Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-homlim Structured version   Visualization version   GIF version

Definition df-homlim 34622
Description: The input to this function is a sequence (on β„•) of structures 𝑅(𝑛) and homomorphisms 𝐹(𝑛):𝑅(𝑛)βŸΆπ‘…(𝑛 + 1). The resulting structure is the direct limit of the direct system so defined, and maintains any structures that were present in the original objects. TODO: generalize to directed sets? (Contributed by Mario Carneiro, 2-Dec-2014.)
Assertion
Ref Expression
df-homlim HomLim = (π‘Ÿ ∈ V, 𝑓 ∈ V ↦ ⦋( HomLimB β€˜π‘“) / π‘’β¦Œβ¦‹(1st β€˜π‘’) / π‘£β¦Œβ¦‹(2nd β€˜π‘’) / π‘”β¦Œ({⟨(Baseβ€˜ndx), π‘£βŸ©, ⟨(+gβ€˜ndx), βˆͺ 𝑛 ∈ β„• ran (π‘₯ ∈ dom (π‘”β€˜π‘›), 𝑦 ∈ dom (π‘”β€˜π‘›) ↦ ⟨⟨((π‘”β€˜π‘›)β€˜π‘₯), ((π‘”β€˜π‘›)β€˜π‘¦)⟩, ((π‘”β€˜π‘›)β€˜(π‘₯(+gβ€˜(π‘Ÿβ€˜π‘›))𝑦))⟩)⟩, ⟨(.rβ€˜ndx), βˆͺ 𝑛 ∈ β„• ran (π‘₯ ∈ dom (π‘”β€˜π‘›), 𝑦 ∈ dom (π‘”β€˜π‘›) ↦ ⟨⟨((π‘”β€˜π‘›)β€˜π‘₯), ((π‘”β€˜π‘›)β€˜π‘¦)⟩, ((π‘”β€˜π‘›)β€˜(π‘₯(.rβ€˜(π‘Ÿβ€˜π‘›))𝑦))⟩)⟩} βˆͺ {⟨(TopOpenβ€˜ndx), {𝑠 ∈ 𝒫 𝑣 ∣ βˆ€π‘› ∈ β„• (β—‘(π‘”β€˜π‘›) β€œ 𝑠) ∈ (TopOpenβ€˜(π‘Ÿβ€˜π‘›))}⟩, ⟨(distβ€˜ndx), βˆͺ 𝑛 ∈ β„• ran (π‘₯ ∈ dom ((π‘”β€˜π‘›)β€˜π‘›), 𝑦 ∈ dom ((π‘”β€˜π‘›)β€˜π‘›) ↦ ⟨⟨((π‘”β€˜π‘›)β€˜π‘₯), ((π‘”β€˜π‘›)β€˜π‘¦)⟩, (π‘₯(distβ€˜(π‘Ÿβ€˜π‘›))𝑦)⟩)⟩, ⟨(leβ€˜ndx), βˆͺ 𝑛 ∈ β„• (β—‘(π‘”β€˜π‘›) ∘ ((leβ€˜(π‘Ÿβ€˜π‘›)) ∘ (π‘”β€˜π‘›)))⟩}))
Distinct variable group:   𝑒,𝑓,𝑔,𝑛,π‘Ÿ,𝑠,𝑣,π‘₯,𝑦

Detailed syntax breakdown of Definition df-homlim
StepHypRef Expression
1 chlim 34615 . 2 class HomLim
2 vr . . 3 setvar π‘Ÿ
3 vf . . 3 setvar 𝑓
4 cvv 3474 . . 3 class V
5 ve . . . 4 setvar 𝑒
63cv 1540 . . . . 5 class 𝑓
7 chlb 34614 . . . . 5 class HomLimB
86, 7cfv 6543 . . . 4 class ( HomLimB β€˜π‘“)
9 vv . . . . 5 setvar 𝑣
105cv 1540 . . . . . 6 class 𝑒
11 c1st 7972 . . . . . 6 class 1st
1210, 11cfv 6543 . . . . 5 class (1st β€˜π‘’)
13 vg . . . . . 6 setvar 𝑔
14 c2nd 7973 . . . . . . 7 class 2nd
1510, 14cfv 6543 . . . . . 6 class (2nd β€˜π‘’)
16 cnx 17125 . . . . . . . . . 10 class ndx
17 cbs 17143 . . . . . . . . . 10 class Base
1816, 17cfv 6543 . . . . . . . . 9 class (Baseβ€˜ndx)
199cv 1540 . . . . . . . . 9 class 𝑣
2018, 19cop 4634 . . . . . . . 8 class ⟨(Baseβ€˜ndx), π‘£βŸ©
21 cplusg 17196 . . . . . . . . . 10 class +g
2216, 21cfv 6543 . . . . . . . . 9 class (+gβ€˜ndx)
23 vn . . . . . . . . . 10 setvar 𝑛
24 cn 12211 . . . . . . . . . 10 class β„•
25 vx . . . . . . . . . . . 12 setvar π‘₯
26 vy . . . . . . . . . . . 12 setvar 𝑦
2723cv 1540 . . . . . . . . . . . . . 14 class 𝑛
2813cv 1540 . . . . . . . . . . . . . 14 class 𝑔
2927, 28cfv 6543 . . . . . . . . . . . . 13 class (π‘”β€˜π‘›)
3029cdm 5676 . . . . . . . . . . . 12 class dom (π‘”β€˜π‘›)
3125cv 1540 . . . . . . . . . . . . . . 15 class π‘₯
3231, 29cfv 6543 . . . . . . . . . . . . . 14 class ((π‘”β€˜π‘›)β€˜π‘₯)
3326cv 1540 . . . . . . . . . . . . . . 15 class 𝑦
3433, 29cfv 6543 . . . . . . . . . . . . . 14 class ((π‘”β€˜π‘›)β€˜π‘¦)
3532, 34cop 4634 . . . . . . . . . . . . 13 class ⟨((π‘”β€˜π‘›)β€˜π‘₯), ((π‘”β€˜π‘›)β€˜π‘¦)⟩
362cv 1540 . . . . . . . . . . . . . . . . 17 class π‘Ÿ
3727, 36cfv 6543 . . . . . . . . . . . . . . . 16 class (π‘Ÿβ€˜π‘›)
3837, 21cfv 6543 . . . . . . . . . . . . . . 15 class (+gβ€˜(π‘Ÿβ€˜π‘›))
3931, 33, 38co 7408 . . . . . . . . . . . . . 14 class (π‘₯(+gβ€˜(π‘Ÿβ€˜π‘›))𝑦)
4039, 29cfv 6543 . . . . . . . . . . . . 13 class ((π‘”β€˜π‘›)β€˜(π‘₯(+gβ€˜(π‘Ÿβ€˜π‘›))𝑦))
4135, 40cop 4634 . . . . . . . . . . . 12 class ⟨⟨((π‘”β€˜π‘›)β€˜π‘₯), ((π‘”β€˜π‘›)β€˜π‘¦)⟩, ((π‘”β€˜π‘›)β€˜(π‘₯(+gβ€˜(π‘Ÿβ€˜π‘›))𝑦))⟩
4225, 26, 30, 30, 41cmpo 7410 . . . . . . . . . . 11 class (π‘₯ ∈ dom (π‘”β€˜π‘›), 𝑦 ∈ dom (π‘”β€˜π‘›) ↦ ⟨⟨((π‘”β€˜π‘›)β€˜π‘₯), ((π‘”β€˜π‘›)β€˜π‘¦)⟩, ((π‘”β€˜π‘›)β€˜(π‘₯(+gβ€˜(π‘Ÿβ€˜π‘›))𝑦))⟩)
4342crn 5677 . . . . . . . . . 10 class ran (π‘₯ ∈ dom (π‘”β€˜π‘›), 𝑦 ∈ dom (π‘”β€˜π‘›) ↦ ⟨⟨((π‘”β€˜π‘›)β€˜π‘₯), ((π‘”β€˜π‘›)β€˜π‘¦)⟩, ((π‘”β€˜π‘›)β€˜(π‘₯(+gβ€˜(π‘Ÿβ€˜π‘›))𝑦))⟩)
4423, 24, 43ciun 4997 . . . . . . . . 9 class βˆͺ 𝑛 ∈ β„• ran (π‘₯ ∈ dom (π‘”β€˜π‘›), 𝑦 ∈ dom (π‘”β€˜π‘›) ↦ ⟨⟨((π‘”β€˜π‘›)β€˜π‘₯), ((π‘”β€˜π‘›)β€˜π‘¦)⟩, ((π‘”β€˜π‘›)β€˜(π‘₯(+gβ€˜(π‘Ÿβ€˜π‘›))𝑦))⟩)
4522, 44cop 4634 . . . . . . . 8 class ⟨(+gβ€˜ndx), βˆͺ 𝑛 ∈ β„• ran (π‘₯ ∈ dom (π‘”β€˜π‘›), 𝑦 ∈ dom (π‘”β€˜π‘›) ↦ ⟨⟨((π‘”β€˜π‘›)β€˜π‘₯), ((π‘”β€˜π‘›)β€˜π‘¦)⟩, ((π‘”β€˜π‘›)β€˜(π‘₯(+gβ€˜(π‘Ÿβ€˜π‘›))𝑦))⟩)⟩
46 cmulr 17197 . . . . . . . . . 10 class .r
4716, 46cfv 6543 . . . . . . . . 9 class (.rβ€˜ndx)
4837, 46cfv 6543 . . . . . . . . . . . . . . 15 class (.rβ€˜(π‘Ÿβ€˜π‘›))
4931, 33, 48co 7408 . . . . . . . . . . . . . 14 class (π‘₯(.rβ€˜(π‘Ÿβ€˜π‘›))𝑦)
5049, 29cfv 6543 . . . . . . . . . . . . 13 class ((π‘”β€˜π‘›)β€˜(π‘₯(.rβ€˜(π‘Ÿβ€˜π‘›))𝑦))
5135, 50cop 4634 . . . . . . . . . . . 12 class ⟨⟨((π‘”β€˜π‘›)β€˜π‘₯), ((π‘”β€˜π‘›)β€˜π‘¦)⟩, ((π‘”β€˜π‘›)β€˜(π‘₯(.rβ€˜(π‘Ÿβ€˜π‘›))𝑦))⟩
5225, 26, 30, 30, 51cmpo 7410 . . . . . . . . . . 11 class (π‘₯ ∈ dom (π‘”β€˜π‘›), 𝑦 ∈ dom (π‘”β€˜π‘›) ↦ ⟨⟨((π‘”β€˜π‘›)β€˜π‘₯), ((π‘”β€˜π‘›)β€˜π‘¦)⟩, ((π‘”β€˜π‘›)β€˜(π‘₯(.rβ€˜(π‘Ÿβ€˜π‘›))𝑦))⟩)
5352crn 5677 . . . . . . . . . 10 class ran (π‘₯ ∈ dom (π‘”β€˜π‘›), 𝑦 ∈ dom (π‘”β€˜π‘›) ↦ ⟨⟨((π‘”β€˜π‘›)β€˜π‘₯), ((π‘”β€˜π‘›)β€˜π‘¦)⟩, ((π‘”β€˜π‘›)β€˜(π‘₯(.rβ€˜(π‘Ÿβ€˜π‘›))𝑦))⟩)
5423, 24, 53ciun 4997 . . . . . . . . 9 class βˆͺ 𝑛 ∈ β„• ran (π‘₯ ∈ dom (π‘”β€˜π‘›), 𝑦 ∈ dom (π‘”β€˜π‘›) ↦ ⟨⟨((π‘”β€˜π‘›)β€˜π‘₯), ((π‘”β€˜π‘›)β€˜π‘¦)⟩, ((π‘”β€˜π‘›)β€˜(π‘₯(.rβ€˜(π‘Ÿβ€˜π‘›))𝑦))⟩)
5547, 54cop 4634 . . . . . . . 8 class ⟨(.rβ€˜ndx), βˆͺ 𝑛 ∈ β„• ran (π‘₯ ∈ dom (π‘”β€˜π‘›), 𝑦 ∈ dom (π‘”β€˜π‘›) ↦ ⟨⟨((π‘”β€˜π‘›)β€˜π‘₯), ((π‘”β€˜π‘›)β€˜π‘¦)⟩, ((π‘”β€˜π‘›)β€˜(π‘₯(.rβ€˜(π‘Ÿβ€˜π‘›))𝑦))⟩)⟩
5620, 45, 55ctp 4632 . . . . . . 7 class {⟨(Baseβ€˜ndx), π‘£βŸ©, ⟨(+gβ€˜ndx), βˆͺ 𝑛 ∈ β„• ran (π‘₯ ∈ dom (π‘”β€˜π‘›), 𝑦 ∈ dom (π‘”β€˜π‘›) ↦ ⟨⟨((π‘”β€˜π‘›)β€˜π‘₯), ((π‘”β€˜π‘›)β€˜π‘¦)⟩, ((π‘”β€˜π‘›)β€˜(π‘₯(+gβ€˜(π‘Ÿβ€˜π‘›))𝑦))⟩)⟩, ⟨(.rβ€˜ndx), βˆͺ 𝑛 ∈ β„• ran (π‘₯ ∈ dom (π‘”β€˜π‘›), 𝑦 ∈ dom (π‘”β€˜π‘›) ↦ ⟨⟨((π‘”β€˜π‘›)β€˜π‘₯), ((π‘”β€˜π‘›)β€˜π‘¦)⟩, ((π‘”β€˜π‘›)β€˜(π‘₯(.rβ€˜(π‘Ÿβ€˜π‘›))𝑦))⟩)⟩}
57 ctopn 17366 . . . . . . . . . 10 class TopOpen
5816, 57cfv 6543 . . . . . . . . 9 class (TopOpenβ€˜ndx)
5929ccnv 5675 . . . . . . . . . . . . 13 class β—‘(π‘”β€˜π‘›)
60 vs . . . . . . . . . . . . . 14 setvar 𝑠
6160cv 1540 . . . . . . . . . . . . 13 class 𝑠
6259, 61cima 5679 . . . . . . . . . . . 12 class (β—‘(π‘”β€˜π‘›) β€œ 𝑠)
6337, 57cfv 6543 . . . . . . . . . . . 12 class (TopOpenβ€˜(π‘Ÿβ€˜π‘›))
6462, 63wcel 2106 . . . . . . . . . . 11 wff (β—‘(π‘”β€˜π‘›) β€œ 𝑠) ∈ (TopOpenβ€˜(π‘Ÿβ€˜π‘›))
6564, 23, 24wral 3061 . . . . . . . . . 10 wff βˆ€π‘› ∈ β„• (β—‘(π‘”β€˜π‘›) β€œ 𝑠) ∈ (TopOpenβ€˜(π‘Ÿβ€˜π‘›))
6619cpw 4602 . . . . . . . . . 10 class 𝒫 𝑣
6765, 60, 66crab 3432 . . . . . . . . 9 class {𝑠 ∈ 𝒫 𝑣 ∣ βˆ€π‘› ∈ β„• (β—‘(π‘”β€˜π‘›) β€œ 𝑠) ∈ (TopOpenβ€˜(π‘Ÿβ€˜π‘›))}
6858, 67cop 4634 . . . . . . . 8 class ⟨(TopOpenβ€˜ndx), {𝑠 ∈ 𝒫 𝑣 ∣ βˆ€π‘› ∈ β„• (β—‘(π‘”β€˜π‘›) β€œ 𝑠) ∈ (TopOpenβ€˜(π‘Ÿβ€˜π‘›))}⟩
69 cds 17205 . . . . . . . . . 10 class dist
7016, 69cfv 6543 . . . . . . . . 9 class (distβ€˜ndx)
7127, 29cfv 6543 . . . . . . . . . . . . 13 class ((π‘”β€˜π‘›)β€˜π‘›)
7271cdm 5676 . . . . . . . . . . . 12 class dom ((π‘”β€˜π‘›)β€˜π‘›)
7337, 69cfv 6543 . . . . . . . . . . . . . 14 class (distβ€˜(π‘Ÿβ€˜π‘›))
7431, 33, 73co 7408 . . . . . . . . . . . . 13 class (π‘₯(distβ€˜(π‘Ÿβ€˜π‘›))𝑦)
7535, 74cop 4634 . . . . . . . . . . . 12 class ⟨⟨((π‘”β€˜π‘›)β€˜π‘₯), ((π‘”β€˜π‘›)β€˜π‘¦)⟩, (π‘₯(distβ€˜(π‘Ÿβ€˜π‘›))𝑦)⟩
7625, 26, 72, 72, 75cmpo 7410 . . . . . . . . . . 11 class (π‘₯ ∈ dom ((π‘”β€˜π‘›)β€˜π‘›), 𝑦 ∈ dom ((π‘”β€˜π‘›)β€˜π‘›) ↦ ⟨⟨((π‘”β€˜π‘›)β€˜π‘₯), ((π‘”β€˜π‘›)β€˜π‘¦)⟩, (π‘₯(distβ€˜(π‘Ÿβ€˜π‘›))𝑦)⟩)
7776crn 5677 . . . . . . . . . 10 class ran (π‘₯ ∈ dom ((π‘”β€˜π‘›)β€˜π‘›), 𝑦 ∈ dom ((π‘”β€˜π‘›)β€˜π‘›) ↦ ⟨⟨((π‘”β€˜π‘›)β€˜π‘₯), ((π‘”β€˜π‘›)β€˜π‘¦)⟩, (π‘₯(distβ€˜(π‘Ÿβ€˜π‘›))𝑦)⟩)
7823, 24, 77ciun 4997 . . . . . . . . 9 class βˆͺ 𝑛 ∈ β„• ran (π‘₯ ∈ dom ((π‘”β€˜π‘›)β€˜π‘›), 𝑦 ∈ dom ((π‘”β€˜π‘›)β€˜π‘›) ↦ ⟨⟨((π‘”β€˜π‘›)β€˜π‘₯), ((π‘”β€˜π‘›)β€˜π‘¦)⟩, (π‘₯(distβ€˜(π‘Ÿβ€˜π‘›))𝑦)⟩)
7970, 78cop 4634 . . . . . . . 8 class ⟨(distβ€˜ndx), βˆͺ 𝑛 ∈ β„• ran (π‘₯ ∈ dom ((π‘”β€˜π‘›)β€˜π‘›), 𝑦 ∈ dom ((π‘”β€˜π‘›)β€˜π‘›) ↦ ⟨⟨((π‘”β€˜π‘›)β€˜π‘₯), ((π‘”β€˜π‘›)β€˜π‘¦)⟩, (π‘₯(distβ€˜(π‘Ÿβ€˜π‘›))𝑦)⟩)⟩
80 cple 17203 . . . . . . . . . 10 class le
8116, 80cfv 6543 . . . . . . . . 9 class (leβ€˜ndx)
8237, 80cfv 6543 . . . . . . . . . . . 12 class (leβ€˜(π‘Ÿβ€˜π‘›))
8382, 29ccom 5680 . . . . . . . . . . 11 class ((leβ€˜(π‘Ÿβ€˜π‘›)) ∘ (π‘”β€˜π‘›))
8459, 83ccom 5680 . . . . . . . . . 10 class (β—‘(π‘”β€˜π‘›) ∘ ((leβ€˜(π‘Ÿβ€˜π‘›)) ∘ (π‘”β€˜π‘›)))
8523, 24, 84ciun 4997 . . . . . . . . 9 class βˆͺ 𝑛 ∈ β„• (β—‘(π‘”β€˜π‘›) ∘ ((leβ€˜(π‘Ÿβ€˜π‘›)) ∘ (π‘”β€˜π‘›)))
8681, 85cop 4634 . . . . . . . 8 class ⟨(leβ€˜ndx), βˆͺ 𝑛 ∈ β„• (β—‘(π‘”β€˜π‘›) ∘ ((leβ€˜(π‘Ÿβ€˜π‘›)) ∘ (π‘”β€˜π‘›)))⟩
8768, 79, 86ctp 4632 . . . . . . 7 class {⟨(TopOpenβ€˜ndx), {𝑠 ∈ 𝒫 𝑣 ∣ βˆ€π‘› ∈ β„• (β—‘(π‘”β€˜π‘›) β€œ 𝑠) ∈ (TopOpenβ€˜(π‘Ÿβ€˜π‘›))}⟩, ⟨(distβ€˜ndx), βˆͺ 𝑛 ∈ β„• ran (π‘₯ ∈ dom ((π‘”β€˜π‘›)β€˜π‘›), 𝑦 ∈ dom ((π‘”β€˜π‘›)β€˜π‘›) ↦ ⟨⟨((π‘”β€˜π‘›)β€˜π‘₯), ((π‘”β€˜π‘›)β€˜π‘¦)⟩, (π‘₯(distβ€˜(π‘Ÿβ€˜π‘›))𝑦)⟩)⟩, ⟨(leβ€˜ndx), βˆͺ 𝑛 ∈ β„• (β—‘(π‘”β€˜π‘›) ∘ ((leβ€˜(π‘Ÿβ€˜π‘›)) ∘ (π‘”β€˜π‘›)))⟩}
8856, 87cun 3946 . . . . . 6 class ({⟨(Baseβ€˜ndx), π‘£βŸ©, ⟨(+gβ€˜ndx), βˆͺ 𝑛 ∈ β„• ran (π‘₯ ∈ dom (π‘”β€˜π‘›), 𝑦 ∈ dom (π‘”β€˜π‘›) ↦ ⟨⟨((π‘”β€˜π‘›)β€˜π‘₯), ((π‘”β€˜π‘›)β€˜π‘¦)⟩, ((π‘”β€˜π‘›)β€˜(π‘₯(+gβ€˜(π‘Ÿβ€˜π‘›))𝑦))⟩)⟩, ⟨(.rβ€˜ndx), βˆͺ 𝑛 ∈ β„• ran (π‘₯ ∈ dom (π‘”β€˜π‘›), 𝑦 ∈ dom (π‘”β€˜π‘›) ↦ ⟨⟨((π‘”β€˜π‘›)β€˜π‘₯), ((π‘”β€˜π‘›)β€˜π‘¦)⟩, ((π‘”β€˜π‘›)β€˜(π‘₯(.rβ€˜(π‘Ÿβ€˜π‘›))𝑦))⟩)⟩} βˆͺ {⟨(TopOpenβ€˜ndx), {𝑠 ∈ 𝒫 𝑣 ∣ βˆ€π‘› ∈ β„• (β—‘(π‘”β€˜π‘›) β€œ 𝑠) ∈ (TopOpenβ€˜(π‘Ÿβ€˜π‘›))}⟩, ⟨(distβ€˜ndx), βˆͺ 𝑛 ∈ β„• ran (π‘₯ ∈ dom ((π‘”β€˜π‘›)β€˜π‘›), 𝑦 ∈ dom ((π‘”β€˜π‘›)β€˜π‘›) ↦ ⟨⟨((π‘”β€˜π‘›)β€˜π‘₯), ((π‘”β€˜π‘›)β€˜π‘¦)⟩, (π‘₯(distβ€˜(π‘Ÿβ€˜π‘›))𝑦)⟩)⟩, ⟨(leβ€˜ndx), βˆͺ 𝑛 ∈ β„• (β—‘(π‘”β€˜π‘›) ∘ ((leβ€˜(π‘Ÿβ€˜π‘›)) ∘ (π‘”β€˜π‘›)))⟩})
8913, 15, 88csb 3893 . . . . 5 class ⦋(2nd β€˜π‘’) / π‘”β¦Œ({⟨(Baseβ€˜ndx), π‘£βŸ©, ⟨(+gβ€˜ndx), βˆͺ 𝑛 ∈ β„• ran (π‘₯ ∈ dom (π‘”β€˜π‘›), 𝑦 ∈ dom (π‘”β€˜π‘›) ↦ ⟨⟨((π‘”β€˜π‘›)β€˜π‘₯), ((π‘”β€˜π‘›)β€˜π‘¦)⟩, ((π‘”β€˜π‘›)β€˜(π‘₯(+gβ€˜(π‘Ÿβ€˜π‘›))𝑦))⟩)⟩, ⟨(.rβ€˜ndx), βˆͺ 𝑛 ∈ β„• ran (π‘₯ ∈ dom (π‘”β€˜π‘›), 𝑦 ∈ dom (π‘”β€˜π‘›) ↦ ⟨⟨((π‘”β€˜π‘›)β€˜π‘₯), ((π‘”β€˜π‘›)β€˜π‘¦)⟩, ((π‘”β€˜π‘›)β€˜(π‘₯(.rβ€˜(π‘Ÿβ€˜π‘›))𝑦))⟩)⟩} βˆͺ {⟨(TopOpenβ€˜ndx), {𝑠 ∈ 𝒫 𝑣 ∣ βˆ€π‘› ∈ β„• (β—‘(π‘”β€˜π‘›) β€œ 𝑠) ∈ (TopOpenβ€˜(π‘Ÿβ€˜π‘›))}⟩, ⟨(distβ€˜ndx), βˆͺ 𝑛 ∈ β„• ran (π‘₯ ∈ dom ((π‘”β€˜π‘›)β€˜π‘›), 𝑦 ∈ dom ((π‘”β€˜π‘›)β€˜π‘›) ↦ ⟨⟨((π‘”β€˜π‘›)β€˜π‘₯), ((π‘”β€˜π‘›)β€˜π‘¦)⟩, (π‘₯(distβ€˜(π‘Ÿβ€˜π‘›))𝑦)⟩)⟩, ⟨(leβ€˜ndx), βˆͺ 𝑛 ∈ β„• (β—‘(π‘”β€˜π‘›) ∘ ((leβ€˜(π‘Ÿβ€˜π‘›)) ∘ (π‘”β€˜π‘›)))⟩})
909, 12, 89csb 3893 . . . 4 class ⦋(1st β€˜π‘’) / π‘£β¦Œβ¦‹(2nd β€˜π‘’) / π‘”β¦Œ({⟨(Baseβ€˜ndx), π‘£βŸ©, ⟨(+gβ€˜ndx), βˆͺ 𝑛 ∈ β„• ran (π‘₯ ∈ dom (π‘”β€˜π‘›), 𝑦 ∈ dom (π‘”β€˜π‘›) ↦ ⟨⟨((π‘”β€˜π‘›)β€˜π‘₯), ((π‘”β€˜π‘›)β€˜π‘¦)⟩, ((π‘”β€˜π‘›)β€˜(π‘₯(+gβ€˜(π‘Ÿβ€˜π‘›))𝑦))⟩)⟩, ⟨(.rβ€˜ndx), βˆͺ 𝑛 ∈ β„• ran (π‘₯ ∈ dom (π‘”β€˜π‘›), 𝑦 ∈ dom (π‘”β€˜π‘›) ↦ ⟨⟨((π‘”β€˜π‘›)β€˜π‘₯), ((π‘”β€˜π‘›)β€˜π‘¦)⟩, ((π‘”β€˜π‘›)β€˜(π‘₯(.rβ€˜(π‘Ÿβ€˜π‘›))𝑦))⟩)⟩} βˆͺ {⟨(TopOpenβ€˜ndx), {𝑠 ∈ 𝒫 𝑣 ∣ βˆ€π‘› ∈ β„• (β—‘(π‘”β€˜π‘›) β€œ 𝑠) ∈ (TopOpenβ€˜(π‘Ÿβ€˜π‘›))}⟩, ⟨(distβ€˜ndx), βˆͺ 𝑛 ∈ β„• ran (π‘₯ ∈ dom ((π‘”β€˜π‘›)β€˜π‘›), 𝑦 ∈ dom ((π‘”β€˜π‘›)β€˜π‘›) ↦ ⟨⟨((π‘”β€˜π‘›)β€˜π‘₯), ((π‘”β€˜π‘›)β€˜π‘¦)⟩, (π‘₯(distβ€˜(π‘Ÿβ€˜π‘›))𝑦)⟩)⟩, ⟨(leβ€˜ndx), βˆͺ 𝑛 ∈ β„• (β—‘(π‘”β€˜π‘›) ∘ ((leβ€˜(π‘Ÿβ€˜π‘›)) ∘ (π‘”β€˜π‘›)))⟩})
915, 8, 90csb 3893 . . 3 class ⦋( HomLimB β€˜π‘“) / π‘’β¦Œβ¦‹(1st β€˜π‘’) / π‘£β¦Œβ¦‹(2nd β€˜π‘’) / π‘”β¦Œ({⟨(Baseβ€˜ndx), π‘£βŸ©, ⟨(+gβ€˜ndx), βˆͺ 𝑛 ∈ β„• ran (π‘₯ ∈ dom (π‘”β€˜π‘›), 𝑦 ∈ dom (π‘”β€˜π‘›) ↦ ⟨⟨((π‘”β€˜π‘›)β€˜π‘₯), ((π‘”β€˜π‘›)β€˜π‘¦)⟩, ((π‘”β€˜π‘›)β€˜(π‘₯(+gβ€˜(π‘Ÿβ€˜π‘›))𝑦))⟩)⟩, ⟨(.rβ€˜ndx), βˆͺ 𝑛 ∈ β„• ran (π‘₯ ∈ dom (π‘”β€˜π‘›), 𝑦 ∈ dom (π‘”β€˜π‘›) ↦ ⟨⟨((π‘”β€˜π‘›)β€˜π‘₯), ((π‘”β€˜π‘›)β€˜π‘¦)⟩, ((π‘”β€˜π‘›)β€˜(π‘₯(.rβ€˜(π‘Ÿβ€˜π‘›))𝑦))⟩)⟩} βˆͺ {⟨(TopOpenβ€˜ndx), {𝑠 ∈ 𝒫 𝑣 ∣ βˆ€π‘› ∈ β„• (β—‘(π‘”β€˜π‘›) β€œ 𝑠) ∈ (TopOpenβ€˜(π‘Ÿβ€˜π‘›))}⟩, ⟨(distβ€˜ndx), βˆͺ 𝑛 ∈ β„• ran (π‘₯ ∈ dom ((π‘”β€˜π‘›)β€˜π‘›), 𝑦 ∈ dom ((π‘”β€˜π‘›)β€˜π‘›) ↦ ⟨⟨((π‘”β€˜π‘›)β€˜π‘₯), ((π‘”β€˜π‘›)β€˜π‘¦)⟩, (π‘₯(distβ€˜(π‘Ÿβ€˜π‘›))𝑦)⟩)⟩, ⟨(leβ€˜ndx), βˆͺ 𝑛 ∈ β„• (β—‘(π‘”β€˜π‘›) ∘ ((leβ€˜(π‘Ÿβ€˜π‘›)) ∘ (π‘”β€˜π‘›)))⟩})
922, 3, 4, 4, 91cmpo 7410 . 2 class (π‘Ÿ ∈ V, 𝑓 ∈ V ↦ ⦋( HomLimB β€˜π‘“) / π‘’β¦Œβ¦‹(1st β€˜π‘’) / π‘£β¦Œβ¦‹(2nd β€˜π‘’) / π‘”β¦Œ({⟨(Baseβ€˜ndx), π‘£βŸ©, ⟨(+gβ€˜ndx), βˆͺ 𝑛 ∈ β„• ran (π‘₯ ∈ dom (π‘”β€˜π‘›), 𝑦 ∈ dom (π‘”β€˜π‘›) ↦ ⟨⟨((π‘”β€˜π‘›)β€˜π‘₯), ((π‘”β€˜π‘›)β€˜π‘¦)⟩, ((π‘”β€˜π‘›)β€˜(π‘₯(+gβ€˜(π‘Ÿβ€˜π‘›))𝑦))⟩)⟩, ⟨(.rβ€˜ndx), βˆͺ 𝑛 ∈ β„• ran (π‘₯ ∈ dom (π‘”β€˜π‘›), 𝑦 ∈ dom (π‘”β€˜π‘›) ↦ ⟨⟨((π‘”β€˜π‘›)β€˜π‘₯), ((π‘”β€˜π‘›)β€˜π‘¦)⟩, ((π‘”β€˜π‘›)β€˜(π‘₯(.rβ€˜(π‘Ÿβ€˜π‘›))𝑦))⟩)⟩} βˆͺ {⟨(TopOpenβ€˜ndx), {𝑠 ∈ 𝒫 𝑣 ∣ βˆ€π‘› ∈ β„• (β—‘(π‘”β€˜π‘›) β€œ 𝑠) ∈ (TopOpenβ€˜(π‘Ÿβ€˜π‘›))}⟩, ⟨(distβ€˜ndx), βˆͺ 𝑛 ∈ β„• ran (π‘₯ ∈ dom ((π‘”β€˜π‘›)β€˜π‘›), 𝑦 ∈ dom ((π‘”β€˜π‘›)β€˜π‘›) ↦ ⟨⟨((π‘”β€˜π‘›)β€˜π‘₯), ((π‘”β€˜π‘›)β€˜π‘¦)⟩, (π‘₯(distβ€˜(π‘Ÿβ€˜π‘›))𝑦)⟩)⟩, ⟨(leβ€˜ndx), βˆͺ 𝑛 ∈ β„• (β—‘(π‘”β€˜π‘›) ∘ ((leβ€˜(π‘Ÿβ€˜π‘›)) ∘ (π‘”β€˜π‘›)))⟩}))
931, 92wceq 1541 1 wff HomLim = (π‘Ÿ ∈ V, 𝑓 ∈ V ↦ ⦋( HomLimB β€˜π‘“) / π‘’β¦Œβ¦‹(1st β€˜π‘’) / π‘£β¦Œβ¦‹(2nd β€˜π‘’) / π‘”β¦Œ({⟨(Baseβ€˜ndx), π‘£βŸ©, ⟨(+gβ€˜ndx), βˆͺ 𝑛 ∈ β„• ran (π‘₯ ∈ dom (π‘”β€˜π‘›), 𝑦 ∈ dom (π‘”β€˜π‘›) ↦ ⟨⟨((π‘”β€˜π‘›)β€˜π‘₯), ((π‘”β€˜π‘›)β€˜π‘¦)⟩, ((π‘”β€˜π‘›)β€˜(π‘₯(+gβ€˜(π‘Ÿβ€˜π‘›))𝑦))⟩)⟩, ⟨(.rβ€˜ndx), βˆͺ 𝑛 ∈ β„• ran (π‘₯ ∈ dom (π‘”β€˜π‘›), 𝑦 ∈ dom (π‘”β€˜π‘›) ↦ ⟨⟨((π‘”β€˜π‘›)β€˜π‘₯), ((π‘”β€˜π‘›)β€˜π‘¦)⟩, ((π‘”β€˜π‘›)β€˜(π‘₯(.rβ€˜(π‘Ÿβ€˜π‘›))𝑦))⟩)⟩} βˆͺ {⟨(TopOpenβ€˜ndx), {𝑠 ∈ 𝒫 𝑣 ∣ βˆ€π‘› ∈ β„• (β—‘(π‘”β€˜π‘›) β€œ 𝑠) ∈ (TopOpenβ€˜(π‘Ÿβ€˜π‘›))}⟩, ⟨(distβ€˜ndx), βˆͺ 𝑛 ∈ β„• ran (π‘₯ ∈ dom ((π‘”β€˜π‘›)β€˜π‘›), 𝑦 ∈ dom ((π‘”β€˜π‘›)β€˜π‘›) ↦ ⟨⟨((π‘”β€˜π‘›)β€˜π‘₯), ((π‘”β€˜π‘›)β€˜π‘¦)⟩, (π‘₯(distβ€˜(π‘Ÿβ€˜π‘›))𝑦)⟩)⟩, ⟨(leβ€˜ndx), βˆͺ 𝑛 ∈ β„• (β—‘(π‘”β€˜π‘›) ∘ ((leβ€˜(π‘Ÿβ€˜π‘›)) ∘ (π‘”β€˜π‘›)))⟩}))
Colors of variables: wff setvar class
This definition is referenced by: (None)
  Copyright terms: Public domain W3C validator