| Metamath
Proof Explorer Theorem List (p. 386 of 499) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30893) |
(30894-32416) |
(32417-49836) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | symrelcoss3 38501 | The class of cosets by 𝑅 is symmetric, see dfsymrel3 38586. (Contributed by Peter Mazsa, 28-Mar-2019.) (Revised by Peter Mazsa, 17-Sep-2021.) |
| ⊢ (∀𝑥∀𝑦(𝑥 ≀ 𝑅𝑦 → 𝑦 ≀ 𝑅𝑥) ∧ Rel ≀ 𝑅) | ||
| Theorem | symrelcoss2 38502 | The class of cosets by 𝑅 is symmetric, see dfsymrel2 38585. (Contributed by Peter Mazsa, 27-Dec-2018.) |
| ⊢ (◡ ≀ 𝑅 ⊆ ≀ 𝑅 ∧ Rel ≀ 𝑅) | ||
| Theorem | cossssid 38503 | Equivalent expressions for the class of cosets by 𝑅 to be a subset of the identity class. (Contributed by Peter Mazsa, 27-Jul-2021.) |
| ⊢ ( ≀ 𝑅 ⊆ I ↔ ≀ 𝑅 ⊆ ( I ∩ (dom ≀ 𝑅 × ran ≀ 𝑅))) | ||
| Theorem | cossssid2 38504* | Equivalent expressions for the class of cosets by 𝑅 to be a subset of the identity class. (Contributed by Peter Mazsa, 10-Mar-2019.) |
| ⊢ ( ≀ 𝑅 ⊆ I ↔ ∀𝑥∀𝑦(∃𝑢(𝑢𝑅𝑥 ∧ 𝑢𝑅𝑦) → 𝑥 = 𝑦)) | ||
| Theorem | cossssid3 38505* | Equivalent expressions for the class of cosets by 𝑅 to be a subset of the identity class. (Contributed by Peter Mazsa, 10-Mar-2019.) |
| ⊢ ( ≀ 𝑅 ⊆ I ↔ ∀𝑢∀𝑥∀𝑦((𝑢𝑅𝑥 ∧ 𝑢𝑅𝑦) → 𝑥 = 𝑦)) | ||
| Theorem | cossssid4 38506* | Equivalent expressions for the class of cosets by 𝑅 to be a subset of the identity class. (Contributed by Peter Mazsa, 31-Aug-2021.) |
| ⊢ ( ≀ 𝑅 ⊆ I ↔ ∀𝑢∃*𝑥 𝑢𝑅𝑥) | ||
| Theorem | cossssid5 38507* | Equivalent expressions for the class of cosets by 𝑅 to be a subset of the identity class. (Contributed by Peter Mazsa, 5-Sep-2021.) |
| ⊢ ( ≀ 𝑅 ⊆ I ↔ ∀𝑥 ∈ ran 𝑅∀𝑦 ∈ ran 𝑅(𝑥 = 𝑦 ∨ ([𝑥]◡𝑅 ∩ [𝑦]◡𝑅) = ∅)) | ||
| Theorem | brcosscnv 38508* | 𝐴 and 𝐵 are cosets by converse 𝑅: a binary relation. (Contributed by Peter Mazsa, 23-Jan-2019.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ≀ ◡𝑅𝐵 ↔ ∃𝑥(𝐴𝑅𝑥 ∧ 𝐵𝑅𝑥))) | ||
| Theorem | brcosscnv2 38509 | 𝐴 and 𝐵 are cosets by converse 𝑅: a binary relation. (Contributed by Peter Mazsa, 12-Mar-2019.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ≀ ◡𝑅𝐵 ↔ ([𝐴]𝑅 ∩ [𝐵]𝑅) ≠ ∅)) | ||
| Theorem | br1cosscnvxrn 38510 | 𝐴 and 𝐵 are cosets by the converse range Cartesian product: a binary relation. (Contributed by Peter Mazsa, 19-Apr-2020.) (Revised by Peter Mazsa, 21-Sep-2021.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ≀ ◡(𝑅 ⋉ 𝑆)𝐵 ↔ (𝐴 ≀ ◡𝑅𝐵 ∧ 𝐴 ≀ ◡𝑆𝐵))) | ||
| Theorem | 1cosscnvxrn 38511 | Cosets by the converse range Cartesian product. (Contributed by Peter Mazsa, 19-Apr-2020.) (Revised by Peter Mazsa, 21-Sep-2021.) |
| ⊢ ≀ ◡(𝐴 ⋉ 𝐵) = ( ≀ ◡𝐴 ∩ ≀ ◡𝐵) | ||
| Theorem | cosscnvssid3 38512* | Equivalent expressions for the class of cosets by the converse of 𝑅 to be a subset of the identity class. (Contributed by Peter Mazsa, 28-Jul-2021.) |
| ⊢ ( ≀ ◡𝑅 ⊆ I ↔ ∀𝑢∀𝑣∀𝑥((𝑢𝑅𝑥 ∧ 𝑣𝑅𝑥) → 𝑢 = 𝑣)) | ||
| Theorem | cosscnvssid4 38513* | Equivalent expressions for the class of cosets by the converse of 𝑅 to be a subset of the identity class. (Contributed by Peter Mazsa, 31-Aug-2021.) |
| ⊢ ( ≀ ◡𝑅 ⊆ I ↔ ∀𝑥∃*𝑢 𝑢𝑅𝑥) | ||
| Theorem | cosscnvssid5 38514* | Equivalent expressions for the class of cosets by the converse of the relation 𝑅 to be a subset of the identity class. (Contributed by Peter Mazsa, 5-Sep-2021.) |
| ⊢ (( ≀ ◡𝑅 ⊆ I ∧ Rel 𝑅) ↔ (∀𝑢 ∈ dom 𝑅∀𝑣 ∈ dom 𝑅(𝑢 = 𝑣 ∨ ([𝑢]𝑅 ∩ [𝑣]𝑅) = ∅) ∧ Rel 𝑅)) | ||
| Theorem | coss0 38515 | Cosets by the empty set are the empty set. (Contributed by Peter Mazsa, 22-Oct-2019.) |
| ⊢ ≀ ∅ = ∅ | ||
| Theorem | cossid 38516 | Cosets by the identity relation are the identity relation. (Contributed by Peter Mazsa, 16-Jan-2019.) |
| ⊢ ≀ I = I | ||
| Theorem | cosscnvid 38517 | Cosets by the converse identity relation are the identity relation. (Contributed by Peter Mazsa, 27-Sep-2021.) |
| ⊢ ≀ ◡ I = I | ||
| Theorem | trcoss 38518* | Sufficient condition for the transitivity of cosets by 𝑅. (Contributed by Peter Mazsa, 26-Dec-2018.) |
| ⊢ (∀𝑦∃*𝑢 𝑢𝑅𝑦 → ∀𝑥∀𝑦∀𝑧((𝑥 ≀ 𝑅𝑦 ∧ 𝑦 ≀ 𝑅𝑧) → 𝑥 ≀ 𝑅𝑧)) | ||
| Theorem | eleccossin 38519 | Two ways of saying that the coset of 𝐴 and the coset of 𝐶 have the common element 𝐵. (Contributed by Peter Mazsa, 15-Oct-2021.) |
| ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (𝐵 ∈ ([𝐴] ≀ 𝑅 ∩ [𝐶] ≀ 𝑅) ↔ (𝐴 ≀ 𝑅𝐵 ∧ 𝐵 ≀ 𝑅𝐶))) | ||
| Theorem | trcoss2 38520* | Equivalent expressions for the transitivity of cosets by 𝑅. (Contributed by Peter Mazsa, 4-Jul-2020.) (Revised by Peter Mazsa, 16-Oct-2021.) |
| ⊢ (∀𝑥∀𝑦∀𝑧((𝑥 ≀ 𝑅𝑦 ∧ 𝑦 ≀ 𝑅𝑧) → 𝑥 ≀ 𝑅𝑧) ↔ ∀𝑥∀𝑧(([𝑥] ≀ 𝑅 ∩ [𝑧] ≀ 𝑅) ≠ ∅ → ([𝑥]◡𝑅 ∩ [𝑧]◡𝑅) ≠ ∅)) | ||
| Definition | df-rels 38521 |
Define the relations class. Proper class relations (like I, see
reli 5766) are not elements of it. The element of this
class and the
relation predicate are the same when 𝑅 is a set (see elrelsrel 38523).
The class of relations is a great tool we can use when we define classes of different relations as nullary class constants as required by the 2. point in our Guidelines https://us.metamath.org/mpeuni/mathbox.html 38523. When we want to define a specific class of relations as a nullary class constant, the appropriate method is the following: 1. We define the specific nullary class constant for general sets (see e.g. df-refs 38546), then 2. we get the required class of relations by the intersection of the class of general sets above with the class of relations df-rels 38521 (see df-refrels 38547 and the resulting dfrefrels2 38549 and dfrefrels3 38550). 3. Finally, in order to be able to work with proper classes (like iprc 7841) as well, we define the predicate of the relation (see df-refrel 38548) so that it is true for the relevant proper classes (see refrelid 38558), and that the element of the class of the required relations (e.g. elrefrels3 38555) and this predicate are the same in case of sets (see elrefrelsrel 38556). (Contributed by Peter Mazsa, 13-Jun-2018.) |
| ⊢ Rels = 𝒫 (V × V) | ||
| Theorem | elrels2 38522 | The element of the relations class (df-rels 38521) and the relation predicate (df-rel 5623) are the same when 𝑅 is a set. (Contributed by Peter Mazsa, 14-Jun-2018.) |
| ⊢ (𝑅 ∈ 𝑉 → (𝑅 ∈ Rels ↔ 𝑅 ⊆ (V × V))) | ||
| Theorem | elrelsrel 38523 | The element of the relations class (df-rels 38521) and the relation predicate are the same when 𝑅 is a set. (Contributed by Peter Mazsa, 24-Nov-2018.) |
| ⊢ (𝑅 ∈ 𝑉 → (𝑅 ∈ Rels ↔ Rel 𝑅)) | ||
| Theorem | elrelsrelim 38524 | The element of the relations class is a relation. (Contributed by Peter Mazsa, 20-Jul-2019.) |
| ⊢ (𝑅 ∈ Rels → Rel 𝑅) | ||
| Theorem | elrels5 38525 | Equivalent expressions for an element of the relations class. (Contributed by Peter Mazsa, 21-Jul-2021.) |
| ⊢ (𝑅 ∈ 𝑉 → (𝑅 ∈ Rels ↔ (𝑅 ↾ dom 𝑅) = 𝑅)) | ||
| Theorem | elrels6 38526 | Equivalent expressions for an element of the relations class. (Contributed by Peter Mazsa, 21-Jul-2021.) |
| ⊢ (𝑅 ∈ 𝑉 → (𝑅 ∈ Rels ↔ (𝑅 ∩ (dom 𝑅 × ran 𝑅)) = 𝑅)) | ||
| Theorem | elrelscnveq3 38527* | Two ways of saying a relation is symmetric. (Contributed by Peter Mazsa, 22-Aug-2021.) |
| ⊢ (𝑅 ∈ Rels → (𝑅 = ◡𝑅 ↔ ∀𝑥∀𝑦(𝑥𝑅𝑦 → 𝑦𝑅𝑥))) | ||
| Theorem | elrelscnveq 38528 | Two ways of saying a relation is symmetric. (Contributed by Peter Mazsa, 22-Aug-2021.) |
| ⊢ (𝑅 ∈ Rels → (◡𝑅 ⊆ 𝑅 ↔ ◡𝑅 = 𝑅)) | ||
| Theorem | elrelscnveq2 38529* | Two ways of saying a relation is symmetric. (Contributed by Peter Mazsa, 22-Aug-2021.) |
| ⊢ (𝑅 ∈ Rels → (◡𝑅 = 𝑅 ↔ ∀𝑥∀𝑦(𝑥𝑅𝑦 ↔ 𝑦𝑅𝑥))) | ||
| Theorem | elrelscnveq4 38530* | Two ways of saying a relation is symmetric. (Contributed by Peter Mazsa, 22-Aug-2021.) |
| ⊢ (𝑅 ∈ Rels → (◡𝑅 ⊆ 𝑅 ↔ ∀𝑥∀𝑦(𝑥𝑅𝑦 ↔ 𝑦𝑅𝑥))) | ||
| Theorem | cnvelrels 38531 | The converse of a set is an element of the class of relations. (Contributed by Peter Mazsa, 18-Aug-2019.) |
| ⊢ (𝐴 ∈ 𝑉 → ◡𝐴 ∈ Rels ) | ||
| Theorem | cosselrels 38532 | Cosets of sets are elements of the relations class. Implies ⊢ (𝑅 ∈ Rels → ≀ 𝑅 ∈ Rels ). (Contributed by Peter Mazsa, 25-Aug-2021.) |
| ⊢ (𝐴 ∈ 𝑉 → ≀ 𝐴 ∈ Rels ) | ||
| Theorem | cosscnvelrels 38533 | Cosets of converse sets are elements of the relations class. (Contributed by Peter Mazsa, 31-Aug-2021.) |
| ⊢ (𝐴 ∈ 𝑉 → ≀ ◡𝐴 ∈ Rels ) | ||
| Definition | df-ssr 38534* |
Define the subsets class or the class of subset relations. Similar to
definitions of epsilon relation (df-eprel 5516) and identity relation
(df-id 5511) classes. Subset relation class and Scott
Fenton's subset
class df-sset 35889 are the same: S = SSet (compare dfssr2 38535 with
df-sset 35889), the only reason we do not use dfssr2 38535 as the base
definition of the subsets class is the way we defined the epsilon
relation and the identity relation classes.
The binary relation on the class of subsets and the subclass relationship (df-ss 3919) are the same, that is, (𝐴 S 𝐵 ↔ 𝐴 ⊆ 𝐵) when 𝐵 is a set, see brssr 38537. Yet in general we use the subclass relation 𝐴 ⊆ 𝐵 both for classes and for sets, see the comment of df-ss 3919. The only exception (aside from directly investigating the class S e.g. in relssr 38536 or in extssr 38545) is when we have a specific purpose with its usage, like in case of df-refs 38546 versus df-cnvrefs 38561, where we need S to define the class of reflexive sets in order to be able to define the class of converse reflexive sets with the help of the converse of S. The subsets class S has another place in set.mm as well: if we define extensional relation based on the common property in extid 38343, extep 38316 and extssr 38545, then "extrelssr" " |- ExtRel S " is a theorem along with "extrelep" " |- ExtRel E " and "extrelid" " |- ExtRel I " . (Contributed by Peter Mazsa, 25-Jul-2019.) |
| ⊢ S = {〈𝑥, 𝑦〉 ∣ 𝑥 ⊆ 𝑦} | ||
| Theorem | dfssr2 38535 | Alternate definition of the subset relation. (Contributed by Peter Mazsa, 9-Aug-2021.) |
| ⊢ S = ((V × V) ∖ ran ( E ⋉ (V ∖ E ))) | ||
| Theorem | relssr 38536 | The subset relation is a relation. (Contributed by Peter Mazsa, 1-Aug-2019.) |
| ⊢ Rel S | ||
| Theorem | brssr 38537 | The subset relation and subclass relationship (df-ss 3919) are the same, that is, (𝐴 S 𝐵 ↔ 𝐴 ⊆ 𝐵) when 𝐵 is a set. (Contributed by Peter Mazsa, 31-Jul-2019.) |
| ⊢ (𝐵 ∈ 𝑉 → (𝐴 S 𝐵 ↔ 𝐴 ⊆ 𝐵)) | ||
| Theorem | brssrid 38538 | Any set is a subset of itself. (Contributed by Peter Mazsa, 1-Aug-2019.) |
| ⊢ (𝐴 ∈ 𝑉 → 𝐴 S 𝐴) | ||
| Theorem | issetssr 38539 | Two ways of expressing set existence. (Contributed by Peter Mazsa, 1-Aug-2019.) |
| ⊢ (𝐴 ∈ V ↔ 𝐴 S 𝐴) | ||
| Theorem | brssrres 38540 | Restricted subset binary relation. (Contributed by Peter Mazsa, 25-Nov-2019.) |
| ⊢ (𝐶 ∈ 𝑉 → (𝐵( S ↾ 𝐴)𝐶 ↔ (𝐵 ∈ 𝐴 ∧ 𝐵 ⊆ 𝐶))) | ||
| Theorem | br1cnvssrres 38541 | Restricted converse subset binary relation. (Contributed by Peter Mazsa, 25-Nov-2019.) |
| ⊢ (𝐵 ∈ 𝑉 → (𝐵◡( S ↾ 𝐴)𝐶 ↔ (𝐶 ∈ 𝐴 ∧ 𝐶 ⊆ 𝐵))) | ||
| Theorem | brcnvssr 38542 | The converse of a subset relation swaps arguments. (Contributed by Peter Mazsa, 1-Aug-2019.) |
| ⊢ (𝐴 ∈ 𝑉 → (𝐴◡ S 𝐵 ↔ 𝐵 ⊆ 𝐴)) | ||
| Theorem | brcnvssrid 38543 | Any set is a converse subset of itself. (Contributed by Peter Mazsa, 9-Jun-2021.) |
| ⊢ (𝐴 ∈ 𝑉 → 𝐴◡ S 𝐴) | ||
| Theorem | br1cossxrncnvssrres 38544* | 〈𝐵, 𝐶〉 and 〈𝐷, 𝐸〉 are cosets by range Cartesian product with restricted converse subsets class: a binary relation. (Contributed by Peter Mazsa, 9-Jun-2021.) |
| ⊢ (((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) ∧ (𝐷 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌)) → (〈𝐵, 𝐶〉 ≀ (𝑅 ⋉ (◡ S ↾ 𝐴))〈𝐷, 𝐸〉 ↔ ∃𝑢 ∈ 𝐴 ((𝐶 ⊆ 𝑢 ∧ 𝑢𝑅𝐵) ∧ (𝐸 ⊆ 𝑢 ∧ 𝑢𝑅𝐷)))) | ||
| Theorem | extssr 38545 | Property of subset relation, see also extid 38343, extep 38316 and the comment of df-ssr 38534. (Contributed by Peter Mazsa, 10-Jul-2019.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ([𝐴]◡ S = [𝐵]◡ S ↔ 𝐴 = 𝐵)) | ||
| Definition | df-refs 38546 |
Define the class of all reflexive sets. It is used only by df-refrels 38547.
We use subset relation S (df-ssr 38534) here to be able to define
converse reflexivity (df-cnvrefs 38561), see also the comment of df-ssr 38534.
The elements of this class are not necessarily relations (versus
df-refrels 38547).
Note the similarity of Definitions df-refs 38546, df-syms 38578 and df-trs 38608, cf. comments of dfrefrels2 38549. (Contributed by Peter Mazsa, 19-Jul-2019.) |
| ⊢ Refs = {𝑥 ∣ ( I ∩ (dom 𝑥 × ran 𝑥)) S (𝑥 ∩ (dom 𝑥 × ran 𝑥))} | ||
| Definition | df-refrels 38547 |
Define the class of reflexive relations. This is practically dfrefrels2 38549
(which reveals that RefRels can not include proper
classes like I
as is elements, see comments of dfrefrels2 38549).
Another alternative definition is dfrefrels3 38550. The element of this class and the reflexive relation predicate (df-refrel 38548) are the same, that is, (𝑅 ∈ RefRels ↔ RefRel 𝑅) when 𝐴 is a set, see elrefrelsrel 38556. This definition is similar to the definitions of the classes of symmetric (df-symrels 38579) and transitive (df-trrels 38609) relations. (Contributed by Peter Mazsa, 7-Jul-2019.) |
| ⊢ RefRels = ( Refs ∩ Rels ) | ||
| Definition | df-refrel 38548 | Define the reflexive relation predicate. (Read: 𝑅 is a reflexive relation.) This is a surprising definition, see the comment of dfrefrel3 38552. Alternate definitions are dfrefrel2 38551 and dfrefrel3 38552. For sets, being an element of the class of reflexive relations (df-refrels 38547) is equivalent to satisfying the reflexive relation predicate, that is (𝑅 ∈ RefRels ↔ RefRel 𝑅) when 𝑅 is a set, see elrefrelsrel 38556. (Contributed by Peter Mazsa, 16-Jul-2021.) |
| ⊢ ( RefRel 𝑅 ↔ (( I ∩ (dom 𝑅 × ran 𝑅)) ⊆ (𝑅 ∩ (dom 𝑅 × ran 𝑅)) ∧ Rel 𝑅)) | ||
| Theorem | dfrefrels2 38549 |
Alternate definition of the class of reflexive relations. This is a 0-ary
class constant, which is recommended for definitions (see the 1.
Guideline at https://us.metamath.org/ileuni/mathbox.html).
Proper
classes (like I, see iprc 7841)
are not elements of this (or any)
class: if a class is an element of another class, it is not a proper class
but a set, see elex 3457. So if we use 0-ary constant classes as our
main
definitions, they are valid only for sets, not for proper classes. For
proper classes we use predicate-type definitions like df-refrel 38548. See
also the comment of df-rels 38521.
Note that while elementhood in the class of relations cancels restriction of 𝑟 in dfrefrels2 38549, it keeps restriction of I: this is why the very similar definitions df-refs 38546, df-syms 38578 and df-trs 38608 diverge when we switch from (general) sets to relations in dfrefrels2 38549, dfsymrels2 38581 and dftrrels2 38611. (Contributed by Peter Mazsa, 20-Jul-2019.) |
| ⊢ RefRels = {𝑟 ∈ Rels ∣ ( I ∩ (dom 𝑟 × ran 𝑟)) ⊆ 𝑟} | ||
| Theorem | dfrefrels3 38550* | Alternate definition of the class of reflexive relations. (Contributed by Peter Mazsa, 8-Jul-2019.) |
| ⊢ RefRels = {𝑟 ∈ Rels ∣ ∀𝑥 ∈ dom 𝑟∀𝑦 ∈ ran 𝑟(𝑥 = 𝑦 → 𝑥𝑟𝑦)} | ||
| Theorem | dfrefrel2 38551 | Alternate definition of the reflexive relation predicate. (Contributed by Peter Mazsa, 25-Jul-2021.) |
| ⊢ ( RefRel 𝑅 ↔ (( I ∩ (dom 𝑅 × ran 𝑅)) ⊆ 𝑅 ∧ Rel 𝑅)) | ||
| Theorem | dfrefrel3 38552* |
Alternate definition of the reflexive relation predicate. A relation is
reflexive iff: for all elements on its domain and range, if an element
of its domain is the same as an element of its range, then there is the
relation between them.
Note that this is definitely not the definition we are accustomed to, like e.g. idref 7079 / idrefALT 6060 or df-reflexive 49799 ⊢ (𝑅Reflexive𝐴 ↔ (𝑅 ⊆ (𝐴 × 𝐴) ∧ ∀𝑥 ∈ 𝐴𝑥𝑅𝑥)). It turns out that the not-surprising definition which contains ∀𝑥 ∈ dom 𝑟𝑥𝑟𝑥 needs symmetry as well, see refsymrels3 38602. Only when this symmetry condition holds, like in case of equivalence relations, see dfeqvrels3 38625, can we write the traditional form ∀𝑥 ∈ dom 𝑟𝑥𝑟𝑥 for reflexive relations. For the special case with square Cartesian product when the two forms are equivalent see idinxpssinxp4 38353 where ⊢ (∀𝑥 ∈ 𝐴∀𝑦 ∈ 𝐴(𝑥 = 𝑦 → 𝑥𝑅𝑦) ↔ ∀𝑥 ∈ 𝐴𝑥𝑅𝑥). See also similar definition of the converse reflexive relations class dfcnvrefrel3 38567. (Contributed by Peter Mazsa, 8-Jul-2019.) |
| ⊢ ( RefRel 𝑅 ↔ (∀𝑥 ∈ dom 𝑅∀𝑦 ∈ ran 𝑅(𝑥 = 𝑦 → 𝑥𝑅𝑦) ∧ Rel 𝑅)) | ||
| Theorem | dfrefrel5 38553* | Alternate definition of the reflexive relation predicate. (Contributed by Peter Mazsa, 12-Dec-2023.) |
| ⊢ ( RefRel 𝑅 ↔ (∀𝑥 ∈ (dom 𝑅 ∩ ran 𝑅)𝑥𝑅𝑥 ∧ Rel 𝑅)) | ||
| Theorem | elrefrels2 38554 | Element of the class of reflexive relations. (Contributed by Peter Mazsa, 23-Jul-2019.) |
| ⊢ (𝑅 ∈ RefRels ↔ (( I ∩ (dom 𝑅 × ran 𝑅)) ⊆ 𝑅 ∧ 𝑅 ∈ Rels )) | ||
| Theorem | elrefrels3 38555* | Element of the class of reflexive relations. (Contributed by Peter Mazsa, 23-Jul-2019.) |
| ⊢ (𝑅 ∈ RefRels ↔ (∀𝑥 ∈ dom 𝑅∀𝑦 ∈ ran 𝑅(𝑥 = 𝑦 → 𝑥𝑅𝑦) ∧ 𝑅 ∈ Rels )) | ||
| Theorem | elrefrelsrel 38556 | For sets, being an element of the class of reflexive relations (df-refrels 38547) is equivalent to satisfying the reflexive relation predicate. (Contributed by Peter Mazsa, 25-Jul-2021.) |
| ⊢ (𝑅 ∈ 𝑉 → (𝑅 ∈ RefRels ↔ RefRel 𝑅)) | ||
| Theorem | refreleq 38557 | Equality theorem for reflexive relation. (Contributed by Peter Mazsa, 15-Apr-2019.) (Revised by Peter Mazsa, 23-Sep-2021.) |
| ⊢ (𝑅 = 𝑆 → ( RefRel 𝑅 ↔ RefRel 𝑆)) | ||
| Theorem | refrelid 38558 | Identity relation is reflexive. (Contributed by Peter Mazsa, 25-Jul-2021.) |
| ⊢ RefRel I | ||
| Theorem | refrelcoss 38559 | The class of cosets by 𝑅 is reflexive. (Contributed by Peter Mazsa, 4-Jul-2020.) |
| ⊢ RefRel ≀ 𝑅 | ||
| Theorem | refrelressn 38560 | Any class ' R ' restricted to the singleton of the set ' A ' (see ressn2 38478) is reflexive. (Contributed by Peter Mazsa, 12-Jun-2024.) |
| ⊢ (𝐴 ∈ 𝑉 → RefRel (𝑅 ↾ {𝐴})) | ||
| Definition | df-cnvrefs 38561 | Define the class of all converse reflexive sets, see the comment of df-ssr 38534. It is used only by df-cnvrefrels 38562. (Contributed by Peter Mazsa, 22-Jul-2019.) |
| ⊢ CnvRefs = {𝑥 ∣ ( I ∩ (dom 𝑥 × ran 𝑥))◡ S (𝑥 ∩ (dom 𝑥 × ran 𝑥))} | ||
| Definition | df-cnvrefrels 38562 |
Define the class of converse reflexive relations. This is practically
dfcnvrefrels2 38564 (which uses the traditional subclass
relation ⊆) :
we use converse subset relation (brcnvssr 38542) here to ensure the
comparability to the definitions of the classes of all reflexive
(df-ref 23418), symmetric (df-syms 38578) and transitive (df-trs 38608) sets.
We use this concept to define functions (df-funsALTV 38718, df-funALTV 38719) and disjoints (df-disjs 38741, df-disjALTV 38742). For sets, being an element of the class of converse reflexive relations is equivalent to satisfying the converse reflexive relation predicate, see elcnvrefrelsrel 38572. Alternate definitions are dfcnvrefrels2 38564 and dfcnvrefrels3 38565. (Contributed by Peter Mazsa, 7-Jul-2019.) |
| ⊢ CnvRefRels = ( CnvRefs ∩ Rels ) | ||
| Definition | df-cnvrefrel 38563 | Define the converse reflexive relation predicate (read: 𝑅 is a converse reflexive relation), see also the comment of dfcnvrefrel3 38567. Alternate definitions are dfcnvrefrel2 38566 and dfcnvrefrel3 38567. (Contributed by Peter Mazsa, 16-Jul-2021.) |
| ⊢ ( CnvRefRel 𝑅 ↔ ((𝑅 ∩ (dom 𝑅 × ran 𝑅)) ⊆ ( I ∩ (dom 𝑅 × ran 𝑅)) ∧ Rel 𝑅)) | ||
| Theorem | dfcnvrefrels2 38564 | Alternate definition of the class of converse reflexive relations. See the comment of dfrefrels2 38549. (Contributed by Peter Mazsa, 21-Jul-2021.) |
| ⊢ CnvRefRels = {𝑟 ∈ Rels ∣ 𝑟 ⊆ ( I ∩ (dom 𝑟 × ran 𝑟))} | ||
| Theorem | dfcnvrefrels3 38565* | Alternate definition of the class of converse reflexive relations. (Contributed by Peter Mazsa, 22-Jul-2019.) |
| ⊢ CnvRefRels = {𝑟 ∈ Rels ∣ ∀𝑥 ∈ dom 𝑟∀𝑦 ∈ ran 𝑟(𝑥𝑟𝑦 → 𝑥 = 𝑦)} | ||
| Theorem | dfcnvrefrel2 38566 | Alternate definition of the converse reflexive relation predicate. (Contributed by Peter Mazsa, 24-Jul-2019.) |
| ⊢ ( CnvRefRel 𝑅 ↔ (𝑅 ⊆ ( I ∩ (dom 𝑅 × ran 𝑅)) ∧ Rel 𝑅)) | ||
| Theorem | dfcnvrefrel3 38567* | Alternate definition of the converse reflexive relation predicate. A relation is converse reflexive iff: for all elements on its domain and range, if for an element of its domain and for an element of its range there is the relation between them, then the two elements are the same, cf. the comment of dfrefrel3 38552. (Contributed by Peter Mazsa, 25-Jul-2021.) |
| ⊢ ( CnvRefRel 𝑅 ↔ (∀𝑥 ∈ dom 𝑅∀𝑦 ∈ ran 𝑅(𝑥𝑅𝑦 → 𝑥 = 𝑦) ∧ Rel 𝑅)) | ||
| Theorem | dfcnvrefrel4 38568 | Alternate definition of the converse reflexive relation predicate. (Contributed by Peter Mazsa, 25-May-2024.) |
| ⊢ ( CnvRefRel 𝑅 ↔ (𝑅 ⊆ I ∧ Rel 𝑅)) | ||
| Theorem | dfcnvrefrel5 38569* | Alternate definition of the converse reflexive relation predicate. (Contributed by Peter Mazsa, 25-May-2024.) |
| ⊢ ( CnvRefRel 𝑅 ↔ (∀𝑥∀𝑦(𝑥𝑅𝑦 → 𝑥 = 𝑦) ∧ Rel 𝑅)) | ||
| Theorem | elcnvrefrels2 38570 | Element of the class of converse reflexive relations. (Contributed by Peter Mazsa, 25-Jul-2019.) |
| ⊢ (𝑅 ∈ CnvRefRels ↔ (𝑅 ⊆ ( I ∩ (dom 𝑅 × ran 𝑅)) ∧ 𝑅 ∈ Rels )) | ||
| Theorem | elcnvrefrels3 38571* | Element of the class of converse reflexive relations. (Contributed by Peter Mazsa, 30-Aug-2021.) |
| ⊢ (𝑅 ∈ CnvRefRels ↔ (∀𝑥 ∈ dom 𝑅∀𝑦 ∈ ran 𝑅(𝑥𝑅𝑦 → 𝑥 = 𝑦) ∧ 𝑅 ∈ Rels )) | ||
| Theorem | elcnvrefrelsrel 38572 | For sets, being an element of the class of converse reflexive relations (df-cnvrefrels 38562) is equivalent to satisfying the converse reflexive relation predicate. (Contributed by Peter Mazsa, 25-Jul-2021.) |
| ⊢ (𝑅 ∈ 𝑉 → (𝑅 ∈ CnvRefRels ↔ CnvRefRel 𝑅)) | ||
| Theorem | cnvrefrelcoss2 38573 | Necessary and sufficient condition for a coset relation to be a converse reflexive relation. (Contributed by Peter Mazsa, 27-Jul-2021.) |
| ⊢ ( CnvRefRel ≀ 𝑅 ↔ ≀ 𝑅 ⊆ I ) | ||
| Theorem | cosselcnvrefrels2 38574 | Necessary and sufficient condition for a coset relation to be an element of the converse reflexive relation class. (Contributed by Peter Mazsa, 25-Aug-2021.) |
| ⊢ ( ≀ 𝑅 ∈ CnvRefRels ↔ ( ≀ 𝑅 ⊆ I ∧ ≀ 𝑅 ∈ Rels )) | ||
| Theorem | cosselcnvrefrels3 38575* | Necessary and sufficient condition for a coset relation to be an element of the converse reflexive relation class. (Contributed by Peter Mazsa, 30-Aug-2021.) |
| ⊢ ( ≀ 𝑅 ∈ CnvRefRels ↔ (∀𝑢∀𝑥∀𝑦((𝑢𝑅𝑥 ∧ 𝑢𝑅𝑦) → 𝑥 = 𝑦) ∧ ≀ 𝑅 ∈ Rels )) | ||
| Theorem | cosselcnvrefrels4 38576* | Necessary and sufficient condition for a coset relation to be an element of the converse reflexive relation class. (Contributed by Peter Mazsa, 31-Aug-2021.) |
| ⊢ ( ≀ 𝑅 ∈ CnvRefRels ↔ (∀𝑢∃*𝑥 𝑢𝑅𝑥 ∧ ≀ 𝑅 ∈ Rels )) | ||
| Theorem | cosselcnvrefrels5 38577* | Necessary and sufficient condition for a coset relation to be an element of the converse reflexive relation class. (Contributed by Peter Mazsa, 5-Sep-2021.) |
| ⊢ ( ≀ 𝑅 ∈ CnvRefRels ↔ (∀𝑥 ∈ ran 𝑅∀𝑦 ∈ ran 𝑅(𝑥 = 𝑦 ∨ ([𝑥]◡𝑅 ∩ [𝑦]◡𝑅) = ∅) ∧ ≀ 𝑅 ∈ Rels )) | ||
| Definition | df-syms 38578 |
Define the class of all symmetric sets. It is used only by df-symrels 38579.
Note the similarity of Definitions df-refs 38546, df-syms 38578 and df-trs 38608, cf. the comment of dfrefrels2 38549. (Contributed by Peter Mazsa, 19-Jul-2019.) |
| ⊢ Syms = {𝑥 ∣ ◡(𝑥 ∩ (dom 𝑥 × ran 𝑥)) S (𝑥 ∩ (dom 𝑥 × ran 𝑥))} | ||
| Definition | df-symrels 38579 |
Define the class of symmetric relations. For sets, being an element of
the class of symmetric relations is equivalent to satisfying the symmetric
relation predicate, see elsymrelsrel 38593. Alternate definitions are
dfsymrels2 38581, dfsymrels3 38582, dfsymrels4 38583 and dfsymrels5 38584.
This definition is similar to the definitions of the classes of reflexive (df-refrels 38547) and transitive (df-trrels 38609) relations. (Contributed by Peter Mazsa, 7-Jul-2019.) |
| ⊢ SymRels = ( Syms ∩ Rels ) | ||
| Definition | df-symrel 38580 | Define the symmetric relation predicate. (Read: 𝑅 is a symmetric relation.) For sets, being an element of the class of symmetric relations (df-symrels 38579) is equivalent to satisfying the symmetric relation predicate, see elsymrelsrel 38593. Alternate definitions are dfsymrel2 38585 and dfsymrel3 38586. (Contributed by Peter Mazsa, 16-Jul-2021.) |
| ⊢ ( SymRel 𝑅 ↔ (◡(𝑅 ∩ (dom 𝑅 × ran 𝑅)) ⊆ (𝑅 ∩ (dom 𝑅 × ran 𝑅)) ∧ Rel 𝑅)) | ||
| Theorem | dfsymrels2 38581 | Alternate definition of the class of symmetric relations. Cf. the comment of dfrefrels2 38549. (Contributed by Peter Mazsa, 20-Jul-2019.) |
| ⊢ SymRels = {𝑟 ∈ Rels ∣ ◡𝑟 ⊆ 𝑟} | ||
| Theorem | dfsymrels3 38582* | Alternate definition of the class of symmetric relations. (Contributed by Peter Mazsa, 22-Jul-2021.) |
| ⊢ SymRels = {𝑟 ∈ Rels ∣ ∀𝑥∀𝑦(𝑥𝑟𝑦 → 𝑦𝑟𝑥)} | ||
| Theorem | dfsymrels4 38583 | Alternate definition of the class of symmetric relations. (Contributed by Peter Mazsa, 20-Jul-2019.) |
| ⊢ SymRels = {𝑟 ∈ Rels ∣ ◡𝑟 = 𝑟} | ||
| Theorem | dfsymrels5 38584* | Alternate definition of the class of symmetric relations. (Contributed by Peter Mazsa, 22-Jul-2021.) |
| ⊢ SymRels = {𝑟 ∈ Rels ∣ ∀𝑥∀𝑦(𝑥𝑟𝑦 ↔ 𝑦𝑟𝑥)} | ||
| Theorem | dfsymrel2 38585 | Alternate definition of the symmetric relation predicate. (Contributed by Peter Mazsa, 19-Apr-2019.) (Revised by Peter Mazsa, 17-Aug-2021.) |
| ⊢ ( SymRel 𝑅 ↔ (◡𝑅 ⊆ 𝑅 ∧ Rel 𝑅)) | ||
| Theorem | dfsymrel3 38586* | Alternate definition of the symmetric relation predicate. (Contributed by Peter Mazsa, 21-Apr-2019.) (Revised by Peter Mazsa, 17-Aug-2021.) |
| ⊢ ( SymRel 𝑅 ↔ (∀𝑥∀𝑦(𝑥𝑅𝑦 → 𝑦𝑅𝑥) ∧ Rel 𝑅)) | ||
| Theorem | dfsymrel4 38587 | Alternate definition of the symmetric relation predicate. (Contributed by Peter Mazsa, 17-Aug-2021.) |
| ⊢ ( SymRel 𝑅 ↔ (◡𝑅 = 𝑅 ∧ Rel 𝑅)) | ||
| Theorem | dfsymrel5 38588* | Alternate definition of the symmetric relation predicate. (Contributed by Peter Mazsa, 17-Aug-2021.) |
| ⊢ ( SymRel 𝑅 ↔ (∀𝑥∀𝑦(𝑥𝑅𝑦 ↔ 𝑦𝑅𝑥) ∧ Rel 𝑅)) | ||
| Theorem | elsymrels2 38589 | Element of the class of symmetric relations. (Contributed by Peter Mazsa, 17-Aug-2021.) |
| ⊢ (𝑅 ∈ SymRels ↔ (◡𝑅 ⊆ 𝑅 ∧ 𝑅 ∈ Rels )) | ||
| Theorem | elsymrels3 38590* | Element of the class of symmetric relations. (Contributed by Peter Mazsa, 17-Aug-2021.) |
| ⊢ (𝑅 ∈ SymRels ↔ (∀𝑥∀𝑦(𝑥𝑅𝑦 → 𝑦𝑅𝑥) ∧ 𝑅 ∈ Rels )) | ||
| Theorem | elsymrels4 38591 | Element of the class of symmetric relations. (Contributed by Peter Mazsa, 17-Aug-2021.) |
| ⊢ (𝑅 ∈ SymRels ↔ (◡𝑅 = 𝑅 ∧ 𝑅 ∈ Rels )) | ||
| Theorem | elsymrels5 38592* | Element of the class of symmetric relations. (Contributed by Peter Mazsa, 17-Aug-2021.) |
| ⊢ (𝑅 ∈ SymRels ↔ (∀𝑥∀𝑦(𝑥𝑅𝑦 ↔ 𝑦𝑅𝑥) ∧ 𝑅 ∈ Rels )) | ||
| Theorem | elsymrelsrel 38593 | For sets, being an element of the class of symmetric relations (df-symrels 38579) is equivalent to satisfying the symmetric relation predicate. (Contributed by Peter Mazsa, 17-Aug-2021.) |
| ⊢ (𝑅 ∈ 𝑉 → (𝑅 ∈ SymRels ↔ SymRel 𝑅)) | ||
| Theorem | symreleq 38594 | Equality theorem for symmetric relation. (Contributed by Peter Mazsa, 15-Apr-2019.) (Revised by Peter Mazsa, 23-Sep-2021.) |
| ⊢ (𝑅 = 𝑆 → ( SymRel 𝑅 ↔ SymRel 𝑆)) | ||
| Theorem | symrelim 38595 | Symmetric relation implies that the domain and the range are equal. (Contributed by Peter Mazsa, 29-Dec-2021.) |
| ⊢ ( SymRel 𝑅 → dom 𝑅 = ran 𝑅) | ||
| Theorem | symrelcoss 38596 | The class of cosets by 𝑅 is symmetric. (Contributed by Peter Mazsa, 20-Dec-2021.) |
| ⊢ SymRel ≀ 𝑅 | ||
| Theorem | idsymrel 38597 | The identity relation is symmetric. (Contributed by AV, 19-Jun-2022.) |
| ⊢ SymRel I | ||
| Theorem | epnsymrel 38598 | The membership (epsilon) relation is not symmetric. (Contributed by AV, 18-Jun-2022.) |
| ⊢ ¬ SymRel E | ||
| Theorem | symrefref2 38599 | Symmetry is a sufficient condition for the equivalence of two versions of the reflexive relation, see also symrefref3 38600. (Contributed by Peter Mazsa, 19-Jul-2018.) |
| ⊢ (◡𝑅 ⊆ 𝑅 → (( I ∩ (dom 𝑅 × ran 𝑅)) ⊆ 𝑅 ↔ ( I ↾ dom 𝑅) ⊆ 𝑅)) | ||
| Theorem | symrefref3 38600* | Symmetry is a sufficient condition for the equivalence of two versions of the reflexive relation, see also symrefref2 38599. (Contributed by Peter Mazsa, 23-Aug-2021.) (Proof modification is discouraged.) |
| ⊢ (∀𝑥∀𝑦(𝑥𝑅𝑦 → 𝑦𝑅𝑥) → (∀𝑥 ∈ dom 𝑅∀𝑦 ∈ ran 𝑅(𝑥 = 𝑦 → 𝑥𝑅𝑦) ↔ ∀𝑥 ∈ dom 𝑅 𝑥𝑅𝑥)) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |