HomeHome Metamath Proof Explorer
Theorem List (p. 386 of 450)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-28694)
  Hilbert Space Explorer  Hilbert Space Explorer
(28695-30217)
  Users' Mathboxes  Users' Mathboxes
(30218-44907)
 

Theorem List for Metamath Proof Explorer - 38501-38600   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremdochocss 38501 Double negative law for orthocomplement of an arbitrary set of vectors. (Contributed by NM, 16-Apr-2014.)
𝐻 = (LHyp‘𝐾)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝑉 = (Base‘𝑈)    &    = ((ocH‘𝐾)‘𝑊)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉) → 𝑋 ⊆ ( ‘( 𝑋)))
 
Theoremdochoc 38502 Double negative law for orthocomplement of a closed subspace. (Contributed by NM, 14-Mar-2014.)
𝐻 = (LHyp‘𝐾)    &   𝐼 = ((DIsoH‘𝐾)‘𝑊)    &    = ((ocH‘𝐾)‘𝑊)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋 ∈ ran 𝐼) → ( ‘( 𝑋)) = 𝑋)
 
Theoremdochsscl 38503 If a set of vectors is included in a closed set, so is its closure. (Contributed by NM, 17-Jun-2015.)
𝐻 = (LHyp‘𝐾)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝑉 = (Base‘𝑈)    &   𝐼 = ((DIsoH‘𝐾)‘𝑊)    &    = ((ocH‘𝐾)‘𝑊)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝑋𝑉)    &   (𝜑𝑌 ∈ ran 𝐼)       (𝜑 → (𝑋𝑌 ↔ ( ‘( 𝑋)) ⊆ 𝑌))
 
Theoremdochoccl 38504 A set of vectors is closed iff it equals its double orthocomplent. (Contributed by NM, 1-Jan-2015.)
𝐻 = (LHyp‘𝐾)    &   𝐼 = ((DIsoH‘𝐾)‘𝑊)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝑉 = (Base‘𝑈)    &    = ((ocH‘𝐾)‘𝑊)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝑋𝑉)       (𝜑 → (𝑋 ∈ ran 𝐼 ↔ ( ‘( 𝑋)) = 𝑋))
 
Theoremdochord 38505 Ordering law for orthocomplement. (Contributed by NM, 12-Aug-2014.)
𝐻 = (LHyp‘𝐾)    &   𝐼 = ((DIsoH‘𝐾)‘𝑊)    &    = ((ocH‘𝐾)‘𝑊)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝑋 ∈ ran 𝐼)    &   (𝜑𝑌 ∈ ran 𝐼)       (𝜑 → (𝑋𝑌 ↔ ( 𝑌) ⊆ ( 𝑋)))
 
Theoremdochord2N 38506 Ordering law for orthocomplement. (Contributed by NM, 29-Oct-2014.) (New usage is discouraged.)
𝐻 = (LHyp‘𝐾)    &   𝐼 = ((DIsoH‘𝐾)‘𝑊)    &    = ((ocH‘𝐾)‘𝑊)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝑋 ∈ ran 𝐼)    &   (𝜑𝑌 ∈ ran 𝐼)       (𝜑 → (( 𝑋) ⊆ 𝑌 ↔ ( 𝑌) ⊆ 𝑋))
 
Theoremdochord3 38507 Ordering law for orthocomplement. (Contributed by NM, 9-Mar-2015.)
𝐻 = (LHyp‘𝐾)    &   𝐼 = ((DIsoH‘𝐾)‘𝑊)    &    = ((ocH‘𝐾)‘𝑊)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝑋 ∈ ran 𝐼)    &   (𝜑𝑌 ∈ ran 𝐼)       (𝜑 → (𝑋 ⊆ ( 𝑌) ↔ 𝑌 ⊆ ( 𝑋)))
 
Theoremdoch11 38508 Orthocomplement is one-to-one. (Contributed by NM, 12-Aug-2014.)
𝐻 = (LHyp‘𝐾)    &   𝐼 = ((DIsoH‘𝐾)‘𝑊)    &    = ((ocH‘𝐾)‘𝑊)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝑋 ∈ ran 𝐼)    &   (𝜑𝑌 ∈ ran 𝐼)       (𝜑 → (( 𝑋) = ( 𝑌) ↔ 𝑋 = 𝑌))
 
TheoremdochsordN 38509 Strict ordering law for orthocomplement. (Contributed by NM, 12-Aug-2014.) (New usage is discouraged.)
𝐻 = (LHyp‘𝐾)    &   𝐼 = ((DIsoH‘𝐾)‘𝑊)    &    = ((ocH‘𝐾)‘𝑊)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝑋 ∈ ran 𝐼)    &   (𝜑𝑌 ∈ ran 𝐼)       (𝜑 → (𝑋𝑌 ↔ ( 𝑌) ⊊ ( 𝑋)))
 
Theoremdochn0nv 38510 An orthocomplement is nonzero iff the double orthocomplement is not the whole vector space. (Contributed by NM, 1-Jan-2015.)
𝐻 = (LHyp‘𝐾)    &    = ((ocH‘𝐾)‘𝑊)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝑉 = (Base‘𝑈)    &    0 = (0g𝑈)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝑋𝑉)       (𝜑 → (( 𝑋) ≠ { 0 } ↔ ( ‘( 𝑋)) ≠ 𝑉))
 
Theoremdihoml4c 38511 Version of dihoml4 38512 with closed subspaces. (Contributed by NM, 15-Jan-2015.)
𝐻 = (LHyp‘𝐾)    &   𝐼 = ((DIsoH‘𝐾)‘𝑊)    &    = ((ocH‘𝐾)‘𝑊)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝑋 ∈ ran 𝐼)    &   (𝜑𝑌 ∈ ran 𝐼)    &   (𝜑𝑋𝑌)       (𝜑 → (( ‘(( 𝑋) ∩ 𝑌)) ∩ 𝑌) = 𝑋)
 
Theoremdihoml4 38512 Orthomodular law for constructed vector space H. Lemma 3.3(1) in [Holland95] p. 215. (poml4N 37088 analog.) (Contributed by NM, 15-Jan-2015.)
𝐻 = (LHyp‘𝐾)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝑆 = (LSubSp‘𝑈)    &    = ((ocH‘𝐾)‘𝑊)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝑋𝑆)    &   (𝜑𝑌𝑆)    &   (𝜑 → ( ‘( 𝑌)) = 𝑌)    &   (𝜑𝑋𝑌)       (𝜑 → (( ‘(( 𝑋) ∩ 𝑌)) ∩ 𝑌) = ( ‘( 𝑋)))
 
Theoremdochspss 38513 The span of a set of vectors is included in their double orthocomplement. (Contributed by NM, 26-Jul-2014.)
𝐻 = (LHyp‘𝐾)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &    = ((ocH‘𝐾)‘𝑊)    &   𝑉 = (Base‘𝑈)    &   𝑁 = (LSpan‘𝑈)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝑋𝑉)       (𝜑 → (𝑁𝑋) ⊆ ( ‘( 𝑋)))
 
Theoremdochocsp 38514 The span of an orthocomplement equals the orthocomplement of the span. (Contributed by NM, 7-Aug-2014.)
𝐻 = (LHyp‘𝐾)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &    = ((ocH‘𝐾)‘𝑊)    &   𝑉 = (Base‘𝑈)    &   𝑁 = (LSpan‘𝑈)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝑋𝑉)       (𝜑 → ( ‘(𝑁𝑋)) = ( 𝑋))
 
TheoremdochspocN 38515 The span of an orthocomplement equals the orthocomplement of the span. (Contributed by NM, 7-Aug-2014.) (New usage is discouraged.)
𝐻 = (LHyp‘𝐾)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &    = ((ocH‘𝐾)‘𝑊)    &   𝑉 = (Base‘𝑈)    &   𝑁 = (LSpan‘𝑈)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝑋𝑉)       (𝜑 → (𝑁‘( 𝑋)) = ( ‘(𝑁𝑋)))
 
Theoremdochocsn 38516 The double orthocomplement of a singleton is its span. (Contributed by NM, 13-Jan-2015.)
𝐻 = (LHyp‘𝐾)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &    = ((ocH‘𝐾)‘𝑊)    &   𝑉 = (Base‘𝑈)    &   𝑁 = (LSpan‘𝑈)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝑋𝑉)       (𝜑 → ( ‘( ‘{𝑋})) = (𝑁‘{𝑋}))
 
Theoremdochsncom 38517 Swap vectors in an orthocomplement of a singleton. (Contributed by NM, 17-Jun-2015.)
𝐻 = (LHyp‘𝐾)    &    = ((ocH‘𝐾)‘𝑊)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝑉 = (Base‘𝑈)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝑋𝑉)    &   (𝜑𝑌𝑉)       (𝜑 → (𝑋 ∈ ( ‘{𝑌}) ↔ 𝑌 ∈ ( ‘{𝑋})))
 
Theoremdochsat 38518 The double orthocomplement of an atom is an atom. (Contributed by NM, 29-Oct-2014.)
𝐻 = (LHyp‘𝐾)    &    = ((ocH‘𝐾)‘𝑊)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝑆 = (LSubSp‘𝑈)    &   𝐴 = (LSAtoms‘𝑈)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝑄𝑆)       (𝜑 → (( ‘( 𝑄)) ∈ 𝐴𝑄𝐴))
 
Theoremdochshpncl 38519 If a hyperplane is not closed, its closure equals the vector space. (Contributed by NM, 29-Oct-2014.)
𝐻 = (LHyp‘𝐾)    &    = ((ocH‘𝐾)‘𝑊)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝑉 = (Base‘𝑈)    &   𝑌 = (LSHyp‘𝑈)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝑋𝑌)       (𝜑 → (( ‘( 𝑋)) ≠ 𝑋 ↔ ( ‘( 𝑋)) = 𝑉))
 
Theoremdochlkr 38520 Equivalent conditions for the closure of a kernel to be a hyperplane. (Contributed by NM, 29-Oct-2014.)
𝐻 = (LHyp‘𝐾)    &    = ((ocH‘𝐾)‘𝑊)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝐹 = (LFnl‘𝑈)    &   𝑌 = (LSHyp‘𝑈)    &   𝐿 = (LKer‘𝑈)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝐺𝐹)       (𝜑 → (( ‘( ‘(𝐿𝐺))) ∈ 𝑌 ↔ (( ‘( ‘(𝐿𝐺))) = (𝐿𝐺) ∧ (𝐿𝐺) ∈ 𝑌)))
 
Theoremdochkrshp 38521 The closure of a kernel is a hyperplane iff it doesn't contain all vectors. (Contributed by NM, 1-Nov-2014.)
𝐻 = (LHyp‘𝐾)    &    = ((ocH‘𝐾)‘𝑊)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝑉 = (Base‘𝑈)    &   𝑌 = (LSHyp‘𝑈)    &   𝐹 = (LFnl‘𝑈)    &   𝐿 = (LKer‘𝑈)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝐺𝐹)       (𝜑 → (( ‘( ‘(𝐿𝐺))) ≠ 𝑉 ↔ ( ‘( ‘(𝐿𝐺))) ∈ 𝑌))
 
Theoremdochkrshp2 38522 Properties of the closure of the kernel of a functional. (Contributed by NM, 1-Jan-2015.)
𝐻 = (LHyp‘𝐾)    &    = ((ocH‘𝐾)‘𝑊)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝑉 = (Base‘𝑈)    &   𝑌 = (LSHyp‘𝑈)    &   𝐹 = (LFnl‘𝑈)    &   𝐿 = (LKer‘𝑈)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝐺𝐹)       (𝜑 → (( ‘( ‘(𝐿𝐺))) ≠ 𝑉 ↔ (( ‘( ‘(𝐿𝐺))) = (𝐿𝐺) ∧ (𝐿𝐺) ∈ 𝑌)))
 
Theoremdochkrshp3 38523 Properties of the closure of the kernel of a functional. (Contributed by NM, 1-Jan-2015.)
𝐻 = (LHyp‘𝐾)    &    = ((ocH‘𝐾)‘𝑊)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝑉 = (Base‘𝑈)    &   𝐹 = (LFnl‘𝑈)    &   𝐿 = (LKer‘𝑈)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝐺𝐹)       (𝜑 → (( ‘( ‘(𝐿𝐺))) ≠ 𝑉 ↔ (( ‘( ‘(𝐿𝐺))) = (𝐿𝐺) ∧ (𝐿𝐺) ≠ 𝑉)))
 
Theoremdochkrshp4 38524 Properties of the closure of the kernel of a functional. (Contributed by NM, 1-Jan-2015.)
𝐻 = (LHyp‘𝐾)    &    = ((ocH‘𝐾)‘𝑊)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝑉 = (Base‘𝑈)    &   𝐹 = (LFnl‘𝑈)    &   𝐿 = (LKer‘𝑈)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝐺𝐹)       (𝜑 → (( ‘( ‘(𝐿𝐺))) = (𝐿𝐺) ↔ (( ‘( ‘(𝐿𝐺))) ≠ 𝑉 ∨ (𝐿𝐺) = 𝑉)))
 
Theoremdochdmj1 38525 De Morgan-like law for subspace orthocomplement. (Contributed by NM, 5-Aug-2014.)
𝐻 = (LHyp‘𝐾)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝑉 = (Base‘𝑈)    &    = ((ocH‘𝐾)‘𝑊)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉𝑌𝑉) → ( ‘(𝑋𝑌)) = (( 𝑋) ∩ ( 𝑌)))
 
Theoremdochnoncon 38526 Law of noncontradiction. The intersection of a subspace and its orthocomplement is the zero subspace. (Contributed by NM, 16-Apr-2014.)
𝐻 = (LHyp‘𝐾)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝑆 = (LSubSp‘𝑈)    &    0 = (0g𝑈)    &    = ((ocH‘𝐾)‘𝑊)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑆) → (𝑋 ∩ ( 𝑋)) = { 0 })
 
Theoremdochnel2 38527 A nonzero member of a subspace doesn't belong to the orthocomplement of the subspace. (Contributed by NM, 28-Feb-2015.)
𝐻 = (LHyp‘𝐾)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝑆 = (LSubSp‘𝑈)    &    0 = (0g𝑈)    &    = ((ocH‘𝐾)‘𝑊)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝑇𝑆)    &   (𝜑𝑋 ∈ (𝑇 ∖ { 0 }))       (𝜑 → ¬ 𝑋 ∈ ( 𝑇))
 
Theoremdochnel 38528 A nonzero vector doesn't belong to the orthocomplement of its singleton. (Contributed by NM, 27-Oct-2014.)
𝐻 = (LHyp‘𝐾)    &    = ((ocH‘𝐾)‘𝑊)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝑉 = (Base‘𝑈)    &    0 = (0g𝑈)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))       (𝜑 → ¬ 𝑋 ∈ ( ‘{𝑋}))
 
Syntaxcdjh 38529 Extend class notation with subspace join for DVecH vector space.
class joinH
 
Definitiondf-djh 38530* Define (closed) subspace join for DVecH vector space. (Contributed by NM, 19-Jul-2014.)
joinH = (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ (𝑥 ∈ 𝒫 (Base‘((DVecH‘𝑘)‘𝑤)), 𝑦 ∈ 𝒫 (Base‘((DVecH‘𝑘)‘𝑤)) ↦ (((ocH‘𝑘)‘𝑤)‘((((ocH‘𝑘)‘𝑤)‘𝑥) ∩ (((ocH‘𝑘)‘𝑤)‘𝑦))))))
 
Theoremdjhffval 38531* Subspace join for DVecH vector space. (Contributed by NM, 19-Jul-2014.)
𝐻 = (LHyp‘𝐾)       (𝐾𝑋 → (joinH‘𝐾) = (𝑤𝐻 ↦ (𝑥 ∈ 𝒫 (Base‘((DVecH‘𝐾)‘𝑤)), 𝑦 ∈ 𝒫 (Base‘((DVecH‘𝐾)‘𝑤)) ↦ (((ocH‘𝐾)‘𝑤)‘((((ocH‘𝐾)‘𝑤)‘𝑥) ∩ (((ocH‘𝐾)‘𝑤)‘𝑦))))))
 
Theoremdjhfval 38532* Subspace join for DVecH vector space. (Contributed by NM, 19-Jul-2014.)
𝐻 = (LHyp‘𝐾)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝑉 = (Base‘𝑈)    &    = ((ocH‘𝐾)‘𝑊)    &    = ((joinH‘𝐾)‘𝑊)       ((𝐾𝑋𝑊𝐻) → = (𝑥 ∈ 𝒫 𝑉, 𝑦 ∈ 𝒫 𝑉 ↦ ( ‘(( 𝑥) ∩ ( 𝑦)))))
 
Theoremdjhval 38533 Subspace join for DVecH vector space. (Contributed by NM, 19-Jul-2014.)
𝐻 = (LHyp‘𝐾)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝑉 = (Base‘𝑈)    &    = ((ocH‘𝐾)‘𝑊)    &    = ((joinH‘𝐾)‘𝑊)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝑉𝑌𝑉)) → (𝑋 𝑌) = ( ‘(( 𝑋) ∩ ( 𝑌))))
 
Theoremdjhval2 38534 Value of subspace join for DVecH vector space. (Contributed by NM, 6-Aug-2014.)
𝐻 = (LHyp‘𝐾)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝑉 = (Base‘𝑈)    &    = ((ocH‘𝐾)‘𝑊)    &    = ((joinH‘𝐾)‘𝑊)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉𝑌𝑉) → (𝑋 𝑌) = ( ‘( ‘(𝑋𝑌))))
 
Theoremdjhcl 38535 Closure of subspace join for DVecH vector space. (Contributed by NM, 19-Jul-2014.)
𝐻 = (LHyp‘𝐾)    &   𝐼 = ((DIsoH‘𝐾)‘𝑊)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝑉 = (Base‘𝑈)    &    = ((joinH‘𝐾)‘𝑊)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝑉𝑌𝑉)) → (𝑋 𝑌) ∈ ran 𝐼)
 
Theoremdjhlj 38536 Transfer lattice join to DVecH vector space closed subspace join. (Contributed by NM, 19-Jul-2014.)
𝐵 = (Base‘𝐾)    &    = (join‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝐼 = ((DIsoH‘𝐾)‘𝑊)    &   𝐽 = ((joinH‘𝐾)‘𝑊)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵)) → (𝐼‘(𝑋 𝑌)) = ((𝐼𝑋)𝐽(𝐼𝑌)))
 
TheoremdjhljjN 38537 Lattice join in terms of DVecH vector space closed subspace join. (Contributed by NM, 17-Aug-2014.) (New usage is discouraged.)
𝐵 = (Base‘𝐾)    &    = (join‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝐼 = ((DIsoH‘𝐾)‘𝑊)    &   𝐽 = ((joinH‘𝐾)‘𝑊)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)       (𝜑 → (𝑋 𝑌) = (𝐼‘((𝐼𝑋)𝐽(𝐼𝑌))))
 
Theoremdjhjlj 38538 DVecH vector space closed subspace join in terms of lattice join. (Contributed by NM, 9-Aug-2014.)
= (join‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝐼 = ((DIsoH‘𝐾)‘𝑊)    &   𝐽 = ((joinH‘𝐾)‘𝑊)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝑋 ∈ ran 𝐼)    &   (𝜑𝑌 ∈ ran 𝐼)       (𝜑 → (𝑋𝐽𝑌) = (𝐼‘((𝐼𝑋) (𝐼𝑌))))
 
Theoremdjhj 38539 DVecH vector space closed subspace join in terms of lattice join. (Contributed by NM, 17-Aug-2014.)
= (join‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝐼 = ((DIsoH‘𝐾)‘𝑊)    &   𝐽 = ((joinH‘𝐾)‘𝑊)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝑋 ∈ ran 𝐼)    &   (𝜑𝑌 ∈ ran 𝐼)       (𝜑 → (𝐼‘(𝑋𝐽𝑌)) = ((𝐼𝑋) (𝐼𝑌)))
 
Theoremdjhcom 38540 Subspace join commutes. (Contributed by NM, 8-Aug-2014.)
𝐻 = (LHyp‘𝐾)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝑉 = (Base‘𝑈)    &    = ((joinH‘𝐾)‘𝑊)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝑋𝑉)    &   (𝜑𝑌𝑉)       (𝜑 → (𝑋 𝑌) = (𝑌 𝑋))
 
Theoremdjhspss 38541 Subspace span of union is a subset of subspace join. (Contributed by NM, 6-Aug-2014.)
𝐻 = (LHyp‘𝐾)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝑉 = (Base‘𝑈)    &   𝑁 = (LSpan‘𝑈)    &    = ((joinH‘𝐾)‘𝑊)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝑋𝑉)    &   (𝜑𝑌𝑉)       (𝜑 → (𝑁‘(𝑋𝑌)) ⊆ (𝑋 𝑌))
 
Theoremdjhsumss 38542 Subspace sum is a subset of subspace join. (Contributed by NM, 6-Aug-2014.)
𝐻 = (LHyp‘𝐾)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝑉 = (Base‘𝑈)    &    = (LSSum‘𝑈)    &    = ((joinH‘𝐾)‘𝑊)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝑋𝑉)    &   (𝜑𝑌𝑉)       (𝜑 → (𝑋 𝑌) ⊆ (𝑋 𝑌))
 
Theoremdihsumssj 38543 The subspace sum of two isomorphisms of lattice elements is less than the isomorphism of their lattice join. (Contributed by NM, 23-Sep-2014.)
𝐵 = (Base‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &    = (join‘𝐾)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &    = (LSSum‘𝑈)    &   𝐼 = ((DIsoH‘𝐾)‘𝑊)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)       (𝜑 → ((𝐼𝑋) (𝐼𝑌)) ⊆ (𝐼‘(𝑋 𝑌)))
 
TheoremdjhunssN 38544 Subspace union is a subset of subspace join. (Contributed by NM, 6-Aug-2014.) (New usage is discouraged.)
𝐻 = (LHyp‘𝐾)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝑉 = (Base‘𝑈)    &    = ((joinH‘𝐾)‘𝑊)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝑋𝑉)    &   (𝜑𝑌𝑉)       (𝜑 → (𝑋𝑌) ⊆ (𝑋 𝑌))
 
Theoremdochdmm1 38545 De Morgan-like law for closed subspace orthocomplement. (Contributed by NM, 13-Jan-2015.)
𝐻 = (LHyp‘𝐾)    &   𝐼 = ((DIsoH‘𝐾)‘𝑊)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝑉 = (Base‘𝑈)    &    = ((ocH‘𝐾)‘𝑊)    &    = ((joinH‘𝐾)‘𝑊)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝑋 ∈ ran 𝐼)    &   (𝜑𝑌 ∈ ran 𝐼)       (𝜑 → ( ‘(𝑋𝑌)) = (( 𝑋) ( 𝑌)))
 
Theoremdjhexmid 38546 Excluded middle property of DVecH vector space closed subspace join. (Contributed by NM, 22-Jul-2014.)
𝐻 = (LHyp‘𝐾)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝑉 = (Base‘𝑈)    &    = ((ocH‘𝐾)‘𝑊)    &    = ((joinH‘𝐾)‘𝑊)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉) → (𝑋 ( 𝑋)) = 𝑉)
 
Theoremdjh01 38547 Closed subspace join with zero. (Contributed by NM, 9-Aug-2014.)
𝐻 = (LHyp‘𝐾)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &    0 = (0g𝑈)    &   𝐼 = ((DIsoH‘𝐾)‘𝑊)    &    = ((joinH‘𝐾)‘𝑊)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝑋 ∈ ran 𝐼)       (𝜑 → (𝑋 { 0 }) = 𝑋)
 
Theoremdjh02 38548 Closed subspace join with zero. (Contributed by NM, 9-Aug-2014.)
𝐻 = (LHyp‘𝐾)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &    0 = (0g𝑈)    &   𝐼 = ((DIsoH‘𝐾)‘𝑊)    &    = ((joinH‘𝐾)‘𝑊)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝑋 ∈ ran 𝐼)       (𝜑 → ({ 0 } 𝑋) = 𝑋)
 
Theoremdjhlsmcl 38549 A closed subspace sum equals subspace join. (shjshseli 29269 analog.) (Contributed by NM, 13-Aug-2014.)
𝐻 = (LHyp‘𝐾)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝑉 = (Base‘𝑈)    &   𝑆 = (LSubSp‘𝑈)    &    = (LSSum‘𝑈)    &   𝐼 = ((DIsoH‘𝐾)‘𝑊)    &    = ((joinH‘𝐾)‘𝑊)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝑋𝑆)    &   (𝜑𝑌𝑆)       (𝜑 → ((𝑋 𝑌) ∈ ran 𝐼 ↔ (𝑋 𝑌) = (𝑋 𝑌)))
 
Theoremdjhcvat42 38550* A covering property. (cvrat42 36579 analog.) (Contributed by NM, 17-Aug-2014.)
𝐻 = (LHyp‘𝐾)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝑉 = (Base‘𝑈)    &    0 = (0g𝑈)    &   𝑁 = (LSpan‘𝑈)    &   𝐼 = ((DIsoH‘𝐾)‘𝑊)    &    = ((joinH‘𝐾)‘𝑊)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝑆 ∈ ran 𝐼)    &   (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))    &   (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))       (𝜑 → ((𝑆 ≠ { 0 } ∧ (𝑁‘{𝑋}) ⊆ (𝑆 (𝑁‘{𝑌}))) → ∃𝑧 ∈ (𝑉 ∖ { 0 })((𝑁‘{𝑧}) ⊆ 𝑆 ∧ (𝑁‘{𝑋}) ⊆ ((𝑁‘{𝑧}) (𝑁‘{𝑌})))))
 
Theoremdihjatb 38551 Isomorphism H of lattice join of two atoms under the fiducial hyperplane. (Contributed by NM, 23-Sep-2014.)
= (le‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &    = (join‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &    = (LSSum‘𝑈)    &   𝐼 = ((DIsoH‘𝐾)‘𝑊)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑 → (𝑃𝐴𝑃 𝑊))    &   (𝜑 → (𝑄𝐴𝑄 𝑊))       (𝜑 → (𝐼‘(𝑃 𝑄)) = ((𝐼𝑃) (𝐼𝑄)))
 
Theoremdihjatc 38552 Isomorphism H of lattice join of an element under the fiducial hyperplane with atom not under it. (Contributed by NM, 26-Aug-2014.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &    = (join‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &    = (LSSum‘𝑈)    &   𝐼 = ((DIsoH‘𝐾)‘𝑊)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑 → (𝑋𝐵𝑋 𝑊))    &   (𝜑 → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))       (𝜑 → (𝐼‘(𝑋 𝑃)) = ((𝐼𝑋) (𝐼𝑃)))
 
Theoremdihjatcclem1 38553 Lemma for isomorphism H of lattice join of two atoms not under the fiducial hyperplane. (Contributed by NM, 26-Sep-2014.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &    = (LSSum‘𝑈)    &   𝐼 = ((DIsoH‘𝐾)‘𝑊)    &   𝑉 = ((𝑃 𝑄) 𝑊)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑 → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))    &   (𝜑 → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))       (𝜑 → (𝐼‘(𝑃 𝑄)) = (((𝐼𝑃) (𝐼𝑄)) (𝐼𝑉)))
 
Theoremdihjatcclem2 38554 Lemma for isomorphism H of lattice join of two atoms not under the fiducial hyperplane. (Contributed by NM, 26-Sep-2014.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &    = (LSSum‘𝑈)    &   𝐼 = ((DIsoH‘𝐾)‘𝑊)    &   𝑉 = ((𝑃 𝑄) 𝑊)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑 → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))    &   (𝜑 → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))    &   (𝜑 → (𝐼𝑉) ⊆ ((𝐼𝑃) (𝐼𝑄)))       (𝜑 → (𝐼‘(𝑃 𝑄)) = ((𝐼𝑃) (𝐼𝑄)))
 
Theoremdihjatcclem3 38555* Lemma for dihjatcc 38557. (Contributed by NM, 28-Sep-2014.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &    = (LSSum‘𝑈)    &   𝐼 = ((DIsoH‘𝐾)‘𝑊)    &   𝑉 = ((𝑃 𝑄) 𝑊)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑 → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))    &   (𝜑 → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))    &   𝐶 = ((oc‘𝐾)‘𝑊)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)    &   𝐸 = ((TEndo‘𝐾)‘𝑊)    &   𝐺 = (𝑑𝑇 (𝑑𝐶) = 𝑃)    &   𝐷 = (𝑑𝑇 (𝑑𝐶) = 𝑄)       (𝜑 → (𝑅‘(𝐺𝐷)) = 𝑉)
 
Theoremdihjatcclem4 38556* Lemma for isomorphism H of lattice join of two atoms not under the fiducial hyperplane. (Contributed by NM, 29-Sep-2014.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &    = (LSSum‘𝑈)    &   𝐼 = ((DIsoH‘𝐾)‘𝑊)    &   𝑉 = ((𝑃 𝑄) 𝑊)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑 → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))    &   (𝜑 → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))    &   𝐶 = ((oc‘𝐾)‘𝑊)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)    &   𝐸 = ((TEndo‘𝐾)‘𝑊)    &   𝐺 = (𝑑𝑇 (𝑑𝐶) = 𝑃)    &   𝐷 = (𝑑𝑇 (𝑑𝐶) = 𝑄)    &   𝑁 = (𝑎𝐸 ↦ (𝑑𝑇(𝑎𝑑)))    &    0 = (𝑑𝑇 ↦ ( I ↾ 𝐵))    &   𝐽 = (𝑎𝐸, 𝑏𝐸 ↦ (𝑑𝑇 ↦ ((𝑎𝑑) ∘ (𝑏𝑑))))       (𝜑 → (𝐼𝑉) ⊆ ((𝐼𝑃) (𝐼𝑄)))
 
Theoremdihjatcc 38557 Isomorphism H of lattice join of two atoms not under the fiducial hyperplane. (Contributed by NM, 29-Sep-2014.)
= (le‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &    = (join‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &    = (LSSum‘𝑈)    &   𝐼 = ((DIsoH‘𝐾)‘𝑊)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑 → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))    &   (𝜑 → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))       (𝜑 → (𝐼‘(𝑃 𝑄)) = ((𝐼𝑃) (𝐼𝑄)))
 
Theoremdihjat 38558 Isomorphism H of lattice join of two atoms. (Contributed by NM, 29-Sep-2014.)
𝐻 = (LHyp‘𝐾)    &    = (join‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &    = (LSSum‘𝑈)    &   𝐼 = ((DIsoH‘𝐾)‘𝑊)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝑃𝐴)    &   (𝜑𝑄𝐴)       (𝜑 → (𝐼‘(𝑃 𝑄)) = ((𝐼𝑃) (𝐼𝑄)))
 
Theoremdihprrnlem1N 38559 Lemma for dihprrn 38561, showing one of 4 cases. (Contributed by NM, 30-Aug-2014.) (New usage is discouraged.)
𝐻 = (LHyp‘𝐾)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝑉 = (Base‘𝑈)    &   𝑁 = (LSpan‘𝑈)    &   𝐼 = ((DIsoH‘𝐾)‘𝑊)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝑋𝑉)    &   (𝜑𝑌𝑉)    &    = (le‘𝐾)    &    0 = (0g𝑈)    &   (𝜑𝑌0 )    &   (𝜑 → (𝐼‘(𝑁‘{𝑋})) 𝑊)    &   (𝜑 → ¬ (𝐼‘(𝑁‘{𝑌})) 𝑊)       (𝜑 → (𝑁‘{𝑋, 𝑌}) ∈ ran 𝐼)
 
Theoremdihprrnlem2 38560 Lemma for dihprrn 38561. (Contributed by NM, 29-Sep-2014.)
𝐻 = (LHyp‘𝐾)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝑉 = (Base‘𝑈)    &   𝑁 = (LSpan‘𝑈)    &   𝐼 = ((DIsoH‘𝐾)‘𝑊)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝑋𝑉)    &   (𝜑𝑌𝑉)    &    0 = (0g𝑈)    &   (𝜑𝑋0 )    &   (𝜑𝑌0 )       (𝜑 → (𝑁‘{𝑋, 𝑌}) ∈ ran 𝐼)
 
Theoremdihprrn 38561 The span of a vector pair belongs to the range of isomorphism H i.e. is a closed subspace. (Contributed by NM, 29-Sep-2014.)
𝐻 = (LHyp‘𝐾)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝑉 = (Base‘𝑈)    &   𝑁 = (LSpan‘𝑈)    &   𝐼 = ((DIsoH‘𝐾)‘𝑊)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝑋𝑉)    &   (𝜑𝑌𝑉)       (𝜑 → (𝑁‘{𝑋, 𝑌}) ∈ ran 𝐼)
 
Theoremdjhlsmat 38562 The sum of two subspace atoms equals their join. TODO: seems convoluted to go via dihprrn 38561; should we directly use dihjat 38558? (Contributed by NM, 13-Aug-2014.)
𝐻 = (LHyp‘𝐾)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝑉 = (Base‘𝑈)    &    = (LSSum‘𝑈)    &   𝑁 = (LSpan‘𝑈)    &   𝐼 = ((DIsoH‘𝐾)‘𝑊)    &    = ((joinH‘𝐾)‘𝑊)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝑋𝑉)    &   (𝜑𝑌𝑉)       (𝜑 → ((𝑁‘{𝑋}) (𝑁‘{𝑌})) = ((𝑁‘{𝑋}) (𝑁‘{𝑌})))
 
Theoremdihjat1lem 38563 Subspace sum of a closed subspace and an atom. (pmapjat1 36988 analog.) TODO: merge into dihjat1 38564? (Contributed by NM, 18-Aug-2014.)
𝐻 = (LHyp‘𝐾)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝑉 = (Base‘𝑈)    &    = (LSSum‘𝑈)    &   𝑁 = (LSpan‘𝑈)    &   𝐼 = ((DIsoH‘𝐾)‘𝑊)    &    = ((joinH‘𝐾)‘𝑊)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝑋 ∈ ran 𝐼)    &    0 = (0g𝑈)    &   (𝜑𝑇 ∈ (𝑉 ∖ { 0 }))       (𝜑 → (𝑋 (𝑁‘{𝑇})) = (𝑋 (𝑁‘{𝑇})))
 
Theoremdihjat1 38564 Subspace sum of a closed subspace and an atom. (pmapjat1 36988 analog.) (Contributed by NM, 1-Oct-2014.)
𝐻 = (LHyp‘𝐾)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝑉 = (Base‘𝑈)    &    = (LSSum‘𝑈)    &   𝑁 = (LSpan‘𝑈)    &   𝐼 = ((DIsoH‘𝐾)‘𝑊)    &    = ((joinH‘𝐾)‘𝑊)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝑋 ∈ ran 𝐼)    &   (𝜑𝑇𝑉)       (𝜑 → (𝑋 (𝑁‘{𝑇})) = (𝑋 (𝑁‘{𝑇})))
 
Theoremdihsmsprn 38565 Subspace sum of a closed subspace and the span of a singleton. (Contributed by NM, 17-Jan-2015.)
𝐻 = (LHyp‘𝐾)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝑉 = (Base‘𝑈)    &    = (LSSum‘𝑈)    &   𝑁 = (LSpan‘𝑈)    &   𝐼 = ((DIsoH‘𝐾)‘𝑊)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝑋 ∈ ran 𝐼)    &   (𝜑𝑇𝑉)       (𝜑 → (𝑋 (𝑁‘{𝑇})) ∈ ran 𝐼)
 
Theoremdihjat2 38566 The subspace sum of a closed subspace and an atom is the same as their subspace join. (Contributed by NM, 1-Oct-2014.)
𝐻 = (LHyp‘𝐾)    &   𝐼 = ((DIsoH‘𝐾)‘𝑊)    &    = ((joinH‘𝐾)‘𝑊)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &    = (LSSum‘𝑈)    &   𝐴 = (LSAtoms‘𝑈)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝑋 ∈ ran 𝐼)    &   (𝜑𝑄𝐴)       (𝜑 → (𝑋 𝑄) = (𝑋 𝑄))
 
Theoremdihjat3 38567 Isomorphism H of lattice join with an atom. (Contributed by NM, 25-Apr-2015.)
𝐵 = (Base‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &    = (join‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &    = (LSSum‘𝑈)    &   𝐼 = ((DIsoH‘𝐾)‘𝑊)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝑋𝐵)    &   (𝜑𝑃𝐴)       (𝜑 → (𝐼‘(𝑋 𝑃)) = ((𝐼𝑋) (𝐼𝑃)))
 
Theoremdihjat4 38568 Transfer the subspace sum of a closed subspace and an atom back to lattice join. (Contributed by NM, 25-Apr-2015.)
= (join‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝐼 = ((DIsoH‘𝐾)‘𝑊)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &    = (LSSum‘𝑈)    &   𝐴 = (LSAtoms‘𝑈)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝑋 ∈ ran 𝐼)    &   (𝜑𝑄𝐴)       (𝜑 → (𝑋 𝑄) = (𝐼‘((𝐼𝑋) (𝐼𝑄))))
 
Theoremdihjat6 38569 Transfer the subspace sum of a closed subspace and an atom back to lattice join. (Contributed by NM, 25-Apr-2015.)
= (join‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝐼 = ((DIsoH‘𝐾)‘𝑊)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &    = (LSSum‘𝑈)    &   𝐴 = (LSAtoms‘𝑈)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝑋 ∈ ran 𝐼)    &   (𝜑𝑄𝐴)       (𝜑 → (𝐼‘(𝑋 𝑄)) = ((𝐼𝑋) (𝐼𝑄)))
 
Theoremdihsmsnrn 38570 The subspace sum of two singleton spans is closed. (Contributed by NM, 27-Feb-2015.)
𝐻 = (LHyp‘𝐾)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝑉 = (Base‘𝑈)    &    = (LSSum‘𝑈)    &   𝑁 = (LSpan‘𝑈)    &   𝐼 = ((DIsoH‘𝐾)‘𝑊)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝑋𝑉)    &   (𝜑𝑌𝑉)       (𝜑 → ((𝑁‘{𝑋}) (𝑁‘{𝑌})) ∈ ran 𝐼)
 
Theoremdihsmatrn 38571 The subspace sum of a closed subspace and an atom is closed. TODO: see if proof at http://math.stackexchange.com/a/1233211/50776 and Mon, 13 Apr 2015 20:44:07 -0400 email could be used instead of this and dihjat2 38566. (Contributed by NM, 15-Jan-2015.)
𝐻 = (LHyp‘𝐾)    &   𝐼 = ((DIsoH‘𝐾)‘𝑊)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &    = (LSSum‘𝑈)    &   𝐴 = (LSAtoms‘𝑈)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝑋 ∈ ran 𝐼)    &   (𝜑𝑄𝐴)       (𝜑 → (𝑋 𝑄) ∈ ran 𝐼)
 
Theoremdihjat5N 38572 Transfer lattice join with atom to subspace sum. (Contributed by NM, 25-Apr-2015.) (New usage is discouraged.)
𝐵 = (Base‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &    = (join‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &    = (LSSum‘𝑈)    &   𝐼 = ((DIsoH‘𝐾)‘𝑊)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝑋𝐵)    &   (𝜑𝑃𝐴)       (𝜑 → (𝑋 𝑃) = (𝐼‘((𝐼𝑋) (𝐼𝑃))))
 
Theoremdvh4dimat 38573* There is an atom that is outside the subspace sum of 3 others. (Contributed by NM, 25-Apr-2015.)
𝐻 = (LHyp‘𝐾)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &    = (LSSum‘𝑈)    &   𝐴 = (LSAtoms‘𝑈)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝑃𝐴)    &   (𝜑𝑄𝐴)    &   (𝜑𝑅𝐴)       (𝜑 → ∃𝑠𝐴 ¬ 𝑠 ⊆ ((𝑃 𝑄) 𝑅))
 
Theoremdvh3dimatN 38574* There is an atom that is outside the subspace sum of 2 others. (Contributed by NM, 25-Apr-2015.) (New usage is discouraged.)
𝐻 = (LHyp‘𝐾)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &    = (LSSum‘𝑈)    &   𝐴 = (LSAtoms‘𝑈)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝑃𝐴)    &   (𝜑𝑄𝐴)       (𝜑 → ∃𝑠𝐴 ¬ 𝑠 ⊆ (𝑃 𝑄))
 
Theoremdvh2dimatN 38575* Given an atom, there exists another. (Contributed by NM, 25-Apr-2015.) (New usage is discouraged.)
𝐻 = (LHyp‘𝐾)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝐴 = (LSAtoms‘𝑈)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝑃𝐴)       (𝜑 → ∃𝑠𝐴 𝑠𝑃)
 
Theoremdvh1dimat 38576* There exists an atom. (Contributed by NM, 25-Apr-2015.)
𝐻 = (LHyp‘𝐾)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝐴 = (LSAtoms‘𝑈)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))       (𝜑 → ∃𝑠 𝑠𝐴)
 
Theoremdvh1dim 38577* There exists a nonzero vector. (Contributed by NM, 26-Apr-2015.)
𝐻 = (LHyp‘𝐾)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝑉 = (Base‘𝑈)    &    0 = (0g𝑈)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))       (𝜑 → ∃𝑧𝑉 𝑧0 )
 
Theoremdvh4dimlem 38578* Lemma for dvh4dimN 38582. (Contributed by NM, 22-May-2015.)
𝐻 = (LHyp‘𝐾)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝑉 = (Base‘𝑈)    &   𝑁 = (LSpan‘𝑈)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝑋𝑉)    &   (𝜑𝑌𝑉)    &   (𝜑𝑍𝑉)    &    0 = (0g𝑈)    &   (𝜑𝑋0 )    &   (𝜑𝑌0 )    &   (𝜑𝑍0 )       (𝜑 → ∃𝑧𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌, 𝑍}))
 
Theoremdvhdimlem 38579* Lemma for dvh2dim 38580 and dvh3dim 38581. TODO: make this obsolete and use dvh4dimlem 38578 directly? (Contributed by NM, 24-Apr-2015.)
𝐻 = (LHyp‘𝐾)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝑉 = (Base‘𝑈)    &   𝑁 = (LSpan‘𝑈)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝑋𝑉)    &   (𝜑𝑌𝑉)    &    0 = (0g𝑈)    &   (𝜑𝑋0 )    &   (𝜑𝑌0 )       (𝜑 → ∃𝑧𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}))
 
Theoremdvh2dim 38580* There is a vector that is outside the span of another. (Contributed by NM, 25-Apr-2015.)
𝐻 = (LHyp‘𝐾)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝑉 = (Base‘𝑈)    &   𝑁 = (LSpan‘𝑈)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝑋𝑉)       (𝜑 → ∃𝑧𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋}))
 
Theoremdvh3dim 38581* There is a vector that is outside the span of 2 others. (Contributed by NM, 24-Apr-2015.)
𝐻 = (LHyp‘𝐾)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝑉 = (Base‘𝑈)    &   𝑁 = (LSpan‘𝑈)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝑋𝑉)    &   (𝜑𝑌𝑉)       (𝜑 → ∃𝑧𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}))
 
Theoremdvh4dimN 38582* There is a vector that is outside the span of 3 others. (Contributed by NM, 22-May-2015.) (New usage is discouraged.)
𝐻 = (LHyp‘𝐾)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝑉 = (Base‘𝑈)    &   𝑁 = (LSpan‘𝑈)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝑋𝑉)    &   (𝜑𝑌𝑉)    &   (𝜑𝑍𝑉)       (𝜑 → ∃𝑧𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌, 𝑍}))
 
Theoremdvh3dim2 38583* There is a vector that is outside of 2 spans with a common vector. (Contributed by NM, 13-May-2015.)
𝐻 = (LHyp‘𝐾)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝑉 = (Base‘𝑈)    &   𝑁 = (LSpan‘𝑈)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝑋𝑉)    &   (𝜑𝑌𝑉)    &   (𝜑𝑍𝑉)       (𝜑 → ∃𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑍})))
 
Theoremdvh3dim3N 38584* There is a vector that is outside of 2 spans. TODO: decide to use either this or dvh3dim2 38583 everywhere. If this one is needed, make dvh3dim2 38583 into a lemma. (Contributed by NM, 21-May-2015.) (New usage is discouraged.)
𝐻 = (LHyp‘𝐾)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝑉 = (Base‘𝑈)    &   𝑁 = (LSpan‘𝑈)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝑋𝑉)    &   (𝜑𝑌𝑉)    &   (𝜑𝑍𝑉)    &   (𝜑𝑇𝑉)       (𝜑 → ∃𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑍, 𝑇})))
 
Theoremdochsnnz 38585 The orthocomplement of a singleton is nonzero. (Contributed by NM, 13-Jun-2015.)
𝐻 = (LHyp‘𝐾)    &    = ((ocH‘𝐾)‘𝑊)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝑉 = (Base‘𝑈)    &    0 = (0g𝑈)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝑋𝑉)       (𝜑 → ( ‘{𝑋}) ≠ { 0 })
 
Theoremdochsatshp 38586 The orthocomplement of a subspace atom is a hyperplane. (Contributed by NM, 27-Jul-2014.) (Revised by Mario Carneiro, 1-Oct-2014.)
𝐻 = (LHyp‘𝐾)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &    = ((ocH‘𝐾)‘𝑊)    &   𝐴 = (LSAtoms‘𝑈)    &   𝑌 = (LSHyp‘𝑈)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝑄𝐴)       (𝜑 → ( 𝑄) ∈ 𝑌)
 
Theoremdochsatshpb 38587 The orthocomplement of a subspace atom is a hyperplane. (Contributed by NM, 29-Oct-2014.)
𝐻 = (LHyp‘𝐾)    &    = ((ocH‘𝐾)‘𝑊)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝑆 = (LSubSp‘𝑈)    &   𝐴 = (LSAtoms‘𝑈)    &   𝑌 = (LSHyp‘𝑈)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝑄𝑆)       (𝜑 → (𝑄𝐴 ↔ ( 𝑄) ∈ 𝑌))
 
Theoremdochsnshp 38588 The orthocomplement of a nonzero singleton is a hyperplane. (Contributed by NM, 3-Jan-2015.)
𝐻 = (LHyp‘𝐾)    &    = ((ocH‘𝐾)‘𝑊)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝑉 = (Base‘𝑈)    &    0 = (0g𝑈)    &   𝑌 = (LSHyp‘𝑈)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))       (𝜑 → ( ‘{𝑋}) ∈ 𝑌)
 
Theoremdochshpsat 38589 A hyperplane is closed iff its orthocomplement is an atom. (Contributed by NM, 29-Oct-2014.)
𝐻 = (LHyp‘𝐾)    &    = ((ocH‘𝐾)‘𝑊)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝐴 = (LSAtoms‘𝑈)    &   𝑌 = (LSHyp‘𝑈)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝑋𝑌)       (𝜑 → (( ‘( 𝑋)) = 𝑋 ↔ ( 𝑋) ∈ 𝐴))
 
Theoremdochkrsat 38590 The orthocomplement of a kernel is an atom iff it is nonzero. (Contributed by NM, 1-Nov-2014.)
𝐻 = (LHyp‘𝐾)    &    = ((ocH‘𝐾)‘𝑊)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝐴 = (LSAtoms‘𝑈)    &   𝐹 = (LFnl‘𝑈)    &   𝐿 = (LKer‘𝑈)    &    0 = (0g𝑈)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝐺𝐹)       (𝜑 → (( ‘(𝐿𝐺)) ≠ { 0 } ↔ ( ‘(𝐿𝐺)) ∈ 𝐴))
 
Theoremdochkrsat2 38591 The orthocomplement of a kernel is an atom iff the double orthocomplement is not the vector space. (Contributed by NM, 1-Jan-2015.)
𝐻 = (LHyp‘𝐾)    &    = ((ocH‘𝐾)‘𝑊)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝑉 = (Base‘𝑈)    &   𝐴 = (LSAtoms‘𝑈)    &   𝐹 = (LFnl‘𝑈)    &   𝐿 = (LKer‘𝑈)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝐺𝐹)       (𝜑 → (( ‘( ‘(𝐿𝐺))) ≠ 𝑉 ↔ ( ‘(𝐿𝐺)) ∈ 𝐴))
 
Theoremdochsat0 38592 The orthocomplement of a kernel is either an atom or zero. (Contributed by NM, 29-Jan-2015.)
𝐻 = (LHyp‘𝐾)    &    = ((ocH‘𝐾)‘𝑊)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &    0 = (0g𝑈)    &   𝐴 = (LSAtoms‘𝑈)    &   𝐹 = (LFnl‘𝑈)    &   𝐿 = (LKer‘𝑈)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝐺𝐹)       (𝜑 → (( ‘(𝐿𝐺)) ∈ 𝐴 ∨ ( ‘(𝐿𝐺)) = { 0 }))
 
Theoremdochkrsm 38593 The subspace sum of a closed subspace and a kernel orthocomplement is closed. (djhlsmcl 38549 can be used to convert sum to join.) (Contributed by NM, 29-Jan-2015.)
𝐻 = (LHyp‘𝐾)    &   𝐼 = ((DIsoH‘𝐾)‘𝑊)    &    = ((ocH‘𝐾)‘𝑊)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &    = (LSSum‘𝑈)    &   𝐹 = (LFnl‘𝑈)    &   𝐿 = (LKer‘𝑈)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝑋 ∈ ran 𝐼)    &   (𝜑𝐺𝐹)       (𝜑 → (𝑋 ( ‘(𝐿𝐺))) ∈ ran 𝐼)
 
Theoremdochexmidat 38594 Special case of excluded middle for the singleton of a vector. (Contributed by NM, 27-Oct-2014.)
𝐻 = (LHyp‘𝐾)    &    = ((ocH‘𝐾)‘𝑊)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝑉 = (Base‘𝑈)    &    0 = (0g𝑈)    &   𝑁 = (LSpan‘𝑈)    &    = (LSSum‘𝑈)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))       (𝜑 → (( ‘{𝑋}) (𝑁‘{𝑋})) = 𝑉)
 
Theoremdochexmidlem1 38595 Lemma for dochexmid 38603. Holland's proof implicitly requires 𝑞𝑟, which we prove here. (Contributed by NM, 14-Jan-2015.)
𝐻 = (LHyp‘𝐾)    &    = ((ocH‘𝐾)‘𝑊)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝑉 = (Base‘𝑈)    &   𝑆 = (LSubSp‘𝑈)    &   𝑁 = (LSpan‘𝑈)    &    = (LSSum‘𝑈)    &   𝐴 = (LSAtoms‘𝑈)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝑋𝑆)    &   (𝜑𝑝𝐴)    &   (𝜑𝑞𝐴)    &   (𝜑𝑟𝐴)    &   (𝜑𝑞 ⊆ ( 𝑋))    &   (𝜑𝑟𝑋)       (𝜑𝑞𝑟)
 
Theoremdochexmidlem2 38596 Lemma for dochexmid 38603. (Contributed by NM, 14-Jan-2015.)
𝐻 = (LHyp‘𝐾)    &    = ((ocH‘𝐾)‘𝑊)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝑉 = (Base‘𝑈)    &   𝑆 = (LSubSp‘𝑈)    &   𝑁 = (LSpan‘𝑈)    &    = (LSSum‘𝑈)    &   𝐴 = (LSAtoms‘𝑈)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝑋𝑆)    &   (𝜑𝑝𝐴)    &   (𝜑𝑞𝐴)    &   (𝜑𝑟𝐴)    &   (𝜑𝑞 ⊆ ( 𝑋))    &   (𝜑𝑟𝑋)    &   (𝜑𝑝 ⊆ (𝑟 𝑞))       (𝜑𝑝 ⊆ (𝑋 ( 𝑋)))
 
Theoremdochexmidlem3 38597 Lemma for dochexmid 38603. Use atom exchange lsatexch1 36181 to swap 𝑝 and 𝑞. (Contributed by NM, 14-Jan-2015.)
𝐻 = (LHyp‘𝐾)    &    = ((ocH‘𝐾)‘𝑊)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝑉 = (Base‘𝑈)    &   𝑆 = (LSubSp‘𝑈)    &   𝑁 = (LSpan‘𝑈)    &    = (LSSum‘𝑈)    &   𝐴 = (LSAtoms‘𝑈)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝑋𝑆)    &   (𝜑𝑝𝐴)    &   (𝜑𝑞𝐴)    &   (𝜑𝑟𝐴)    &   (𝜑𝑞 ⊆ ( 𝑋))    &   (𝜑𝑟𝑋)    &   (𝜑𝑞 ⊆ (𝑟 𝑝))       (𝜑𝑝 ⊆ (𝑋 ( 𝑋)))
 
Theoremdochexmidlem4 38598 Lemma for dochexmid 38603. (Contributed by NM, 15-Jan-2015.)
𝐻 = (LHyp‘𝐾)    &    = ((ocH‘𝐾)‘𝑊)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝑉 = (Base‘𝑈)    &   𝑆 = (LSubSp‘𝑈)    &   𝑁 = (LSpan‘𝑈)    &    = (LSSum‘𝑈)    &   𝐴 = (LSAtoms‘𝑈)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝑋𝑆)    &   (𝜑𝑝𝐴)    &   (𝜑𝑞𝐴)    &    0 = (0g𝑈)    &   𝑀 = (𝑋 𝑝)    &   (𝜑𝑋 ≠ { 0 })    &   (𝜑𝑞 ⊆ (( 𝑋) ∩ 𝑀))       (𝜑𝑝 ⊆ (𝑋 ( 𝑋)))
 
Theoremdochexmidlem5 38599 Lemma for dochexmid 38603. (Contributed by NM, 15-Jan-2015.)
𝐻 = (LHyp‘𝐾)    &    = ((ocH‘𝐾)‘𝑊)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝑉 = (Base‘𝑈)    &   𝑆 = (LSubSp‘𝑈)    &   𝑁 = (LSpan‘𝑈)    &    = (LSSum‘𝑈)    &   𝐴 = (LSAtoms‘𝑈)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝑋𝑆)    &   (𝜑𝑝𝐴)    &    0 = (0g𝑈)    &   𝑀 = (𝑋 𝑝)    &   (𝜑𝑋 ≠ { 0 })    &   (𝜑 → ¬ 𝑝 ⊆ (𝑋 ( 𝑋)))       (𝜑 → (( 𝑋) ∩ 𝑀) = { 0 })
 
Theoremdochexmidlem6 38600 Lemma for dochexmid 38603. (Contributed by NM, 15-Jan-2015.)
𝐻 = (LHyp‘𝐾)    &    = ((ocH‘𝐾)‘𝑊)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝑉 = (Base‘𝑈)    &   𝑆 = (LSubSp‘𝑈)    &   𝑁 = (LSpan‘𝑈)    &    = (LSSum‘𝑈)    &   𝐴 = (LSAtoms‘𝑈)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝑋𝑆)    &   (𝜑𝑝𝐴)    &    0 = (0g𝑈)    &   𝑀 = (𝑋 𝑝)    &   (𝜑𝑋 ≠ { 0 })    &   (𝜑 → ( ‘( 𝑋)) = 𝑋)    &   (𝜑 → ¬ 𝑝 ⊆ (𝑋 ( 𝑋)))       (𝜑𝑀 = 𝑋)
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42900 430 42901-43000 431 43001-43100 432 43101-43200 433 43201-43300 434 43301-43400 435 43401-43500 436 43501-43600 437 43601-43700 438 43701-43800 439 43801-43900 440 43901-44000 441 44001-44100 442 44101-44200 443 44201-44300 444 44301-44400 445 44401-44500 446 44501-44600 447 44601-44700 448 44701-44800 449 44801-44900 450 44901-44907
  Copyright terms: Public domain < Previous  Next >