MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ishlg Structured version   Visualization version   GIF version

Theorem ishlg 27430
Description: Rays : Definition 6.1 of [Schwabhauser] p. 43. With this definition, 𝐴(𝐾𝐶)𝐵 means that 𝐴 and 𝐵 are on the same ray with initial point 𝐶. This follows the same notation as Schwabhauser where rays are first defined as a relation. It is possible to recover the ray itself using e.g., ((𝐾𝐶) “ {𝐴}). (Contributed by Thierry Arnoux, 21-Dec-2019.)
Hypotheses
Ref Expression
ishlg.p 𝑃 = (Base‘𝐺)
ishlg.i 𝐼 = (Itv‘𝐺)
ishlg.k 𝐾 = (hlG‘𝐺)
ishlg.a (𝜑𝐴𝑃)
ishlg.b (𝜑𝐵𝑃)
ishlg.c (𝜑𝐶𝑃)
ishlg.g (𝜑𝐺𝑉)
Assertion
Ref Expression
ishlg (𝜑 → (𝐴(𝐾𝐶)𝐵 ↔ (𝐴𝐶𝐵𝐶 ∧ (𝐴 ∈ (𝐶𝐼𝐵) ∨ 𝐵 ∈ (𝐶𝐼𝐴)))))

Proof of Theorem ishlg
Dummy variables 𝑎 𝑏 𝑐 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 483 . . . . . 6 ((𝑎 = 𝐴𝑏 = 𝐵) → 𝑎 = 𝐴)
21neeq1d 3001 . . . . 5 ((𝑎 = 𝐴𝑏 = 𝐵) → (𝑎𝐶𝐴𝐶))
3 simpr 485 . . . . . 6 ((𝑎 = 𝐴𝑏 = 𝐵) → 𝑏 = 𝐵)
43neeq1d 3001 . . . . 5 ((𝑎 = 𝐴𝑏 = 𝐵) → (𝑏𝐶𝐵𝐶))
53oveq2d 7369 . . . . . . 7 ((𝑎 = 𝐴𝑏 = 𝐵) → (𝐶𝐼𝑏) = (𝐶𝐼𝐵))
61, 5eleq12d 2832 . . . . . 6 ((𝑎 = 𝐴𝑏 = 𝐵) → (𝑎 ∈ (𝐶𝐼𝑏) ↔ 𝐴 ∈ (𝐶𝐼𝐵)))
71oveq2d 7369 . . . . . . 7 ((𝑎 = 𝐴𝑏 = 𝐵) → (𝐶𝐼𝑎) = (𝐶𝐼𝐴))
83, 7eleq12d 2832 . . . . . 6 ((𝑎 = 𝐴𝑏 = 𝐵) → (𝑏 ∈ (𝐶𝐼𝑎) ↔ 𝐵 ∈ (𝐶𝐼𝐴)))
96, 8orbi12d 917 . . . . 5 ((𝑎 = 𝐴𝑏 = 𝐵) → ((𝑎 ∈ (𝐶𝐼𝑏) ∨ 𝑏 ∈ (𝐶𝐼𝑎)) ↔ (𝐴 ∈ (𝐶𝐼𝐵) ∨ 𝐵 ∈ (𝐶𝐼𝐴))))
102, 4, 93anbi123d 1436 . . . 4 ((𝑎 = 𝐴𝑏 = 𝐵) → ((𝑎𝐶𝑏𝐶 ∧ (𝑎 ∈ (𝐶𝐼𝑏) ∨ 𝑏 ∈ (𝐶𝐼𝑎))) ↔ (𝐴𝐶𝐵𝐶 ∧ (𝐴 ∈ (𝐶𝐼𝐵) ∨ 𝐵 ∈ (𝐶𝐼𝐴)))))
11 eqid 2736 . . . 4 {⟨𝑎, 𝑏⟩ ∣ ((𝑎𝑃𝑏𝑃) ∧ (𝑎𝐶𝑏𝐶 ∧ (𝑎 ∈ (𝐶𝐼𝑏) ∨ 𝑏 ∈ (𝐶𝐼𝑎))))} = {⟨𝑎, 𝑏⟩ ∣ ((𝑎𝑃𝑏𝑃) ∧ (𝑎𝐶𝑏𝐶 ∧ (𝑎 ∈ (𝐶𝐼𝑏) ∨ 𝑏 ∈ (𝐶𝐼𝑎))))}
1210, 11brab2a 5723 . . 3 (𝐴{⟨𝑎, 𝑏⟩ ∣ ((𝑎𝑃𝑏𝑃) ∧ (𝑎𝐶𝑏𝐶 ∧ (𝑎 ∈ (𝐶𝐼𝑏) ∨ 𝑏 ∈ (𝐶𝐼𝑎))))}𝐵 ↔ ((𝐴𝑃𝐵𝑃) ∧ (𝐴𝐶𝐵𝐶 ∧ (𝐴 ∈ (𝐶𝐼𝐵) ∨ 𝐵 ∈ (𝐶𝐼𝐴)))))
1312a1i 11 . 2 (𝜑 → (𝐴{⟨𝑎, 𝑏⟩ ∣ ((𝑎𝑃𝑏𝑃) ∧ (𝑎𝐶𝑏𝐶 ∧ (𝑎 ∈ (𝐶𝐼𝑏) ∨ 𝑏 ∈ (𝐶𝐼𝑎))))}𝐵 ↔ ((𝐴𝑃𝐵𝑃) ∧ (𝐴𝐶𝐵𝐶 ∧ (𝐴 ∈ (𝐶𝐼𝐵) ∨ 𝐵 ∈ (𝐶𝐼𝐴))))))
14 ishlg.k . . . . 5 𝐾 = (hlG‘𝐺)
15 ishlg.g . . . . . 6 (𝜑𝐺𝑉)
16 elex 3461 . . . . . 6 (𝐺𝑉𝐺 ∈ V)
17 fveq2 6839 . . . . . . . . 9 (𝑔 = 𝐺 → (Base‘𝑔) = (Base‘𝐺))
18 ishlg.p . . . . . . . . 9 𝑃 = (Base‘𝐺)
1917, 18eqtr4di 2794 . . . . . . . 8 (𝑔 = 𝐺 → (Base‘𝑔) = 𝑃)
2019eleq2d 2823 . . . . . . . . . . 11 (𝑔 = 𝐺 → (𝑎 ∈ (Base‘𝑔) ↔ 𝑎𝑃))
2119eleq2d 2823 . . . . . . . . . . 11 (𝑔 = 𝐺 → (𝑏 ∈ (Base‘𝑔) ↔ 𝑏𝑃))
2220, 21anbi12d 631 . . . . . . . . . 10 (𝑔 = 𝐺 → ((𝑎 ∈ (Base‘𝑔) ∧ 𝑏 ∈ (Base‘𝑔)) ↔ (𝑎𝑃𝑏𝑃)))
23 fveq2 6839 . . . . . . . . . . . . . . 15 (𝑔 = 𝐺 → (Itv‘𝑔) = (Itv‘𝐺))
24 ishlg.i . . . . . . . . . . . . . . 15 𝐼 = (Itv‘𝐺)
2523, 24eqtr4di 2794 . . . . . . . . . . . . . 14 (𝑔 = 𝐺 → (Itv‘𝑔) = 𝐼)
2625oveqd 7370 . . . . . . . . . . . . 13 (𝑔 = 𝐺 → (𝑐(Itv‘𝑔)𝑏) = (𝑐𝐼𝑏))
2726eleq2d 2823 . . . . . . . . . . . 12 (𝑔 = 𝐺 → (𝑎 ∈ (𝑐(Itv‘𝑔)𝑏) ↔ 𝑎 ∈ (𝑐𝐼𝑏)))
2825oveqd 7370 . . . . . . . . . . . . 13 (𝑔 = 𝐺 → (𝑐(Itv‘𝑔)𝑎) = (𝑐𝐼𝑎))
2928eleq2d 2823 . . . . . . . . . . . 12 (𝑔 = 𝐺 → (𝑏 ∈ (𝑐(Itv‘𝑔)𝑎) ↔ 𝑏 ∈ (𝑐𝐼𝑎)))
3027, 29orbi12d 917 . . . . . . . . . . 11 (𝑔 = 𝐺 → ((𝑎 ∈ (𝑐(Itv‘𝑔)𝑏) ∨ 𝑏 ∈ (𝑐(Itv‘𝑔)𝑎)) ↔ (𝑎 ∈ (𝑐𝐼𝑏) ∨ 𝑏 ∈ (𝑐𝐼𝑎))))
31303anbi3d 1442 . . . . . . . . . 10 (𝑔 = 𝐺 → ((𝑎𝑐𝑏𝑐 ∧ (𝑎 ∈ (𝑐(Itv‘𝑔)𝑏) ∨ 𝑏 ∈ (𝑐(Itv‘𝑔)𝑎))) ↔ (𝑎𝑐𝑏𝑐 ∧ (𝑎 ∈ (𝑐𝐼𝑏) ∨ 𝑏 ∈ (𝑐𝐼𝑎)))))
3222, 31anbi12d 631 . . . . . . . . 9 (𝑔 = 𝐺 → (((𝑎 ∈ (Base‘𝑔) ∧ 𝑏 ∈ (Base‘𝑔)) ∧ (𝑎𝑐𝑏𝑐 ∧ (𝑎 ∈ (𝑐(Itv‘𝑔)𝑏) ∨ 𝑏 ∈ (𝑐(Itv‘𝑔)𝑎)))) ↔ ((𝑎𝑃𝑏𝑃) ∧ (𝑎𝑐𝑏𝑐 ∧ (𝑎 ∈ (𝑐𝐼𝑏) ∨ 𝑏 ∈ (𝑐𝐼𝑎))))))
3332opabbidv 5169 . . . . . . . 8 (𝑔 = 𝐺 → {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (Base‘𝑔) ∧ 𝑏 ∈ (Base‘𝑔)) ∧ (𝑎𝑐𝑏𝑐 ∧ (𝑎 ∈ (𝑐(Itv‘𝑔)𝑏) ∨ 𝑏 ∈ (𝑐(Itv‘𝑔)𝑎))))} = {⟨𝑎, 𝑏⟩ ∣ ((𝑎𝑃𝑏𝑃) ∧ (𝑎𝑐𝑏𝑐 ∧ (𝑎 ∈ (𝑐𝐼𝑏) ∨ 𝑏 ∈ (𝑐𝐼𝑎))))})
3419, 33mpteq12dv 5194 . . . . . . 7 (𝑔 = 𝐺 → (𝑐 ∈ (Base‘𝑔) ↦ {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (Base‘𝑔) ∧ 𝑏 ∈ (Base‘𝑔)) ∧ (𝑎𝑐𝑏𝑐 ∧ (𝑎 ∈ (𝑐(Itv‘𝑔)𝑏) ∨ 𝑏 ∈ (𝑐(Itv‘𝑔)𝑎))))}) = (𝑐𝑃 ↦ {⟨𝑎, 𝑏⟩ ∣ ((𝑎𝑃𝑏𝑃) ∧ (𝑎𝑐𝑏𝑐 ∧ (𝑎 ∈ (𝑐𝐼𝑏) ∨ 𝑏 ∈ (𝑐𝐼𝑎))))}))
35 df-hlg 27429 . . . . . . 7 hlG = (𝑔 ∈ V ↦ (𝑐 ∈ (Base‘𝑔) ↦ {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (Base‘𝑔) ∧ 𝑏 ∈ (Base‘𝑔)) ∧ (𝑎𝑐𝑏𝑐 ∧ (𝑎 ∈ (𝑐(Itv‘𝑔)𝑏) ∨ 𝑏 ∈ (𝑐(Itv‘𝑔)𝑎))))}))
3634, 35, 18mptfvmpt 7174 . . . . . 6 (𝐺 ∈ V → (hlG‘𝐺) = (𝑐𝑃 ↦ {⟨𝑎, 𝑏⟩ ∣ ((𝑎𝑃𝑏𝑃) ∧ (𝑎𝑐𝑏𝑐 ∧ (𝑎 ∈ (𝑐𝐼𝑏) ∨ 𝑏 ∈ (𝑐𝐼𝑎))))}))
3715, 16, 363syl 18 . . . . 5 (𝜑 → (hlG‘𝐺) = (𝑐𝑃 ↦ {⟨𝑎, 𝑏⟩ ∣ ((𝑎𝑃𝑏𝑃) ∧ (𝑎𝑐𝑏𝑐 ∧ (𝑎 ∈ (𝑐𝐼𝑏) ∨ 𝑏 ∈ (𝑐𝐼𝑎))))}))
3814, 37eqtrid 2788 . . . 4 (𝜑𝐾 = (𝑐𝑃 ↦ {⟨𝑎, 𝑏⟩ ∣ ((𝑎𝑃𝑏𝑃) ∧ (𝑎𝑐𝑏𝑐 ∧ (𝑎 ∈ (𝑐𝐼𝑏) ∨ 𝑏 ∈ (𝑐𝐼𝑎))))}))
39 neeq2 3005 . . . . . . . 8 (𝑐 = 𝐶 → (𝑎𝑐𝑎𝐶))
40 neeq2 3005 . . . . . . . 8 (𝑐 = 𝐶 → (𝑏𝑐𝑏𝐶))
41 oveq1 7360 . . . . . . . . . 10 (𝑐 = 𝐶 → (𝑐𝐼𝑏) = (𝐶𝐼𝑏))
4241eleq2d 2823 . . . . . . . . 9 (𝑐 = 𝐶 → (𝑎 ∈ (𝑐𝐼𝑏) ↔ 𝑎 ∈ (𝐶𝐼𝑏)))
43 oveq1 7360 . . . . . . . . . 10 (𝑐 = 𝐶 → (𝑐𝐼𝑎) = (𝐶𝐼𝑎))
4443eleq2d 2823 . . . . . . . . 9 (𝑐 = 𝐶 → (𝑏 ∈ (𝑐𝐼𝑎) ↔ 𝑏 ∈ (𝐶𝐼𝑎)))
4542, 44orbi12d 917 . . . . . . . 8 (𝑐 = 𝐶 → ((𝑎 ∈ (𝑐𝐼𝑏) ∨ 𝑏 ∈ (𝑐𝐼𝑎)) ↔ (𝑎 ∈ (𝐶𝐼𝑏) ∨ 𝑏 ∈ (𝐶𝐼𝑎))))
4639, 40, 453anbi123d 1436 . . . . . . 7 (𝑐 = 𝐶 → ((𝑎𝑐𝑏𝑐 ∧ (𝑎 ∈ (𝑐𝐼𝑏) ∨ 𝑏 ∈ (𝑐𝐼𝑎))) ↔ (𝑎𝐶𝑏𝐶 ∧ (𝑎 ∈ (𝐶𝐼𝑏) ∨ 𝑏 ∈ (𝐶𝐼𝑎)))))
4746anbi2d 629 . . . . . 6 (𝑐 = 𝐶 → (((𝑎𝑃𝑏𝑃) ∧ (𝑎𝑐𝑏𝑐 ∧ (𝑎 ∈ (𝑐𝐼𝑏) ∨ 𝑏 ∈ (𝑐𝐼𝑎)))) ↔ ((𝑎𝑃𝑏𝑃) ∧ (𝑎𝐶𝑏𝐶 ∧ (𝑎 ∈ (𝐶𝐼𝑏) ∨ 𝑏 ∈ (𝐶𝐼𝑎))))))
4847opabbidv 5169 . . . . 5 (𝑐 = 𝐶 → {⟨𝑎, 𝑏⟩ ∣ ((𝑎𝑃𝑏𝑃) ∧ (𝑎𝑐𝑏𝑐 ∧ (𝑎 ∈ (𝑐𝐼𝑏) ∨ 𝑏 ∈ (𝑐𝐼𝑎))))} = {⟨𝑎, 𝑏⟩ ∣ ((𝑎𝑃𝑏𝑃) ∧ (𝑎𝐶𝑏𝐶 ∧ (𝑎 ∈ (𝐶𝐼𝑏) ∨ 𝑏 ∈ (𝐶𝐼𝑎))))})
4948adantl 482 . . . 4 ((𝜑𝑐 = 𝐶) → {⟨𝑎, 𝑏⟩ ∣ ((𝑎𝑃𝑏𝑃) ∧ (𝑎𝑐𝑏𝑐 ∧ (𝑎 ∈ (𝑐𝐼𝑏) ∨ 𝑏 ∈ (𝑐𝐼𝑎))))} = {⟨𝑎, 𝑏⟩ ∣ ((𝑎𝑃𝑏𝑃) ∧ (𝑎𝐶𝑏𝐶 ∧ (𝑎 ∈ (𝐶𝐼𝑏) ∨ 𝑏 ∈ (𝐶𝐼𝑎))))})
50 ishlg.c . . . 4 (𝜑𝐶𝑃)
5118fvexi 6853 . . . . . . 7 𝑃 ∈ V
5251, 51xpex 7683 . . . . . 6 (𝑃 × 𝑃) ∈ V
53 opabssxp 5722 . . . . . 6 {⟨𝑎, 𝑏⟩ ∣ ((𝑎𝑃𝑏𝑃) ∧ (𝑎𝐶𝑏𝐶 ∧ (𝑎 ∈ (𝐶𝐼𝑏) ∨ 𝑏 ∈ (𝐶𝐼𝑎))))} ⊆ (𝑃 × 𝑃)
5452, 53ssexi 5277 . . . . 5 {⟨𝑎, 𝑏⟩ ∣ ((𝑎𝑃𝑏𝑃) ∧ (𝑎𝐶𝑏𝐶 ∧ (𝑎 ∈ (𝐶𝐼𝑏) ∨ 𝑏 ∈ (𝐶𝐼𝑎))))} ∈ V
5554a1i 11 . . . 4 (𝜑 → {⟨𝑎, 𝑏⟩ ∣ ((𝑎𝑃𝑏𝑃) ∧ (𝑎𝐶𝑏𝐶 ∧ (𝑎 ∈ (𝐶𝐼𝑏) ∨ 𝑏 ∈ (𝐶𝐼𝑎))))} ∈ V)
5638, 49, 50, 55fvmptd 6952 . . 3 (𝜑 → (𝐾𝐶) = {⟨𝑎, 𝑏⟩ ∣ ((𝑎𝑃𝑏𝑃) ∧ (𝑎𝐶𝑏𝐶 ∧ (𝑎 ∈ (𝐶𝐼𝑏) ∨ 𝑏 ∈ (𝐶𝐼𝑎))))})
5756breqd 5114 . 2 (𝜑 → (𝐴(𝐾𝐶)𝐵𝐴{⟨𝑎, 𝑏⟩ ∣ ((𝑎𝑃𝑏𝑃) ∧ (𝑎𝐶𝑏𝐶 ∧ (𝑎 ∈ (𝐶𝐼𝑏) ∨ 𝑏 ∈ (𝐶𝐼𝑎))))}𝐵))
58 ishlg.a . . . 4 (𝜑𝐴𝑃)
59 ishlg.b . . . 4 (𝜑𝐵𝑃)
6058, 59jca 512 . . 3 (𝜑 → (𝐴𝑃𝐵𝑃))
6160biantrurd 533 . 2 (𝜑 → ((𝐴𝐶𝐵𝐶 ∧ (𝐴 ∈ (𝐶𝐼𝐵) ∨ 𝐵 ∈ (𝐶𝐼𝐴))) ↔ ((𝐴𝑃𝐵𝑃) ∧ (𝐴𝐶𝐵𝐶 ∧ (𝐴 ∈ (𝐶𝐼𝐵) ∨ 𝐵 ∈ (𝐶𝐼𝐴))))))
6213, 57, 613bitr4d 310 1 (𝜑 → (𝐴(𝐾𝐶)𝐵 ↔ (𝐴𝐶𝐵𝐶 ∧ (𝐴 ∈ (𝐶𝐼𝐵) ∨ 𝐵 ∈ (𝐶𝐼𝐴)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wo 845  w3a 1087   = wceq 1541  wcel 2106  wne 2941  Vcvv 3443   class class class wbr 5103  {copab 5165  cmpt 5186   × cxp 5629  cfv 6493  (class class class)co 7353  Basecbs 17075  Itvcitv 27261  hlGchlg 27428
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5240  ax-sep 5254  ax-nul 5261  ax-pow 5318  ax-pr 5382  ax-un 7668
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3352  df-rab 3406  df-v 3445  df-sbc 3738  df-csb 3854  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-nul 4281  df-if 4485  df-pw 4560  df-sn 4585  df-pr 4587  df-op 4591  df-uni 4864  df-iun 4954  df-br 5104  df-opab 5166  df-mpt 5187  df-id 5529  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6445  df-fun 6495  df-fn 6496  df-f 6497  df-f1 6498  df-fo 6499  df-f1o 6500  df-fv 6501  df-ov 7356  df-hlg 27429
This theorem is referenced by:  hlcomb  27431  hlne1  27433  hlne2  27434  hlln  27435  hlid  27437  hltr  27438  hlbtwn  27439  btwnhl1  27440  btwnhl2  27441  btwnhl  27442  lnhl  27443  hlcgrex  27444  mirhl  27507  mirbtwnhl  27508  mirhl2  27509  opphllem4  27578  opphl  27582  hlpasch  27584  lnopp2hpgb  27591  cgracgr  27646  cgraswap  27648  flatcgra  27652  cgrahl  27655  cgracol  27656
  Copyright terms: Public domain W3C validator