MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ishlg Structured version   Visualization version   GIF version

Theorem ishlg 28118
Description: Rays : Definition 6.1 of [Schwabhauser] p. 43. With this definition, 𝐴(πΎβ€˜πΆ)𝐡 means that 𝐴 and 𝐡 are on the same ray with initial point 𝐢. This follows the same notation as Schwabhauser where rays are first defined as a relation. It is possible to recover the ray itself using e.g., ((πΎβ€˜πΆ) β€œ {𝐴}). (Contributed by Thierry Arnoux, 21-Dec-2019.)
Hypotheses
Ref Expression
ishlg.p 𝑃 = (Baseβ€˜πΊ)
ishlg.i 𝐼 = (Itvβ€˜πΊ)
ishlg.k 𝐾 = (hlGβ€˜πΊ)
ishlg.a (πœ‘ β†’ 𝐴 ∈ 𝑃)
ishlg.b (πœ‘ β†’ 𝐡 ∈ 𝑃)
ishlg.c (πœ‘ β†’ 𝐢 ∈ 𝑃)
ishlg.g (πœ‘ β†’ 𝐺 ∈ 𝑉)
Assertion
Ref Expression
ishlg (πœ‘ β†’ (𝐴(πΎβ€˜πΆ)𝐡 ↔ (𝐴 β‰  𝐢 ∧ 𝐡 β‰  𝐢 ∧ (𝐴 ∈ (𝐢𝐼𝐡) ∨ 𝐡 ∈ (𝐢𝐼𝐴)))))

Proof of Theorem ishlg
Dummy variables π‘Ž 𝑏 𝑐 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 481 . . . . . 6 ((π‘Ž = 𝐴 ∧ 𝑏 = 𝐡) β†’ π‘Ž = 𝐴)
21neeq1d 2998 . . . . 5 ((π‘Ž = 𝐴 ∧ 𝑏 = 𝐡) β†’ (π‘Ž β‰  𝐢 ↔ 𝐴 β‰  𝐢))
3 simpr 483 . . . . . 6 ((π‘Ž = 𝐴 ∧ 𝑏 = 𝐡) β†’ 𝑏 = 𝐡)
43neeq1d 2998 . . . . 5 ((π‘Ž = 𝐴 ∧ 𝑏 = 𝐡) β†’ (𝑏 β‰  𝐢 ↔ 𝐡 β‰  𝐢))
53oveq2d 7429 . . . . . . 7 ((π‘Ž = 𝐴 ∧ 𝑏 = 𝐡) β†’ (𝐢𝐼𝑏) = (𝐢𝐼𝐡))
61, 5eleq12d 2825 . . . . . 6 ((π‘Ž = 𝐴 ∧ 𝑏 = 𝐡) β†’ (π‘Ž ∈ (𝐢𝐼𝑏) ↔ 𝐴 ∈ (𝐢𝐼𝐡)))
71oveq2d 7429 . . . . . . 7 ((π‘Ž = 𝐴 ∧ 𝑏 = 𝐡) β†’ (πΆπΌπ‘Ž) = (𝐢𝐼𝐴))
83, 7eleq12d 2825 . . . . . 6 ((π‘Ž = 𝐴 ∧ 𝑏 = 𝐡) β†’ (𝑏 ∈ (πΆπΌπ‘Ž) ↔ 𝐡 ∈ (𝐢𝐼𝐴)))
96, 8orbi12d 915 . . . . 5 ((π‘Ž = 𝐴 ∧ 𝑏 = 𝐡) β†’ ((π‘Ž ∈ (𝐢𝐼𝑏) ∨ 𝑏 ∈ (πΆπΌπ‘Ž)) ↔ (𝐴 ∈ (𝐢𝐼𝐡) ∨ 𝐡 ∈ (𝐢𝐼𝐴))))
102, 4, 93anbi123d 1434 . . . 4 ((π‘Ž = 𝐴 ∧ 𝑏 = 𝐡) β†’ ((π‘Ž β‰  𝐢 ∧ 𝑏 β‰  𝐢 ∧ (π‘Ž ∈ (𝐢𝐼𝑏) ∨ 𝑏 ∈ (πΆπΌπ‘Ž))) ↔ (𝐴 β‰  𝐢 ∧ 𝐡 β‰  𝐢 ∧ (𝐴 ∈ (𝐢𝐼𝐡) ∨ 𝐡 ∈ (𝐢𝐼𝐴)))))
11 eqid 2730 . . . 4 {βŸ¨π‘Ž, π‘βŸ© ∣ ((π‘Ž ∈ 𝑃 ∧ 𝑏 ∈ 𝑃) ∧ (π‘Ž β‰  𝐢 ∧ 𝑏 β‰  𝐢 ∧ (π‘Ž ∈ (𝐢𝐼𝑏) ∨ 𝑏 ∈ (πΆπΌπ‘Ž))))} = {βŸ¨π‘Ž, π‘βŸ© ∣ ((π‘Ž ∈ 𝑃 ∧ 𝑏 ∈ 𝑃) ∧ (π‘Ž β‰  𝐢 ∧ 𝑏 β‰  𝐢 ∧ (π‘Ž ∈ (𝐢𝐼𝑏) ∨ 𝑏 ∈ (πΆπΌπ‘Ž))))}
1210, 11brab2a 5770 . . 3 (𝐴{βŸ¨π‘Ž, π‘βŸ© ∣ ((π‘Ž ∈ 𝑃 ∧ 𝑏 ∈ 𝑃) ∧ (π‘Ž β‰  𝐢 ∧ 𝑏 β‰  𝐢 ∧ (π‘Ž ∈ (𝐢𝐼𝑏) ∨ 𝑏 ∈ (πΆπΌπ‘Ž))))}𝐡 ↔ ((𝐴 ∈ 𝑃 ∧ 𝐡 ∈ 𝑃) ∧ (𝐴 β‰  𝐢 ∧ 𝐡 β‰  𝐢 ∧ (𝐴 ∈ (𝐢𝐼𝐡) ∨ 𝐡 ∈ (𝐢𝐼𝐴)))))
1312a1i 11 . 2 (πœ‘ β†’ (𝐴{βŸ¨π‘Ž, π‘βŸ© ∣ ((π‘Ž ∈ 𝑃 ∧ 𝑏 ∈ 𝑃) ∧ (π‘Ž β‰  𝐢 ∧ 𝑏 β‰  𝐢 ∧ (π‘Ž ∈ (𝐢𝐼𝑏) ∨ 𝑏 ∈ (πΆπΌπ‘Ž))))}𝐡 ↔ ((𝐴 ∈ 𝑃 ∧ 𝐡 ∈ 𝑃) ∧ (𝐴 β‰  𝐢 ∧ 𝐡 β‰  𝐢 ∧ (𝐴 ∈ (𝐢𝐼𝐡) ∨ 𝐡 ∈ (𝐢𝐼𝐴))))))
14 ishlg.k . . . . 5 𝐾 = (hlGβ€˜πΊ)
15 ishlg.g . . . . . 6 (πœ‘ β†’ 𝐺 ∈ 𝑉)
16 elex 3491 . . . . . 6 (𝐺 ∈ 𝑉 β†’ 𝐺 ∈ V)
17 fveq2 6892 . . . . . . . . 9 (𝑔 = 𝐺 β†’ (Baseβ€˜π‘”) = (Baseβ€˜πΊ))
18 ishlg.p . . . . . . . . 9 𝑃 = (Baseβ€˜πΊ)
1917, 18eqtr4di 2788 . . . . . . . 8 (𝑔 = 𝐺 β†’ (Baseβ€˜π‘”) = 𝑃)
2019eleq2d 2817 . . . . . . . . . . 11 (𝑔 = 𝐺 β†’ (π‘Ž ∈ (Baseβ€˜π‘”) ↔ π‘Ž ∈ 𝑃))
2119eleq2d 2817 . . . . . . . . . . 11 (𝑔 = 𝐺 β†’ (𝑏 ∈ (Baseβ€˜π‘”) ↔ 𝑏 ∈ 𝑃))
2220, 21anbi12d 629 . . . . . . . . . 10 (𝑔 = 𝐺 β†’ ((π‘Ž ∈ (Baseβ€˜π‘”) ∧ 𝑏 ∈ (Baseβ€˜π‘”)) ↔ (π‘Ž ∈ 𝑃 ∧ 𝑏 ∈ 𝑃)))
23 fveq2 6892 . . . . . . . . . . . . . . 15 (𝑔 = 𝐺 β†’ (Itvβ€˜π‘”) = (Itvβ€˜πΊ))
24 ishlg.i . . . . . . . . . . . . . . 15 𝐼 = (Itvβ€˜πΊ)
2523, 24eqtr4di 2788 . . . . . . . . . . . . . 14 (𝑔 = 𝐺 β†’ (Itvβ€˜π‘”) = 𝐼)
2625oveqd 7430 . . . . . . . . . . . . 13 (𝑔 = 𝐺 β†’ (𝑐(Itvβ€˜π‘”)𝑏) = (𝑐𝐼𝑏))
2726eleq2d 2817 . . . . . . . . . . . 12 (𝑔 = 𝐺 β†’ (π‘Ž ∈ (𝑐(Itvβ€˜π‘”)𝑏) ↔ π‘Ž ∈ (𝑐𝐼𝑏)))
2825oveqd 7430 . . . . . . . . . . . . 13 (𝑔 = 𝐺 β†’ (𝑐(Itvβ€˜π‘”)π‘Ž) = (π‘πΌπ‘Ž))
2928eleq2d 2817 . . . . . . . . . . . 12 (𝑔 = 𝐺 β†’ (𝑏 ∈ (𝑐(Itvβ€˜π‘”)π‘Ž) ↔ 𝑏 ∈ (π‘πΌπ‘Ž)))
3027, 29orbi12d 915 . . . . . . . . . . 11 (𝑔 = 𝐺 β†’ ((π‘Ž ∈ (𝑐(Itvβ€˜π‘”)𝑏) ∨ 𝑏 ∈ (𝑐(Itvβ€˜π‘”)π‘Ž)) ↔ (π‘Ž ∈ (𝑐𝐼𝑏) ∨ 𝑏 ∈ (π‘πΌπ‘Ž))))
31303anbi3d 1440 . . . . . . . . . 10 (𝑔 = 𝐺 β†’ ((π‘Ž β‰  𝑐 ∧ 𝑏 β‰  𝑐 ∧ (π‘Ž ∈ (𝑐(Itvβ€˜π‘”)𝑏) ∨ 𝑏 ∈ (𝑐(Itvβ€˜π‘”)π‘Ž))) ↔ (π‘Ž β‰  𝑐 ∧ 𝑏 β‰  𝑐 ∧ (π‘Ž ∈ (𝑐𝐼𝑏) ∨ 𝑏 ∈ (π‘πΌπ‘Ž)))))
3222, 31anbi12d 629 . . . . . . . . 9 (𝑔 = 𝐺 β†’ (((π‘Ž ∈ (Baseβ€˜π‘”) ∧ 𝑏 ∈ (Baseβ€˜π‘”)) ∧ (π‘Ž β‰  𝑐 ∧ 𝑏 β‰  𝑐 ∧ (π‘Ž ∈ (𝑐(Itvβ€˜π‘”)𝑏) ∨ 𝑏 ∈ (𝑐(Itvβ€˜π‘”)π‘Ž)))) ↔ ((π‘Ž ∈ 𝑃 ∧ 𝑏 ∈ 𝑃) ∧ (π‘Ž β‰  𝑐 ∧ 𝑏 β‰  𝑐 ∧ (π‘Ž ∈ (𝑐𝐼𝑏) ∨ 𝑏 ∈ (π‘πΌπ‘Ž))))))
3332opabbidv 5215 . . . . . . . 8 (𝑔 = 𝐺 β†’ {βŸ¨π‘Ž, π‘βŸ© ∣ ((π‘Ž ∈ (Baseβ€˜π‘”) ∧ 𝑏 ∈ (Baseβ€˜π‘”)) ∧ (π‘Ž β‰  𝑐 ∧ 𝑏 β‰  𝑐 ∧ (π‘Ž ∈ (𝑐(Itvβ€˜π‘”)𝑏) ∨ 𝑏 ∈ (𝑐(Itvβ€˜π‘”)π‘Ž))))} = {βŸ¨π‘Ž, π‘βŸ© ∣ ((π‘Ž ∈ 𝑃 ∧ 𝑏 ∈ 𝑃) ∧ (π‘Ž β‰  𝑐 ∧ 𝑏 β‰  𝑐 ∧ (π‘Ž ∈ (𝑐𝐼𝑏) ∨ 𝑏 ∈ (π‘πΌπ‘Ž))))})
3419, 33mpteq12dv 5240 . . . . . . 7 (𝑔 = 𝐺 β†’ (𝑐 ∈ (Baseβ€˜π‘”) ↦ {βŸ¨π‘Ž, π‘βŸ© ∣ ((π‘Ž ∈ (Baseβ€˜π‘”) ∧ 𝑏 ∈ (Baseβ€˜π‘”)) ∧ (π‘Ž β‰  𝑐 ∧ 𝑏 β‰  𝑐 ∧ (π‘Ž ∈ (𝑐(Itvβ€˜π‘”)𝑏) ∨ 𝑏 ∈ (𝑐(Itvβ€˜π‘”)π‘Ž))))}) = (𝑐 ∈ 𝑃 ↦ {βŸ¨π‘Ž, π‘βŸ© ∣ ((π‘Ž ∈ 𝑃 ∧ 𝑏 ∈ 𝑃) ∧ (π‘Ž β‰  𝑐 ∧ 𝑏 β‰  𝑐 ∧ (π‘Ž ∈ (𝑐𝐼𝑏) ∨ 𝑏 ∈ (π‘πΌπ‘Ž))))}))
35 df-hlg 28117 . . . . . . 7 hlG = (𝑔 ∈ V ↦ (𝑐 ∈ (Baseβ€˜π‘”) ↦ {βŸ¨π‘Ž, π‘βŸ© ∣ ((π‘Ž ∈ (Baseβ€˜π‘”) ∧ 𝑏 ∈ (Baseβ€˜π‘”)) ∧ (π‘Ž β‰  𝑐 ∧ 𝑏 β‰  𝑐 ∧ (π‘Ž ∈ (𝑐(Itvβ€˜π‘”)𝑏) ∨ 𝑏 ∈ (𝑐(Itvβ€˜π‘”)π‘Ž))))}))
3634, 35, 18mptfvmpt 7233 . . . . . 6 (𝐺 ∈ V β†’ (hlGβ€˜πΊ) = (𝑐 ∈ 𝑃 ↦ {βŸ¨π‘Ž, π‘βŸ© ∣ ((π‘Ž ∈ 𝑃 ∧ 𝑏 ∈ 𝑃) ∧ (π‘Ž β‰  𝑐 ∧ 𝑏 β‰  𝑐 ∧ (π‘Ž ∈ (𝑐𝐼𝑏) ∨ 𝑏 ∈ (π‘πΌπ‘Ž))))}))
3715, 16, 363syl 18 . . . . 5 (πœ‘ β†’ (hlGβ€˜πΊ) = (𝑐 ∈ 𝑃 ↦ {βŸ¨π‘Ž, π‘βŸ© ∣ ((π‘Ž ∈ 𝑃 ∧ 𝑏 ∈ 𝑃) ∧ (π‘Ž β‰  𝑐 ∧ 𝑏 β‰  𝑐 ∧ (π‘Ž ∈ (𝑐𝐼𝑏) ∨ 𝑏 ∈ (π‘πΌπ‘Ž))))}))
3814, 37eqtrid 2782 . . . 4 (πœ‘ β†’ 𝐾 = (𝑐 ∈ 𝑃 ↦ {βŸ¨π‘Ž, π‘βŸ© ∣ ((π‘Ž ∈ 𝑃 ∧ 𝑏 ∈ 𝑃) ∧ (π‘Ž β‰  𝑐 ∧ 𝑏 β‰  𝑐 ∧ (π‘Ž ∈ (𝑐𝐼𝑏) ∨ 𝑏 ∈ (π‘πΌπ‘Ž))))}))
39 neeq2 3002 . . . . . . . 8 (𝑐 = 𝐢 β†’ (π‘Ž β‰  𝑐 ↔ π‘Ž β‰  𝐢))
40 neeq2 3002 . . . . . . . 8 (𝑐 = 𝐢 β†’ (𝑏 β‰  𝑐 ↔ 𝑏 β‰  𝐢))
41 oveq1 7420 . . . . . . . . . 10 (𝑐 = 𝐢 β†’ (𝑐𝐼𝑏) = (𝐢𝐼𝑏))
4241eleq2d 2817 . . . . . . . . 9 (𝑐 = 𝐢 β†’ (π‘Ž ∈ (𝑐𝐼𝑏) ↔ π‘Ž ∈ (𝐢𝐼𝑏)))
43 oveq1 7420 . . . . . . . . . 10 (𝑐 = 𝐢 β†’ (π‘πΌπ‘Ž) = (πΆπΌπ‘Ž))
4443eleq2d 2817 . . . . . . . . 9 (𝑐 = 𝐢 β†’ (𝑏 ∈ (π‘πΌπ‘Ž) ↔ 𝑏 ∈ (πΆπΌπ‘Ž)))
4542, 44orbi12d 915 . . . . . . . 8 (𝑐 = 𝐢 β†’ ((π‘Ž ∈ (𝑐𝐼𝑏) ∨ 𝑏 ∈ (π‘πΌπ‘Ž)) ↔ (π‘Ž ∈ (𝐢𝐼𝑏) ∨ 𝑏 ∈ (πΆπΌπ‘Ž))))
4639, 40, 453anbi123d 1434 . . . . . . 7 (𝑐 = 𝐢 β†’ ((π‘Ž β‰  𝑐 ∧ 𝑏 β‰  𝑐 ∧ (π‘Ž ∈ (𝑐𝐼𝑏) ∨ 𝑏 ∈ (π‘πΌπ‘Ž))) ↔ (π‘Ž β‰  𝐢 ∧ 𝑏 β‰  𝐢 ∧ (π‘Ž ∈ (𝐢𝐼𝑏) ∨ 𝑏 ∈ (πΆπΌπ‘Ž)))))
4746anbi2d 627 . . . . . 6 (𝑐 = 𝐢 β†’ (((π‘Ž ∈ 𝑃 ∧ 𝑏 ∈ 𝑃) ∧ (π‘Ž β‰  𝑐 ∧ 𝑏 β‰  𝑐 ∧ (π‘Ž ∈ (𝑐𝐼𝑏) ∨ 𝑏 ∈ (π‘πΌπ‘Ž)))) ↔ ((π‘Ž ∈ 𝑃 ∧ 𝑏 ∈ 𝑃) ∧ (π‘Ž β‰  𝐢 ∧ 𝑏 β‰  𝐢 ∧ (π‘Ž ∈ (𝐢𝐼𝑏) ∨ 𝑏 ∈ (πΆπΌπ‘Ž))))))
4847opabbidv 5215 . . . . 5 (𝑐 = 𝐢 β†’ {βŸ¨π‘Ž, π‘βŸ© ∣ ((π‘Ž ∈ 𝑃 ∧ 𝑏 ∈ 𝑃) ∧ (π‘Ž β‰  𝑐 ∧ 𝑏 β‰  𝑐 ∧ (π‘Ž ∈ (𝑐𝐼𝑏) ∨ 𝑏 ∈ (π‘πΌπ‘Ž))))} = {βŸ¨π‘Ž, π‘βŸ© ∣ ((π‘Ž ∈ 𝑃 ∧ 𝑏 ∈ 𝑃) ∧ (π‘Ž β‰  𝐢 ∧ 𝑏 β‰  𝐢 ∧ (π‘Ž ∈ (𝐢𝐼𝑏) ∨ 𝑏 ∈ (πΆπΌπ‘Ž))))})
4948adantl 480 . . . 4 ((πœ‘ ∧ 𝑐 = 𝐢) β†’ {βŸ¨π‘Ž, π‘βŸ© ∣ ((π‘Ž ∈ 𝑃 ∧ 𝑏 ∈ 𝑃) ∧ (π‘Ž β‰  𝑐 ∧ 𝑏 β‰  𝑐 ∧ (π‘Ž ∈ (𝑐𝐼𝑏) ∨ 𝑏 ∈ (π‘πΌπ‘Ž))))} = {βŸ¨π‘Ž, π‘βŸ© ∣ ((π‘Ž ∈ 𝑃 ∧ 𝑏 ∈ 𝑃) ∧ (π‘Ž β‰  𝐢 ∧ 𝑏 β‰  𝐢 ∧ (π‘Ž ∈ (𝐢𝐼𝑏) ∨ 𝑏 ∈ (πΆπΌπ‘Ž))))})
50 ishlg.c . . . 4 (πœ‘ β†’ 𝐢 ∈ 𝑃)
5118fvexi 6906 . . . . . . 7 𝑃 ∈ V
5251, 51xpex 7744 . . . . . 6 (𝑃 Γ— 𝑃) ∈ V
53 opabssxp 5769 . . . . . 6 {βŸ¨π‘Ž, π‘βŸ© ∣ ((π‘Ž ∈ 𝑃 ∧ 𝑏 ∈ 𝑃) ∧ (π‘Ž β‰  𝐢 ∧ 𝑏 β‰  𝐢 ∧ (π‘Ž ∈ (𝐢𝐼𝑏) ∨ 𝑏 ∈ (πΆπΌπ‘Ž))))} βŠ† (𝑃 Γ— 𝑃)
5452, 53ssexi 5323 . . . . 5 {βŸ¨π‘Ž, π‘βŸ© ∣ ((π‘Ž ∈ 𝑃 ∧ 𝑏 ∈ 𝑃) ∧ (π‘Ž β‰  𝐢 ∧ 𝑏 β‰  𝐢 ∧ (π‘Ž ∈ (𝐢𝐼𝑏) ∨ 𝑏 ∈ (πΆπΌπ‘Ž))))} ∈ V
5554a1i 11 . . . 4 (πœ‘ β†’ {βŸ¨π‘Ž, π‘βŸ© ∣ ((π‘Ž ∈ 𝑃 ∧ 𝑏 ∈ 𝑃) ∧ (π‘Ž β‰  𝐢 ∧ 𝑏 β‰  𝐢 ∧ (π‘Ž ∈ (𝐢𝐼𝑏) ∨ 𝑏 ∈ (πΆπΌπ‘Ž))))} ∈ V)
5638, 49, 50, 55fvmptd 7006 . . 3 (πœ‘ β†’ (πΎβ€˜πΆ) = {βŸ¨π‘Ž, π‘βŸ© ∣ ((π‘Ž ∈ 𝑃 ∧ 𝑏 ∈ 𝑃) ∧ (π‘Ž β‰  𝐢 ∧ 𝑏 β‰  𝐢 ∧ (π‘Ž ∈ (𝐢𝐼𝑏) ∨ 𝑏 ∈ (πΆπΌπ‘Ž))))})
5756breqd 5160 . 2 (πœ‘ β†’ (𝐴(πΎβ€˜πΆ)𝐡 ↔ 𝐴{βŸ¨π‘Ž, π‘βŸ© ∣ ((π‘Ž ∈ 𝑃 ∧ 𝑏 ∈ 𝑃) ∧ (π‘Ž β‰  𝐢 ∧ 𝑏 β‰  𝐢 ∧ (π‘Ž ∈ (𝐢𝐼𝑏) ∨ 𝑏 ∈ (πΆπΌπ‘Ž))))}𝐡))
58 ishlg.a . . . 4 (πœ‘ β†’ 𝐴 ∈ 𝑃)
59 ishlg.b . . . 4 (πœ‘ β†’ 𝐡 ∈ 𝑃)
6058, 59jca 510 . . 3 (πœ‘ β†’ (𝐴 ∈ 𝑃 ∧ 𝐡 ∈ 𝑃))
6160biantrurd 531 . 2 (πœ‘ β†’ ((𝐴 β‰  𝐢 ∧ 𝐡 β‰  𝐢 ∧ (𝐴 ∈ (𝐢𝐼𝐡) ∨ 𝐡 ∈ (𝐢𝐼𝐴))) ↔ ((𝐴 ∈ 𝑃 ∧ 𝐡 ∈ 𝑃) ∧ (𝐴 β‰  𝐢 ∧ 𝐡 β‰  𝐢 ∧ (𝐴 ∈ (𝐢𝐼𝐡) ∨ 𝐡 ∈ (𝐢𝐼𝐴))))))
6213, 57, 613bitr4d 310 1 (πœ‘ β†’ (𝐴(πΎβ€˜πΆ)𝐡 ↔ (𝐴 β‰  𝐢 ∧ 𝐡 β‰  𝐢 ∧ (𝐴 ∈ (𝐢𝐼𝐡) ∨ 𝐡 ∈ (𝐢𝐼𝐴)))))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 394   ∨ wo 843   ∧ w3a 1085   = wceq 1539   ∈ wcel 2104   β‰  wne 2938  Vcvv 3472   class class class wbr 5149  {copab 5211   ↦ cmpt 5232   Γ— cxp 5675  β€˜cfv 6544  (class class class)co 7413  Basecbs 17150  Itvcitv 27949  hlGchlg 28116
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7729
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-ov 7416  df-hlg 28117
This theorem is referenced by:  hlcomb  28119  hlne1  28121  hlne2  28122  hlln  28123  hlid  28125  hltr  28126  hlbtwn  28127  btwnhl1  28128  btwnhl2  28129  btwnhl  28130  lnhl  28131  hlcgrex  28132  mirhl  28195  mirbtwnhl  28196  mirhl2  28197  opphllem4  28266  opphl  28270  hlpasch  28272  lnopp2hpgb  28279  cgracgr  28334  cgraswap  28336  flatcgra  28340  cgrahl  28343  cgracol  28344
  Copyright terms: Public domain W3C validator