MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ishlg Structured version   Visualization version   GIF version

Theorem ishlg 26387
Description: Rays : Definition 6.1 of [Schwabhauser] p. 43. With this definition, 𝐴(𝐾𝐶)𝐵 means that 𝐴 and 𝐵 are on the same ray with initial point 𝐶. This follows the same notation as Schwabhauser where rays are first defined as a relation. It is possible to recover the ray itself using e.g. ((𝐾𝐶) “ {𝐴}) (Contributed by Thierry Arnoux, 21-Dec-2019.)
Hypotheses
Ref Expression
ishlg.p 𝑃 = (Base‘𝐺)
ishlg.i 𝐼 = (Itv‘𝐺)
ishlg.k 𝐾 = (hlG‘𝐺)
ishlg.a (𝜑𝐴𝑃)
ishlg.b (𝜑𝐵𝑃)
ishlg.c (𝜑𝐶𝑃)
ishlg.g (𝜑𝐺𝑉)
Assertion
Ref Expression
ishlg (𝜑 → (𝐴(𝐾𝐶)𝐵 ↔ (𝐴𝐶𝐵𝐶 ∧ (𝐴 ∈ (𝐶𝐼𝐵) ∨ 𝐵 ∈ (𝐶𝐼𝐴)))))

Proof of Theorem ishlg
Dummy variables 𝑎 𝑏 𝑐 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 485 . . . . . 6 ((𝑎 = 𝐴𝑏 = 𝐵) → 𝑎 = 𝐴)
21neeq1d 3075 . . . . 5 ((𝑎 = 𝐴𝑏 = 𝐵) → (𝑎𝐶𝐴𝐶))
3 simpr 487 . . . . . 6 ((𝑎 = 𝐴𝑏 = 𝐵) → 𝑏 = 𝐵)
43neeq1d 3075 . . . . 5 ((𝑎 = 𝐴𝑏 = 𝐵) → (𝑏𝐶𝐵𝐶))
53oveq2d 7171 . . . . . . 7 ((𝑎 = 𝐴𝑏 = 𝐵) → (𝐶𝐼𝑏) = (𝐶𝐼𝐵))
61, 5eleq12d 2907 . . . . . 6 ((𝑎 = 𝐴𝑏 = 𝐵) → (𝑎 ∈ (𝐶𝐼𝑏) ↔ 𝐴 ∈ (𝐶𝐼𝐵)))
71oveq2d 7171 . . . . . . 7 ((𝑎 = 𝐴𝑏 = 𝐵) → (𝐶𝐼𝑎) = (𝐶𝐼𝐴))
83, 7eleq12d 2907 . . . . . 6 ((𝑎 = 𝐴𝑏 = 𝐵) → (𝑏 ∈ (𝐶𝐼𝑎) ↔ 𝐵 ∈ (𝐶𝐼𝐴)))
96, 8orbi12d 915 . . . . 5 ((𝑎 = 𝐴𝑏 = 𝐵) → ((𝑎 ∈ (𝐶𝐼𝑏) ∨ 𝑏 ∈ (𝐶𝐼𝑎)) ↔ (𝐴 ∈ (𝐶𝐼𝐵) ∨ 𝐵 ∈ (𝐶𝐼𝐴))))
102, 4, 93anbi123d 1432 . . . 4 ((𝑎 = 𝐴𝑏 = 𝐵) → ((𝑎𝐶𝑏𝐶 ∧ (𝑎 ∈ (𝐶𝐼𝑏) ∨ 𝑏 ∈ (𝐶𝐼𝑎))) ↔ (𝐴𝐶𝐵𝐶 ∧ (𝐴 ∈ (𝐶𝐼𝐵) ∨ 𝐵 ∈ (𝐶𝐼𝐴)))))
11 eqid 2821 . . . 4 {⟨𝑎, 𝑏⟩ ∣ ((𝑎𝑃𝑏𝑃) ∧ (𝑎𝐶𝑏𝐶 ∧ (𝑎 ∈ (𝐶𝐼𝑏) ∨ 𝑏 ∈ (𝐶𝐼𝑎))))} = {⟨𝑎, 𝑏⟩ ∣ ((𝑎𝑃𝑏𝑃) ∧ (𝑎𝐶𝑏𝐶 ∧ (𝑎 ∈ (𝐶𝐼𝑏) ∨ 𝑏 ∈ (𝐶𝐼𝑎))))}
1210, 11brab2a 5643 . . 3 (𝐴{⟨𝑎, 𝑏⟩ ∣ ((𝑎𝑃𝑏𝑃) ∧ (𝑎𝐶𝑏𝐶 ∧ (𝑎 ∈ (𝐶𝐼𝑏) ∨ 𝑏 ∈ (𝐶𝐼𝑎))))}𝐵 ↔ ((𝐴𝑃𝐵𝑃) ∧ (𝐴𝐶𝐵𝐶 ∧ (𝐴 ∈ (𝐶𝐼𝐵) ∨ 𝐵 ∈ (𝐶𝐼𝐴)))))
1312a1i 11 . 2 (𝜑 → (𝐴{⟨𝑎, 𝑏⟩ ∣ ((𝑎𝑃𝑏𝑃) ∧ (𝑎𝐶𝑏𝐶 ∧ (𝑎 ∈ (𝐶𝐼𝑏) ∨ 𝑏 ∈ (𝐶𝐼𝑎))))}𝐵 ↔ ((𝐴𝑃𝐵𝑃) ∧ (𝐴𝐶𝐵𝐶 ∧ (𝐴 ∈ (𝐶𝐼𝐵) ∨ 𝐵 ∈ (𝐶𝐼𝐴))))))
14 ishlg.k . . . . 5 𝐾 = (hlG‘𝐺)
15 ishlg.g . . . . . 6 (𝜑𝐺𝑉)
16 elex 3512 . . . . . 6 (𝐺𝑉𝐺 ∈ V)
17 fveq2 6669 . . . . . . . . 9 (𝑔 = 𝐺 → (Base‘𝑔) = (Base‘𝐺))
18 ishlg.p . . . . . . . . 9 𝑃 = (Base‘𝐺)
1917, 18syl6eqr 2874 . . . . . . . 8 (𝑔 = 𝐺 → (Base‘𝑔) = 𝑃)
2019eleq2d 2898 . . . . . . . . . . 11 (𝑔 = 𝐺 → (𝑎 ∈ (Base‘𝑔) ↔ 𝑎𝑃))
2119eleq2d 2898 . . . . . . . . . . 11 (𝑔 = 𝐺 → (𝑏 ∈ (Base‘𝑔) ↔ 𝑏𝑃))
2220, 21anbi12d 632 . . . . . . . . . 10 (𝑔 = 𝐺 → ((𝑎 ∈ (Base‘𝑔) ∧ 𝑏 ∈ (Base‘𝑔)) ↔ (𝑎𝑃𝑏𝑃)))
23 fveq2 6669 . . . . . . . . . . . . . . 15 (𝑔 = 𝐺 → (Itv‘𝑔) = (Itv‘𝐺))
24 ishlg.i . . . . . . . . . . . . . . 15 𝐼 = (Itv‘𝐺)
2523, 24syl6eqr 2874 . . . . . . . . . . . . . 14 (𝑔 = 𝐺 → (Itv‘𝑔) = 𝐼)
2625oveqd 7172 . . . . . . . . . . . . 13 (𝑔 = 𝐺 → (𝑐(Itv‘𝑔)𝑏) = (𝑐𝐼𝑏))
2726eleq2d 2898 . . . . . . . . . . . 12 (𝑔 = 𝐺 → (𝑎 ∈ (𝑐(Itv‘𝑔)𝑏) ↔ 𝑎 ∈ (𝑐𝐼𝑏)))
2825oveqd 7172 . . . . . . . . . . . . 13 (𝑔 = 𝐺 → (𝑐(Itv‘𝑔)𝑎) = (𝑐𝐼𝑎))
2928eleq2d 2898 . . . . . . . . . . . 12 (𝑔 = 𝐺 → (𝑏 ∈ (𝑐(Itv‘𝑔)𝑎) ↔ 𝑏 ∈ (𝑐𝐼𝑎)))
3027, 29orbi12d 915 . . . . . . . . . . 11 (𝑔 = 𝐺 → ((𝑎 ∈ (𝑐(Itv‘𝑔)𝑏) ∨ 𝑏 ∈ (𝑐(Itv‘𝑔)𝑎)) ↔ (𝑎 ∈ (𝑐𝐼𝑏) ∨ 𝑏 ∈ (𝑐𝐼𝑎))))
31303anbi3d 1438 . . . . . . . . . 10 (𝑔 = 𝐺 → ((𝑎𝑐𝑏𝑐 ∧ (𝑎 ∈ (𝑐(Itv‘𝑔)𝑏) ∨ 𝑏 ∈ (𝑐(Itv‘𝑔)𝑎))) ↔ (𝑎𝑐𝑏𝑐 ∧ (𝑎 ∈ (𝑐𝐼𝑏) ∨ 𝑏 ∈ (𝑐𝐼𝑎)))))
3222, 31anbi12d 632 . . . . . . . . 9 (𝑔 = 𝐺 → (((𝑎 ∈ (Base‘𝑔) ∧ 𝑏 ∈ (Base‘𝑔)) ∧ (𝑎𝑐𝑏𝑐 ∧ (𝑎 ∈ (𝑐(Itv‘𝑔)𝑏) ∨ 𝑏 ∈ (𝑐(Itv‘𝑔)𝑎)))) ↔ ((𝑎𝑃𝑏𝑃) ∧ (𝑎𝑐𝑏𝑐 ∧ (𝑎 ∈ (𝑐𝐼𝑏) ∨ 𝑏 ∈ (𝑐𝐼𝑎))))))
3332opabbidv 5131 . . . . . . . 8 (𝑔 = 𝐺 → {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (Base‘𝑔) ∧ 𝑏 ∈ (Base‘𝑔)) ∧ (𝑎𝑐𝑏𝑐 ∧ (𝑎 ∈ (𝑐(Itv‘𝑔)𝑏) ∨ 𝑏 ∈ (𝑐(Itv‘𝑔)𝑎))))} = {⟨𝑎, 𝑏⟩ ∣ ((𝑎𝑃𝑏𝑃) ∧ (𝑎𝑐𝑏𝑐 ∧ (𝑎 ∈ (𝑐𝐼𝑏) ∨ 𝑏 ∈ (𝑐𝐼𝑎))))})
3419, 33mpteq12dv 5150 . . . . . . 7 (𝑔 = 𝐺 → (𝑐 ∈ (Base‘𝑔) ↦ {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (Base‘𝑔) ∧ 𝑏 ∈ (Base‘𝑔)) ∧ (𝑎𝑐𝑏𝑐 ∧ (𝑎 ∈ (𝑐(Itv‘𝑔)𝑏) ∨ 𝑏 ∈ (𝑐(Itv‘𝑔)𝑎))))}) = (𝑐𝑃 ↦ {⟨𝑎, 𝑏⟩ ∣ ((𝑎𝑃𝑏𝑃) ∧ (𝑎𝑐𝑏𝑐 ∧ (𝑎 ∈ (𝑐𝐼𝑏) ∨ 𝑏 ∈ (𝑐𝐼𝑎))))}))
35 df-hlg 26386 . . . . . . 7 hlG = (𝑔 ∈ V ↦ (𝑐 ∈ (Base‘𝑔) ↦ {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (Base‘𝑔) ∧ 𝑏 ∈ (Base‘𝑔)) ∧ (𝑎𝑐𝑏𝑐 ∧ (𝑎 ∈ (𝑐(Itv‘𝑔)𝑏) ∨ 𝑏 ∈ (𝑐(Itv‘𝑔)𝑎))))}))
3634, 35, 18mptfvmpt 6989 . . . . . 6 (𝐺 ∈ V → (hlG‘𝐺) = (𝑐𝑃 ↦ {⟨𝑎, 𝑏⟩ ∣ ((𝑎𝑃𝑏𝑃) ∧ (𝑎𝑐𝑏𝑐 ∧ (𝑎 ∈ (𝑐𝐼𝑏) ∨ 𝑏 ∈ (𝑐𝐼𝑎))))}))
3715, 16, 363syl 18 . . . . 5 (𝜑 → (hlG‘𝐺) = (𝑐𝑃 ↦ {⟨𝑎, 𝑏⟩ ∣ ((𝑎𝑃𝑏𝑃) ∧ (𝑎𝑐𝑏𝑐 ∧ (𝑎 ∈ (𝑐𝐼𝑏) ∨ 𝑏 ∈ (𝑐𝐼𝑎))))}))
3814, 37syl5eq 2868 . . . 4 (𝜑𝐾 = (𝑐𝑃 ↦ {⟨𝑎, 𝑏⟩ ∣ ((𝑎𝑃𝑏𝑃) ∧ (𝑎𝑐𝑏𝑐 ∧ (𝑎 ∈ (𝑐𝐼𝑏) ∨ 𝑏 ∈ (𝑐𝐼𝑎))))}))
39 neeq2 3079 . . . . . . . 8 (𝑐 = 𝐶 → (𝑎𝑐𝑎𝐶))
40 neeq2 3079 . . . . . . . 8 (𝑐 = 𝐶 → (𝑏𝑐𝑏𝐶))
41 oveq1 7162 . . . . . . . . . 10 (𝑐 = 𝐶 → (𝑐𝐼𝑏) = (𝐶𝐼𝑏))
4241eleq2d 2898 . . . . . . . . 9 (𝑐 = 𝐶 → (𝑎 ∈ (𝑐𝐼𝑏) ↔ 𝑎 ∈ (𝐶𝐼𝑏)))
43 oveq1 7162 . . . . . . . . . 10 (𝑐 = 𝐶 → (𝑐𝐼𝑎) = (𝐶𝐼𝑎))
4443eleq2d 2898 . . . . . . . . 9 (𝑐 = 𝐶 → (𝑏 ∈ (𝑐𝐼𝑎) ↔ 𝑏 ∈ (𝐶𝐼𝑎)))
4542, 44orbi12d 915 . . . . . . . 8 (𝑐 = 𝐶 → ((𝑎 ∈ (𝑐𝐼𝑏) ∨ 𝑏 ∈ (𝑐𝐼𝑎)) ↔ (𝑎 ∈ (𝐶𝐼𝑏) ∨ 𝑏 ∈ (𝐶𝐼𝑎))))
4639, 40, 453anbi123d 1432 . . . . . . 7 (𝑐 = 𝐶 → ((𝑎𝑐𝑏𝑐 ∧ (𝑎 ∈ (𝑐𝐼𝑏) ∨ 𝑏 ∈ (𝑐𝐼𝑎))) ↔ (𝑎𝐶𝑏𝐶 ∧ (𝑎 ∈ (𝐶𝐼𝑏) ∨ 𝑏 ∈ (𝐶𝐼𝑎)))))
4746anbi2d 630 . . . . . 6 (𝑐 = 𝐶 → (((𝑎𝑃𝑏𝑃) ∧ (𝑎𝑐𝑏𝑐 ∧ (𝑎 ∈ (𝑐𝐼𝑏) ∨ 𝑏 ∈ (𝑐𝐼𝑎)))) ↔ ((𝑎𝑃𝑏𝑃) ∧ (𝑎𝐶𝑏𝐶 ∧ (𝑎 ∈ (𝐶𝐼𝑏) ∨ 𝑏 ∈ (𝐶𝐼𝑎))))))
4847opabbidv 5131 . . . . 5 (𝑐 = 𝐶 → {⟨𝑎, 𝑏⟩ ∣ ((𝑎𝑃𝑏𝑃) ∧ (𝑎𝑐𝑏𝑐 ∧ (𝑎 ∈ (𝑐𝐼𝑏) ∨ 𝑏 ∈ (𝑐𝐼𝑎))))} = {⟨𝑎, 𝑏⟩ ∣ ((𝑎𝑃𝑏𝑃) ∧ (𝑎𝐶𝑏𝐶 ∧ (𝑎 ∈ (𝐶𝐼𝑏) ∨ 𝑏 ∈ (𝐶𝐼𝑎))))})
4948adantl 484 . . . 4 ((𝜑𝑐 = 𝐶) → {⟨𝑎, 𝑏⟩ ∣ ((𝑎𝑃𝑏𝑃) ∧ (𝑎𝑐𝑏𝑐 ∧ (𝑎 ∈ (𝑐𝐼𝑏) ∨ 𝑏 ∈ (𝑐𝐼𝑎))))} = {⟨𝑎, 𝑏⟩ ∣ ((𝑎𝑃𝑏𝑃) ∧ (𝑎𝐶𝑏𝐶 ∧ (𝑎 ∈ (𝐶𝐼𝑏) ∨ 𝑏 ∈ (𝐶𝐼𝑎))))})
50 ishlg.c . . . 4 (𝜑𝐶𝑃)
5118fvexi 6683 . . . . . . 7 𝑃 ∈ V
5251, 51xpex 7475 . . . . . 6 (𝑃 × 𝑃) ∈ V
53 opabssxp 5642 . . . . . 6 {⟨𝑎, 𝑏⟩ ∣ ((𝑎𝑃𝑏𝑃) ∧ (𝑎𝐶𝑏𝐶 ∧ (𝑎 ∈ (𝐶𝐼𝑏) ∨ 𝑏 ∈ (𝐶𝐼𝑎))))} ⊆ (𝑃 × 𝑃)
5452, 53ssexi 5225 . . . . 5 {⟨𝑎, 𝑏⟩ ∣ ((𝑎𝑃𝑏𝑃) ∧ (𝑎𝐶𝑏𝐶 ∧ (𝑎 ∈ (𝐶𝐼𝑏) ∨ 𝑏 ∈ (𝐶𝐼𝑎))))} ∈ V
5554a1i 11 . . . 4 (𝜑 → {⟨𝑎, 𝑏⟩ ∣ ((𝑎𝑃𝑏𝑃) ∧ (𝑎𝐶𝑏𝐶 ∧ (𝑎 ∈ (𝐶𝐼𝑏) ∨ 𝑏 ∈ (𝐶𝐼𝑎))))} ∈ V)
5638, 49, 50, 55fvmptd 6774 . . 3 (𝜑 → (𝐾𝐶) = {⟨𝑎, 𝑏⟩ ∣ ((𝑎𝑃𝑏𝑃) ∧ (𝑎𝐶𝑏𝐶 ∧ (𝑎 ∈ (𝐶𝐼𝑏) ∨ 𝑏 ∈ (𝐶𝐼𝑎))))})
5756breqd 5076 . 2 (𝜑 → (𝐴(𝐾𝐶)𝐵𝐴{⟨𝑎, 𝑏⟩ ∣ ((𝑎𝑃𝑏𝑃) ∧ (𝑎𝐶𝑏𝐶 ∧ (𝑎 ∈ (𝐶𝐼𝑏) ∨ 𝑏 ∈ (𝐶𝐼𝑎))))}𝐵))
58 ishlg.a . . . 4 (𝜑𝐴𝑃)
59 ishlg.b . . . 4 (𝜑𝐵𝑃)
6058, 59jca 514 . . 3 (𝜑 → (𝐴𝑃𝐵𝑃))
6160biantrurd 535 . 2 (𝜑 → ((𝐴𝐶𝐵𝐶 ∧ (𝐴 ∈ (𝐶𝐼𝐵) ∨ 𝐵 ∈ (𝐶𝐼𝐴))) ↔ ((𝐴𝑃𝐵𝑃) ∧ (𝐴𝐶𝐵𝐶 ∧ (𝐴 ∈ (𝐶𝐼𝐵) ∨ 𝐵 ∈ (𝐶𝐼𝐴))))))
6213, 57, 613bitr4d 313 1 (𝜑 → (𝐴(𝐾𝐶)𝐵 ↔ (𝐴𝐶𝐵𝐶 ∧ (𝐴 ∈ (𝐶𝐼𝐵) ∨ 𝐵 ∈ (𝐶𝐼𝐴)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  wo 843  w3a 1083   = wceq 1533  wcel 2110  wne 3016  Vcvv 3494   class class class wbr 5065  {copab 5127  cmpt 5145   × cxp 5552  cfv 6354  (class class class)co 7155  Basecbs 16482  Itvcitv 26221  hlGchlg 26385
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5189  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4838  df-iun 4920  df-br 5066  df-opab 5128  df-mpt 5146  df-id 5459  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-ov 7158  df-hlg 26386
This theorem is referenced by:  hlcomb  26388  hlne1  26390  hlne2  26391  hlln  26392  hlid  26394  hltr  26395  hlbtwn  26396  btwnhl1  26397  btwnhl2  26398  btwnhl  26399  lnhl  26400  hlcgrex  26401  mirhl  26464  mirbtwnhl  26465  mirhl2  26466  opphllem4  26535  opphl  26539  hlpasch  26541  lnopp2hpgb  26548  cgracgr  26603  cgraswap  26605  flatcgra  26609  cgrahl  26612  cgracol  26613
  Copyright terms: Public domain W3C validator