RefRels ∩ SymRels ) = {𝑟 ∈ Rels ∣ (∀𝑥 ∈ dom 𝑟 𝑥𝑟𝑥 ∧ ∀𝑥∀𝑦(𝑥𝑟𝑦 → 𝑦𝑟𝑥))} | ||
Theorem | refsymrel2 38523 | A relation which is reflexive and symmetric (like an equivalence relation) can use the restricted version for their reflexive part (see below), not just the ( I ∩ (dom 𝑅 × ran 𝑅)) ⊆ 𝑅 version of dfrefrel2 38471, cf. the comment of dfrefrels2 38469. (Contributed by Peter Mazsa, 23-Aug-2021.) |
⊢ (( RefRel 𝑅 ∧ SymRel 𝑅) ↔ ((( I ↾ dom 𝑅) ⊆ 𝑅 ∧ ◡𝑅 ⊆ 𝑅) ∧ Rel 𝑅)) | ||
Theorem | refsymrel3 38524* | A relation which is reflexive and symmetric (like an equivalence relation) can use the ∀𝑥 ∈ dom 𝑅𝑥𝑅𝑥 version for its reflexive part, not just the ∀𝑥 ∈ dom 𝑅∀𝑦 ∈ ran 𝑅(𝑥 = 𝑦 → 𝑥𝑅𝑦) version of dfrefrel3 38472, cf. the comment of dfrefrel3 38472. (Contributed by Peter Mazsa, 23-Aug-2021.) |
⊢ (( RefRel 𝑅 ∧ SymRel 𝑅) ↔ ((∀𝑥 ∈ dom 𝑅 𝑥𝑅𝑥 ∧ ∀𝑥∀𝑦(𝑥𝑅𝑦 → 𝑦𝑅𝑥)) ∧ Rel 𝑅)) | ||
Theorem | elrefsymrels2 38525 | Elements of the class of reflexive relations which are elements of the class of symmetric relations as well (like the elements of the class of equivalence relations dfeqvrels2 38544) can use the restricted version for their reflexive part (see below), not just the ( I ∩ (dom 𝑅 × ran 𝑅)) ⊆ 𝑅 version of dfrefrels2 38469, cf. the comment of dfrefrels2 38469. (Contributed by Peter Mazsa, 22-Jul-2019.) |
⊢ (𝑅 ∈ ( RefRels ∩ SymRels ) ↔ ((( I ↾ dom 𝑅) ⊆ 𝑅 ∧ ◡𝑅 ⊆ 𝑅) ∧ 𝑅 ∈ Rels )) | ||
Theorem | elrefsymrels3 38526* | Elements of the class of reflexive relations which are elements of the class of symmetric relations as well (like the elements of the class of equivalence relations dfeqvrels3 38545) can use the ∀𝑥 ∈ dom 𝑅𝑥𝑅𝑥 version for their reflexive part, not just the ∀𝑥 ∈ dom 𝑅∀𝑦 ∈ ran 𝑅(𝑥 = 𝑦 → 𝑥𝑅𝑦) version of dfrefrels3 38470, cf. the comment of dfrefrel3 38472. (Contributed by Peter Mazsa, 22-Jul-2019.) (Proof modification is discouraged.) |
⊢ (𝑅 ∈ ( RefRels ∩ SymRels ) ↔ ((∀𝑥 ∈ dom 𝑅 𝑥𝑅𝑥 ∧ ∀𝑥∀𝑦(𝑥𝑅𝑦 → 𝑦𝑅𝑥)) ∧ 𝑅 ∈ Rels )) | ||
Theorem | elrefsymrelsrel 38527 | For sets, being an element of the class of reflexive and symmetric relations is equivalent to satisfying the reflexive and symmetric relation predicates. (Contributed by Peter Mazsa, 23-Aug-2021.) |
⊢ (𝑅 ∈ 𝑉 → (𝑅 ∈ ( RefRels ∩ SymRels ) ↔ ( RefRel 𝑅 ∧ SymRel 𝑅))) | ||
Definition | df-trs 38528 |
Define the class of all transitive sets (versus the transitive class
defined in df-tr 5284). It is used only by df-trrels 38529.
Note the similarity of the definitions of df-refs 38466, df-syms 38498 and df-trs 38528. (Contributed by Peter Mazsa, 17-Jul-2021.) |
⊢ Trs = {𝑥 ∣ ((𝑥 ∩ (dom 𝑥 × ran 𝑥)) ∘ (𝑥 ∩ (dom 𝑥 × ran 𝑥))) S (𝑥 ∩ (dom 𝑥 × ran 𝑥))} | ||
Definition | df-trrels 38529 |
Define the class of transitive relations. For sets, being an element of
the class of transitive relations is equivalent to satisfying the
transitive relation predicate, see eltrrelsrel 38537. Alternate definitions
are dftrrels2 38531 and dftrrels3 38532.
This definition is similar to the definitions of the classes of reflexive (df-refrels 38467) and symmetric (df-symrels 38499) relations. (Contributed by Peter Mazsa, 7-Jul-2019.) |
⊢ TrRels = ( Trs ∩ Rels ) | ||
Definition | df-trrel 38530 | Define the transitive relation predicate. (Read: 𝑅 is a transitive relation.) For sets, being an element of the class of transitive relations (df-trrels 38529) is equivalent to satisfying the transitive relation predicate, see eltrrelsrel 38537. Alternate definitions are dftrrel2 38533 and dftrrel3 38534. (Contributed by Peter Mazsa, 17-Jul-2021.) |
⊢ ( TrRel 𝑅 ↔ (((𝑅 ∩ (dom 𝑅 × ran 𝑅)) ∘ (𝑅 ∩ (dom 𝑅 × ran 𝑅))) ⊆ (𝑅 ∩ (dom 𝑅 × ran 𝑅)) ∧ Rel 𝑅)) | ||
Theorem | dftrrels2 38531 |
Alternate definition of the class of transitive relations.
I'd prefer to define the class of transitive relations by using the definition of composition by [Suppes] p. 63. df-coSUP (𝐴 ∘ 𝐵) = {〈𝑥, 𝑦〉 ∣ ∃𝑢(𝑥𝐴𝑢 ∧ 𝑢𝐵𝑦)} as opposed to the present definition of composition df-co 5709 (𝐴 ∘ 𝐵) = {〈𝑥, 𝑦〉 ∣ ∃𝑢(𝑥𝐵𝑢 ∧ 𝑢𝐴𝑦)} because the Suppes definition keeps the order of 𝐴, 𝐵, 𝐶, 𝑅, 𝑆, 𝑇 by default in trsinxpSUP (((𝑅 ∩ (𝐴 × 𝐵)) ∘ (𝑆 ∩ (𝐵 × 𝐶))) ⊆ (𝑇 ∩ (𝐴 × 𝐶)) ↔ ∀𝑥 ∈ 𝐴∀𝑦 ∈ 𝐵∀ 𝑧 ∈ 𝐶((𝑥𝑅𝑦 ∧ 𝑦𝑆𝑧) → 𝑥𝑇𝑧)) while the present definition of composition disarranges them: trsinxp (((𝑆 ∩ (𝐵 × 𝐶)) ∘ (𝑅 ∩ (𝐴 × 𝐵))) ⊆ (𝑇 ∩ (𝐴 × 𝐶 )) ↔ ∀𝑥 ∈ 𝐴∀𝑦 ∈ 𝐵∀𝑧 ∈ 𝐶((𝑥𝑅𝑦 ∧ 𝑦𝑆𝑧) → 𝑥𝑇𝑧) ). This is not mission critical to me, the implication of the Suppes definition is just more aesthetic, at least in the above case. If we swap to the Suppes definition of class composition, I would define the present class of all transitive sets as df-trsSUP and I would consider to switch the definition of the class of cosets by 𝑅 from the present df-coss 38367 to a df-cossSUP. But perhaps there is a mathematical reason to keep the present definition of composition. (Contributed by Peter Mazsa, 21-Jul-2021.) |
⊢ TrRels = {𝑟 ∈ Rels ∣ (𝑟 ∘ 𝑟) ⊆ 𝑟} | ||
Theorem | dftrrels3 38532* | Alternate definition of the class of transitive relations. (Contributed by Peter Mazsa, 22-Jul-2021.) |
⊢ TrRels = {𝑟 ∈ Rels ∣ ∀𝑥∀𝑦∀𝑧((𝑥𝑟𝑦 ∧ 𝑦𝑟𝑧) → 𝑥𝑟𝑧)} | ||
Theorem | dftrrel2 38533 | Alternate definition of the transitive relation predicate. (Contributed by Peter Mazsa, 22-Aug-2021.) |
⊢ ( TrRel 𝑅 ↔ ((𝑅 ∘ 𝑅) ⊆ 𝑅 ∧ Rel 𝑅)) | ||
Theorem | dftrrel3 38534* | Alternate definition of the transitive relation predicate. (Contributed by Peter Mazsa, 22-Aug-2021.) |
⊢ ( TrRel 𝑅 ↔ (∀𝑥∀𝑦∀𝑧((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧) ∧ Rel 𝑅)) | ||
Theorem | eltrrels2 38535 | Element of the class of transitive relations. (Contributed by Peter Mazsa, 22-Aug-2021.) |
⊢ (𝑅 ∈ TrRels ↔ ((𝑅 ∘ 𝑅) ⊆ 𝑅 ∧ 𝑅 ∈ Rels )) | ||
Theorem | eltrrels3 38536* | Element of the class of transitive relations. (Contributed by Peter Mazsa, 22-Aug-2021.) |
⊢ (𝑅 ∈ TrRels ↔ (∀𝑥∀𝑦∀𝑧((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧) ∧ 𝑅 ∈ Rels )) | ||
Theorem | eltrrelsrel 38537 | For sets, being an element of the class of transitive relations is equivalent to satisfying the transitive relation predicate. (Contributed by Peter Mazsa, 22-Aug-2021.) |
⊢ (𝑅 ∈ 𝑉 → (𝑅 ∈ TrRels ↔ TrRel 𝑅)) | ||
Theorem | trreleq 38538 | Equality theorem for the transitive relation predicate. (Contributed by Peter Mazsa, 15-Apr-2019.) (Revised by Peter Mazsa, 23-Sep-2021.) |
⊢ (𝑅 = 𝑆 → ( TrRel 𝑅 ↔ TrRel 𝑆)) | ||
Theorem | trrelressn 38539 | Any class ' R ' restricted to the singleton of the class ' A ' (see ressn2 38398) is transitive. (Contributed by Peter Mazsa, 17-Jun-2024.) |
⊢ TrRel (𝑅 ↾ {𝐴}) | ||
Definition | df-eqvrels 38540 | Define the class of equivalence relations. For sets, being an element of the class of equivalence relations is equivalent to satisfying the equivalence relation predicate, see eleqvrelsrel 38550. Alternate definitions are dfeqvrels2 38544 and dfeqvrels3 38545. (Contributed by Peter Mazsa, 7-Nov-2018.) |
⊢ EqvRels = (( RefRels ∩ SymRels ) ∩ TrRels ) | ||
Definition | df-eqvrel 38541 | Define the equivalence relation predicate. (Read: 𝑅 is an equivalence relation.) For sets, being an element of the class of equivalence relations (df-eqvrels 38540) is equivalent to satisfying the equivalence relation predicate, see eleqvrelsrel 38550. Alternate definitions are dfeqvrel2 38546 and dfeqvrel3 38547. (Contributed by Peter Mazsa, 17-Apr-2019.) |
⊢ ( EqvRel 𝑅 ↔ ( RefRel 𝑅 ∧ SymRel 𝑅 ∧ TrRel 𝑅)) | ||
Definition | df-coeleqvrels 38542 | Define the coelement equivalence relations class, the class of sets with coelement equivalence relations. For sets, being an element of the class of coelement equivalence relations is equivalent to satisfying the coelement equivalence relation predicate, see elcoeleqvrelsrel 38552. Alternate definition is dfcoeleqvrels 38577. (Contributed by Peter Mazsa, 28-Nov-2022.) |
⊢ CoElEqvRels = {𝑎 ∣ ≀ (◡ E ↾ 𝑎) ∈ EqvRels } | ||
Definition | df-coeleqvrel 38543 | Define the coelement equivalence relation predicate. (Read: the coelement equivalence relation on 𝐴.) Alternate definition is dfcoeleqvrel 38578. For sets, being an element of the class of coelement equivalence relations is equivalent to satisfying the coelement equivalence relation predicate, see elcoeleqvrelsrel 38552. (Contributed by Peter Mazsa, 11-Dec-2021.) |
⊢ ( CoElEqvRel 𝐴 ↔ EqvRel ≀ (◡ E ↾ 𝐴)) | ||
Theorem | dfeqvrels2 38544 | Alternate definition of the class of equivalence relations. (Contributed by Peter Mazsa, 2-Dec-2019.) |
⊢ EqvRels = {𝑟 ∈ Rels ∣ (( I ↾ dom 𝑟) ⊆ 𝑟 ∧ ◡𝑟 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟)} | ||
Theorem | dfeqvrels3 38545* | Alternate definition of the class of equivalence relations. (Contributed by Peter Mazsa, 2-Dec-2019.) |
⊢ EqvRels = {𝑟 ∈ Rels ∣ (∀𝑥 ∈ dom 𝑟 𝑥𝑟𝑥 ∧ ∀𝑥∀𝑦(𝑥𝑟𝑦 → 𝑦𝑟𝑥) ∧ ∀𝑥∀𝑦∀𝑧((𝑥𝑟𝑦 ∧ 𝑦𝑟𝑧) → 𝑥𝑟𝑧))} | ||
Theorem | dfeqvrel2 38546 | Alternate definition of the equivalence relation predicate. (Contributed by Peter Mazsa, 22-Apr-2019.) |
⊢ ( EqvRel 𝑅 ↔ ((( I ↾ dom 𝑅) ⊆ 𝑅 ∧ ◡𝑅 ⊆ 𝑅 ∧ (𝑅 ∘ 𝑅) ⊆ 𝑅) ∧ Rel 𝑅)) | ||
Theorem | dfeqvrel3 38547* | Alternate definition of the equivalence relation predicate. (Contributed by Peter Mazsa, 22-Apr-2019.) |
⊢ ( EqvRel 𝑅 ↔ ((∀𝑥 ∈ dom 𝑅 𝑥𝑅𝑥 ∧ ∀𝑥∀𝑦(𝑥𝑅𝑦 → 𝑦𝑅𝑥) ∧ ∀𝑥∀𝑦∀𝑧((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧)) ∧ Rel 𝑅)) | ||
Theorem | eleqvrels2 38548 | Element of the class of equivalence relations. (Contributed by Peter Mazsa, 24-Aug-2021.) |
⊢ (𝑅 ∈ EqvRels ↔ ((( I ↾ dom 𝑅) ⊆ 𝑅 ∧ ◡𝑅 ⊆ 𝑅 ∧ (𝑅 ∘ 𝑅) ⊆ 𝑅) ∧ 𝑅 ∈ Rels )) | ||
Theorem | eleqvrels3 38549* | Element of the class of equivalence relations. (Contributed by Peter Mazsa, 24-Aug-2021.) |
⊢ (𝑅 ∈ EqvRels ↔ ((∀𝑥 ∈ dom 𝑅 𝑥𝑅𝑥 ∧ ∀𝑥∀𝑦(𝑥𝑅𝑦 → 𝑦𝑅𝑥) ∧ ∀𝑥∀𝑦∀𝑧((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧)) ∧ 𝑅 ∈ Rels )) | ||
Theorem | eleqvrelsrel 38550 | For sets, being an element of the class of equivalence relations is equivalent to satisfying the equivalence relation predicate. (Contributed by Peter Mazsa, 24-Aug-2021.) |
⊢ (𝑅 ∈ 𝑉 → (𝑅 ∈ EqvRels ↔ EqvRel 𝑅)) | ||
Theorem | elcoeleqvrels 38551 | Elementhood in the coelement equivalence relations class. (Contributed by Peter Mazsa, 24-Jul-2023.) |
⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ CoElEqvRels ↔ ≀ (◡ E ↾ 𝐴) ∈ EqvRels )) | ||
Theorem | elcoeleqvrelsrel 38552 | For sets, being an element of the class of coelement equivalence relations is equivalent to satisfying the coelement equivalence relation predicate. (Contributed by Peter Mazsa, 24-Jul-2023.) |
⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ CoElEqvRels ↔ CoElEqvRel 𝐴)) | ||
Theorem | eqvrelrel 38553 | An equivalence relation is a relation. (Contributed by Peter Mazsa, 2-Jun-2019.) |
⊢ ( EqvRel 𝑅 → Rel 𝑅) | ||
Theorem | eqvrelrefrel 38554 | An equivalence relation is reflexive. (Contributed by Peter Mazsa, 29-Dec-2021.) |
⊢ ( EqvRel 𝑅 → RefRel 𝑅) | ||
Theorem | eqvrelsymrel 38555 | An equivalence relation is symmetric. (Contributed by Peter Mazsa, 29-Dec-2021.) |
⊢ ( EqvRel 𝑅 → SymRel 𝑅) | ||
Theorem | eqvreltrrel 38556 | An equivalence relation is transitive. (Contributed by Peter Mazsa, 29-Dec-2021.) |
⊢ ( EqvRel 𝑅 → TrRel 𝑅) | ||
Theorem | eqvrelim 38557 | Equivalence relation implies that the domain and the range are equal. (Contributed by Peter Mazsa, 29-Dec-2021.) |
⊢ ( EqvRel 𝑅 → dom 𝑅 = ran 𝑅) | ||
Theorem | eqvreleq 38558 | Equality theorem for equivalence relation. (Contributed by Peter Mazsa, 19-Apr-2020.) (Revised by Peter Mazsa, 23-Sep-2021.) |
⊢ (𝑅 = 𝑆 → ( EqvRel 𝑅 ↔ EqvRel 𝑆)) | ||
Theorem | eqvreleqi 38559 | Equality theorem for equivalence relation, inference version. (Contributed by Peter Mazsa, 23-Sep-2021.) |
⊢ 𝑅 = 𝑆 ⇒ ⊢ ( EqvRel 𝑅 ↔ EqvRel 𝑆) | ||
Theorem | eqvreleqd 38560 | Equality theorem for equivalence relation, deduction version. (Contributed by Peter Mazsa, 23-Sep-2021.) |
⊢ (𝜑 → 𝑅 = 𝑆) ⇒ ⊢ (𝜑 → ( EqvRel 𝑅 ↔ EqvRel 𝑆)) | ||
Theorem | eqvrelsym 38561 | An equivalence relation is symmetric. (Contributed by NM, 4-Jun-1995.) (Revised by Mario Carneiro, 12-Aug-2015.) (Revised by Peter Mazsa, 2-Jun-2019.) |
⊢ (𝜑 → EqvRel 𝑅) & ⊢ (𝜑 → 𝐴𝑅𝐵) ⇒ ⊢ (𝜑 → 𝐵𝑅𝐴) | ||
Theorem | eqvrelsymb 38562 | An equivalence relation is symmetric. (Contributed by NM, 30-Jul-1995.) (Revised by Mario Carneiro, 12-Aug-2015.) (Revised and distinct variable conditions removed by Peter Mazsa, 2-Jun-2019.) |
⊢ (𝜑 → EqvRel 𝑅) ⇒ ⊢ (𝜑 → (𝐴𝑅𝐵 ↔ 𝐵𝑅𝐴)) | ||
Theorem | eqvreltr 38563 | An equivalence relation is transitive. (Contributed by NM, 4-Jun-1995.) (Revised by Mario Carneiro, 12-Aug-2015.) (Revised by Peter Mazsa, 2-Jun-2019.) |
⊢ (𝜑 → EqvRel 𝑅) ⇒ ⊢ (𝜑 → ((𝐴𝑅𝐵 ∧ 𝐵𝑅𝐶) → 𝐴𝑅𝐶)) | ||
Theorem | eqvreltrd 38564 | A transitivity relation for equivalences. (Contributed by Mario Carneiro, 9-Jul-2014.) (Revised by Peter Mazsa, 2-Jun-2019.) |
⊢ (𝜑 → EqvRel 𝑅) & ⊢ (𝜑 → 𝐴𝑅𝐵) & ⊢ (𝜑 → 𝐵𝑅𝐶) ⇒ ⊢ (𝜑 → 𝐴𝑅𝐶) | ||
Theorem | eqvreltr4d 38565 | A transitivity relation for equivalences. (Contributed by Mario Carneiro, 9-Jul-2014.) (Revised by Peter Mazsa, 2-Jun-2019.) |
⊢ (𝜑 → EqvRel 𝑅) & ⊢ (𝜑 → 𝐴𝑅𝐵) & ⊢ (𝜑 → 𝐶𝑅𝐵) ⇒ ⊢ (𝜑 → 𝐴𝑅𝐶) | ||
Theorem | eqvrelref 38566 | An equivalence relation is reflexive on its field. Compare Theorem 3M of [Enderton] p. 56. (Contributed by Mario Carneiro, 6-May-2013.) (Revised by Mario Carneiro, 12-Aug-2015.) (Revised by Peter Mazsa, 2-Jun-2019.) |
⊢ (𝜑 → EqvRel 𝑅) & ⊢ (𝜑 → 𝐴 ∈ dom 𝑅) ⇒ ⊢ (𝜑 → 𝐴𝑅𝐴) | ||
Theorem | eqvrelth 38567 | Basic property of equivalence relations. Theorem 73 of [Suppes] p. 82. (Contributed by NM, 23-Jul-1995.) (Revised by Mario Carneiro, 6-Jul-2015.) (Revised by Peter Mazsa, 2-Jun-2019.) |
⊢ (𝜑 → EqvRel 𝑅) & ⊢ (𝜑 → 𝐴 ∈ dom 𝑅) ⇒ ⊢ (𝜑 → (𝐴𝑅𝐵 ↔ [𝐴]𝑅 = [𝐵]𝑅)) | ||
Theorem | eqvrelcl 38568 | Elementhood in the field of an equivalence relation. (Contributed by Mario Carneiro, 12-Aug-2015.) (Revised by Peter Mazsa, 2-Jun-2019.) |
⊢ (𝜑 → EqvRel 𝑅) & ⊢ (𝜑 → 𝐴𝑅𝐵) ⇒ ⊢ (𝜑 → 𝐴 ∈ dom 𝑅) | ||
Theorem | eqvrelthi 38569 | Basic property of equivalence relations. Part of Lemma 3N of [Enderton] p. 57. (Contributed by NM, 30-Jul-1995.) (Revised by Mario Carneiro, 9-Jul-2014.) (Revised by Peter Mazsa, 2-Jun-2019.) |
⊢ (𝜑 → EqvRel 𝑅) & ⊢ (𝜑 → 𝐴𝑅𝐵) ⇒ ⊢ (𝜑 → [𝐴]𝑅 = [𝐵]𝑅) | ||
Theorem | eqvreldisj 38570 | Equivalence classes do not overlap. In other words, two equivalence classes are either equal or disjoint. Theorem 74 of [Suppes] p. 83. (Contributed by NM, 15-Jun-2004.) (Revised by Mario Carneiro, 9-Jul-2014.) (Revised by Peter Mazsa, 2-Jun-2019.) |
⊢ ( EqvRel 𝑅 → ([𝐴]𝑅 = [𝐵]𝑅 ∨ ([𝐴]𝑅 ∩ [𝐵]𝑅) = ∅)) | ||
Theorem | qsdisjALTV 38571 | Elements of a quotient set do not overlap. (Contributed by Rodolfo Medina, 12-Oct-2010.) (Revised by Mario Carneiro, 11-Jul-2014.) (Revised by Peter Mazsa, 3-Jun-2019.) |
⊢ (𝜑 → EqvRel 𝑅) & ⊢ (𝜑 → 𝐵 ∈ (𝐴 / 𝑅)) & ⊢ (𝜑 → 𝐶 ∈ (𝐴 / 𝑅)) ⇒ ⊢ (𝜑 → (𝐵 = 𝐶 ∨ (𝐵 ∩ 𝐶) = ∅)) | ||
Theorem | eqvrelqsel 38572 | If an element of a quotient set contains a given element, it is equal to the equivalence class of the element. (Contributed by Mario Carneiro, 12-Aug-2015.) (Revised by Peter Mazsa, 28-Dec-2019.) |
⊢ (( EqvRel 𝑅 ∧ 𝐵 ∈ (𝐴 / 𝑅) ∧ 𝐶 ∈ 𝐵) → 𝐵 = [𝐶]𝑅) | ||
Theorem | eqvrelcoss 38573 | Two ways to express equivalent cosets. (Contributed by Peter Mazsa, 4-Jul-2020.) (Revised by Peter Mazsa, 20-Dec-2021.) |
⊢ ( EqvRel ≀ 𝑅 ↔ TrRel ≀ 𝑅) | ||
Theorem | eqvrelcoss3 38574* | Two ways to express equivalent cosets. (Contributed by Peter Mazsa, 28-Apr-2019.) |
⊢ ( EqvRel ≀ 𝑅 ↔ ∀𝑥∀𝑦∀𝑧((𝑥 ≀ 𝑅𝑦 ∧ 𝑦 ≀ 𝑅𝑧) → 𝑥 ≀ 𝑅𝑧)) | ||
Theorem | eqvrelcoss2 38575 | Two ways to express equivalent cosets. (Contributed by Peter Mazsa, 3-May-2019.) |
⊢ ( EqvRel ≀ 𝑅 ↔ ≀ ≀ 𝑅 ⊆ ≀ 𝑅) | ||
Theorem | eqvrelcoss4 38576* | Two ways to express equivalent cosets. (Contributed by Peter Mazsa, 3-May-2019.) (Revised by Peter Mazsa, 30-Sep-2021.) |
⊢ ( EqvRel ≀ 𝑅 ↔ ∀𝑥∀𝑧(([𝑥] ≀ 𝑅 ∩ [𝑧] ≀ 𝑅) ≠ ∅ → ([𝑥]◡𝑅 ∩ [𝑧]◡𝑅) ≠ ∅)) | ||
Theorem | dfcoeleqvrels 38577 | Alternate definition of the coelement equivalence relations class. Other alternate definitions should be based on eqvrelcoss2 38575, eqvrelcoss3 38574 and eqvrelcoss4 38576 when needed. (Contributed by Peter Mazsa, 28-Nov-2022.) |
⊢ CoElEqvRels = {𝑎 ∣ ∼ 𝑎 ∈ EqvRels } | ||
Theorem | dfcoeleqvrel 38578 | Alternate definition of the coelement equivalence relation predicate: a coelement equivalence relation is an equivalence relation on coelements. Other alternate definitions should be based on eqvrelcoss2 38575, eqvrelcoss3 38574 and eqvrelcoss4 38576 when needed. (Contributed by Peter Mazsa, 28-Nov-2022.) |
⊢ ( CoElEqvRel 𝐴 ↔ EqvRel ∼ 𝐴) | ||
Definition | df-redunds 38579* | Define the class of all redundant sets 𝑥 with respect to 𝑦 in 𝑧. For sets, binary relation on the class of all redundant sets (brredunds 38582) is equivalent to satisfying the redundancy predicate (df-redund 38580). (Contributed by Peter Mazsa, 23-Oct-2022.) |
⊢ Redunds = ◡{〈〈𝑦, 𝑧〉, 𝑥〉 ∣ (𝑥 ⊆ 𝑦 ∧ (𝑥 ∩ 𝑧) = (𝑦 ∩ 𝑧))} | ||
Definition | df-redund 38580 | Define the redundancy predicate. Read: 𝐴 is redundant with respect to 𝐵 in 𝐶. For sets, binary relation on the class of all redundant sets (brredunds 38582) is equivalent to satisfying the redundancy predicate. (Contributed by Peter Mazsa, 23-Oct-2022.) |
⊢ (𝐴 Redund 〈𝐵, 𝐶〉 ↔ (𝐴 ⊆ 𝐵 ∧ (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐶))) | ||
Definition | df-redundp 38581 | Define the redundancy operator for propositions, cf. df-redund 38580. (Contributed by Peter Mazsa, 23-Oct-2022.) |
⊢ ( redund (𝜑, 𝜓, 𝜒) ↔ ((𝜑 → 𝜓) ∧ ((𝜑 ∧ 𝜒) ↔ (𝜓 ∧ 𝜒)))) | ||
Theorem | brredunds 38582 | Binary relation on the class of all redundant sets. (Contributed by Peter Mazsa, 25-Oct-2022.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → (𝐴 Redunds 〈𝐵, 𝐶〉 ↔ (𝐴 ⊆ 𝐵 ∧ (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐶)))) | ||
Theorem | brredundsredund 38583 | For sets, binary relation on the class of all redundant sets (brredunds 38582) is equivalent to satisfying the redundancy predicate (df-redund 38580). (Contributed by Peter Mazsa, 25-Oct-2022.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → (𝐴 Redunds 〈𝐵, 𝐶〉 ↔ 𝐴 Redund 〈𝐵, 𝐶〉)) | ||
Theorem | redundss3 38584 | Implication of redundancy predicate. (Contributed by Peter Mazsa, 26-Oct-2022.) |
⊢ 𝐷 ⊆ 𝐶 ⇒ ⊢ (𝐴 Redund 〈𝐵, 𝐶〉 → 𝐴 Redund 〈𝐵, 𝐷〉) | ||
Theorem | redundeq1 38585 | Equivalence of redundancy predicates. (Contributed by Peter Mazsa, 26-Oct-2022.) |
⊢ 𝐴 = 𝐷 ⇒ ⊢ (𝐴 Redund 〈𝐵, 𝐶〉 ↔ 𝐷 Redund 〈𝐵, 𝐶〉) | ||
Theorem | redundpim3 38586 | Implication of redundancy of proposition. (Contributed by Peter Mazsa, 26-Oct-2022.) |
⊢ (𝜃 → 𝜒) ⇒ ⊢ ( redund (𝜑, 𝜓, 𝜒) → redund (𝜑, 𝜓, 𝜃)) | ||
Theorem | redundpbi1 38587 | Equivalence of redundancy of propositions. (Contributed by Peter Mazsa, 25-Oct-2022.) |
⊢ (𝜑 ↔ 𝜃) ⇒ ⊢ ( redund (𝜑, 𝜓, 𝜒) ↔ redund (𝜃, 𝜓, 𝜒)) | ||
Theorem | refrelsredund4 38588 | The naive version of the class of reflexive relations is redundant with respect to the class of reflexive relations (see dfrefrels2 38469) if the relations are symmetric as well. (Contributed by Peter Mazsa, 26-Oct-2022.) |
⊢ {𝑟 ∈ Rels ∣ ( I ↾ dom 𝑟) ⊆ 𝑟} Redund 〈 RefRels , ( RefRels ∩ SymRels )〉 | ||
Theorem | refrelsredund2 38589 | The naive version of the class of reflexive relations is redundant with respect to the class of reflexive relations (see dfrefrels2 38469) in the class of equivalence relations. (Contributed by Peter Mazsa, 26-Oct-2022.) |
⊢ {𝑟 ∈ Rels ∣ ( I ↾ dom 𝑟) ⊆ 𝑟} Redund 〈 RefRels , EqvRels 〉 | ||
Theorem | refrelsredund3 38590* | The naive version of the class of reflexive relations {𝑟 ∈ Rels ∣ ∀𝑥 ∈ dom 𝑟𝑥𝑟𝑥} is redundant with respect to the class of reflexive relations (see dfrefrels3 38470) in the class of equivalence relations. (Contributed by Peter Mazsa, 26-Oct-2022.) |
⊢ {𝑟 ∈ Rels ∣ ∀𝑥 ∈ dom 𝑟 𝑥𝑟𝑥} Redund 〈 RefRels , EqvRels 〉 | ||
Theorem | refrelredund4 38591 | The naive version of the definition of reflexive relation is redundant with respect to reflexive relation (see dfrefrel2 38471) if the relation is symmetric as well. (Contributed by Peter Mazsa, 26-Oct-2022.) |
⊢ redund ((( I ↾ dom 𝑅) ⊆ 𝑅 ∧ Rel 𝑅), RefRel 𝑅, ( RefRel 𝑅 ∧ SymRel 𝑅)) | ||
Theorem | refrelredund2 38592 | The naive version of the definition of reflexive relation is redundant with respect to reflexive relation (see dfrefrel2 38471) in equivalence relation. (Contributed by Peter Mazsa, 25-Oct-2022.) |
⊢ redund ((( I ↾ dom 𝑅) ⊆ 𝑅 ∧ Rel 𝑅), RefRel 𝑅, EqvRel 𝑅) | ||
Theorem | refrelredund3 38593* | The naive version of the definition of reflexive relation (∀𝑥 ∈ dom 𝑅𝑥𝑅𝑥 ∧ Rel 𝑅) is redundant with respect to reflexive relation (see dfrefrel3 38472) in equivalence relation. (Contributed by Peter Mazsa, 25-Oct-2022.) |
⊢ redund ((∀𝑥 ∈ dom 𝑅 𝑥𝑅𝑥 ∧ Rel 𝑅), RefRel 𝑅, EqvRel 𝑅) | ||
Definition | df-dmqss 38594* | Define the class of domain quotients. Domain quotients are pairs of sets, typically a relation and a set, where the quotient (see df-qs 8769) of the relation on its domain is equal to the set. See comments of df-ers 38619 for the motivation for this definition. (Contributed by Peter Mazsa, 16-Apr-2019.) |
⊢ DomainQss = {〈𝑥, 𝑦〉 ∣ (dom 𝑥 / 𝑥) = 𝑦} | ||
Definition | df-dmqs 38595 | Define the domain quotient predicate. (Read: the domain quotient of 𝑅 is 𝐴.) If 𝐴 and 𝑅 are sets, the domain quotient binary relation and the domain quotient predicate are the same, see brdmqssqs 38603. (Contributed by Peter Mazsa, 9-Aug-2021.) |
⊢ (𝑅 DomainQs 𝐴 ↔ (dom 𝑅 / 𝑅) = 𝐴) | ||
Theorem | dmqseq 38596 | Equality theorem for domain quotient. (Contributed by Peter Mazsa, 17-Apr-2019.) |
⊢ (𝑅 = 𝑆 → (dom 𝑅 / 𝑅) = (dom 𝑆 / 𝑆)) | ||
Theorem | dmqseqi 38597 | Equality theorem for domain quotient, inference version. (Contributed by Peter Mazsa, 26-Sep-2021.) |
⊢ 𝑅 = 𝑆 ⇒ ⊢ (dom 𝑅 / 𝑅) = (dom 𝑆 / 𝑆) | ||
Theorem | dmqseqd 38598 | Equality theorem for domain quotient set, deduction version. (Contributed by Peter Mazsa, 23-Apr-2021.) |
⊢ (𝜑 → 𝑅 = 𝑆) ⇒ ⊢ (𝜑 → (dom 𝑅 / 𝑅) = (dom 𝑆 / 𝑆)) | ||
Theorem | dmqseqeq1 38599 | Equality theorem for domain quotient. (Contributed by Peter Mazsa, 17-Apr-2019.) |
⊢ (𝑅 = 𝑆 → ((dom 𝑅 / 𝑅) = 𝐴 ↔ (dom 𝑆 / 𝑆) = 𝐴)) | ||
Theorem | dmqseqeq1i 38600 | Equality theorem for domain quotient, inference version. (Contributed by Peter Mazsa, 26-Sep-2021.) |
⊢ 𝑅 = 𝑆 ⇒ ⊢ ((dom 𝑅 / 𝑅) = 𝐴 ↔ (dom 𝑆 / 𝑆) = 𝐴) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |