Detailed syntax breakdown of Definition df-hlg
Step | Hyp | Ref
| Expression |
1 | | chlg 26961 |
. 2
class
hlG |
2 | | vg |
. . 3
setvar 𝑔 |
3 | | cvv 3432 |
. . 3
class
V |
4 | | vc |
. . . 4
setvar 𝑐 |
5 | 2 | cv 1538 |
. . . . 5
class 𝑔 |
6 | | cbs 16912 |
. . . . 5
class
Base |
7 | 5, 6 | cfv 6433 |
. . . 4
class
(Base‘𝑔) |
8 | | va |
. . . . . . . . 9
setvar 𝑎 |
9 | 8 | cv 1538 |
. . . . . . . 8
class 𝑎 |
10 | 9, 7 | wcel 2106 |
. . . . . . 7
wff 𝑎 ∈ (Base‘𝑔) |
11 | | vb |
. . . . . . . . 9
setvar 𝑏 |
12 | 11 | cv 1538 |
. . . . . . . 8
class 𝑏 |
13 | 12, 7 | wcel 2106 |
. . . . . . 7
wff 𝑏 ∈ (Base‘𝑔) |
14 | 10, 13 | wa 396 |
. . . . . 6
wff (𝑎 ∈ (Base‘𝑔) ∧ 𝑏 ∈ (Base‘𝑔)) |
15 | 4 | cv 1538 |
. . . . . . . 8
class 𝑐 |
16 | 9, 15 | wne 2943 |
. . . . . . 7
wff 𝑎 ≠ 𝑐 |
17 | 12, 15 | wne 2943 |
. . . . . . 7
wff 𝑏 ≠ 𝑐 |
18 | | citv 26794 |
. . . . . . . . . . 11
class
Itv |
19 | 5, 18 | cfv 6433 |
. . . . . . . . . 10
class
(Itv‘𝑔) |
20 | 15, 12, 19 | co 7275 |
. . . . . . . . 9
class (𝑐(Itv‘𝑔)𝑏) |
21 | 9, 20 | wcel 2106 |
. . . . . . . 8
wff 𝑎 ∈ (𝑐(Itv‘𝑔)𝑏) |
22 | 15, 9, 19 | co 7275 |
. . . . . . . . 9
class (𝑐(Itv‘𝑔)𝑎) |
23 | 12, 22 | wcel 2106 |
. . . . . . . 8
wff 𝑏 ∈ (𝑐(Itv‘𝑔)𝑎) |
24 | 21, 23 | wo 844 |
. . . . . . 7
wff (𝑎 ∈ (𝑐(Itv‘𝑔)𝑏) ∨ 𝑏 ∈ (𝑐(Itv‘𝑔)𝑎)) |
25 | 16, 17, 24 | w3a 1086 |
. . . . . 6
wff (𝑎 ≠ 𝑐 ∧ 𝑏 ≠ 𝑐 ∧ (𝑎 ∈ (𝑐(Itv‘𝑔)𝑏) ∨ 𝑏 ∈ (𝑐(Itv‘𝑔)𝑎))) |
26 | 14, 25 | wa 396 |
. . . . 5
wff ((𝑎 ∈ (Base‘𝑔) ∧ 𝑏 ∈ (Base‘𝑔)) ∧ (𝑎 ≠ 𝑐 ∧ 𝑏 ≠ 𝑐 ∧ (𝑎 ∈ (𝑐(Itv‘𝑔)𝑏) ∨ 𝑏 ∈ (𝑐(Itv‘𝑔)𝑎)))) |
27 | 26, 8, 11 | copab 5136 |
. . . 4
class
{〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ (Base‘𝑔) ∧ 𝑏 ∈ (Base‘𝑔)) ∧ (𝑎 ≠ 𝑐 ∧ 𝑏 ≠ 𝑐 ∧ (𝑎 ∈ (𝑐(Itv‘𝑔)𝑏) ∨ 𝑏 ∈ (𝑐(Itv‘𝑔)𝑎))))} |
28 | 4, 7, 27 | cmpt 5157 |
. . 3
class (𝑐 ∈ (Base‘𝑔) ↦ {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ (Base‘𝑔) ∧ 𝑏 ∈ (Base‘𝑔)) ∧ (𝑎 ≠ 𝑐 ∧ 𝑏 ≠ 𝑐 ∧ (𝑎 ∈ (𝑐(Itv‘𝑔)𝑏) ∨ 𝑏 ∈ (𝑐(Itv‘𝑔)𝑎))))}) |
29 | 2, 3, 28 | cmpt 5157 |
. 2
class (𝑔 ∈ V ↦ (𝑐 ∈ (Base‘𝑔) ↦ {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ (Base‘𝑔) ∧ 𝑏 ∈ (Base‘𝑔)) ∧ (𝑎 ≠ 𝑐 ∧ 𝑏 ≠ 𝑐 ∧ (𝑎 ∈ (𝑐(Itv‘𝑔)𝑏) ∨ 𝑏 ∈ (𝑐(Itv‘𝑔)𝑎))))})) |
30 | 1, 29 | wceq 1539 |
1
wff hlG =
(𝑔 ∈ V ↦ (𝑐 ∈ (Base‘𝑔) ↦ {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ (Base‘𝑔) ∧ 𝑏 ∈ (Base‘𝑔)) ∧ (𝑎 ≠ 𝑐 ∧ 𝑏 ≠ 𝑐 ∧ (𝑎 ∈ (𝑐(Itv‘𝑔)𝑏) ∨ 𝑏 ∈ (𝑐(Itv‘𝑔)𝑎))))})) |