Step | Hyp | Ref
| Expression |
1 | | chlim 34615 |
. 2
class
HomLim |
2 | | vr |
. . 3
setvar π |
3 | | vf |
. . 3
setvar π |
4 | | cvv 3474 |
. . 3
class
V |
5 | | ve |
. . . 4
setvar π |
6 | 3 | cv 1540 |
. . . . 5
class π |
7 | | chlb 34614 |
. . . . 5
class
HomLimB |
8 | 6, 7 | cfv 6543 |
. . . 4
class ( HomLimB
βπ) |
9 | | vv |
. . . . 5
setvar π£ |
10 | 5 | cv 1540 |
. . . . . 6
class π |
11 | | c1st 7972 |
. . . . . 6
class
1st |
12 | 10, 11 | cfv 6543 |
. . . . 5
class
(1st βπ) |
13 | | vg |
. . . . . 6
setvar π |
14 | | c2nd 7973 |
. . . . . . 7
class
2nd |
15 | 10, 14 | cfv 6543 |
. . . . . 6
class
(2nd βπ) |
16 | | cnx 17125 |
. . . . . . . . . 10
class
ndx |
17 | | cbs 17143 |
. . . . . . . . . 10
class
Base |
18 | 16, 17 | cfv 6543 |
. . . . . . . . 9
class
(Baseβndx) |
19 | 9 | cv 1540 |
. . . . . . . . 9
class π£ |
20 | 18, 19 | cop 4634 |
. . . . . . . 8
class
β¨(Baseβndx), π£β© |
21 | | cplusg 17196 |
. . . . . . . . . 10
class
+g |
22 | 16, 21 | cfv 6543 |
. . . . . . . . 9
class
(+gβndx) |
23 | | vn |
. . . . . . . . . 10
setvar π |
24 | | cn 12211 |
. . . . . . . . . 10
class
β |
25 | | vx |
. . . . . . . . . . . 12
setvar π₯ |
26 | | vy |
. . . . . . . . . . . 12
setvar π¦ |
27 | 23 | cv 1540 |
. . . . . . . . . . . . . 14
class π |
28 | 13 | cv 1540 |
. . . . . . . . . . . . . 14
class π |
29 | 27, 28 | cfv 6543 |
. . . . . . . . . . . . 13
class (πβπ) |
30 | 29 | cdm 5676 |
. . . . . . . . . . . 12
class dom
(πβπ) |
31 | 25 | cv 1540 |
. . . . . . . . . . . . . . 15
class π₯ |
32 | 31, 29 | cfv 6543 |
. . . . . . . . . . . . . 14
class ((πβπ)βπ₯) |
33 | 26 | cv 1540 |
. . . . . . . . . . . . . . 15
class π¦ |
34 | 33, 29 | cfv 6543 |
. . . . . . . . . . . . . 14
class ((πβπ)βπ¦) |
35 | 32, 34 | cop 4634 |
. . . . . . . . . . . . 13
class
β¨((πβπ)βπ₯), ((πβπ)βπ¦)β© |
36 | 2 | cv 1540 |
. . . . . . . . . . . . . . . . 17
class π |
37 | 27, 36 | cfv 6543 |
. . . . . . . . . . . . . . . 16
class (πβπ) |
38 | 37, 21 | cfv 6543 |
. . . . . . . . . . . . . . 15
class
(+gβ(πβπ)) |
39 | 31, 33, 38 | co 7408 |
. . . . . . . . . . . . . 14
class (π₯(+gβ(πβπ))π¦) |
40 | 39, 29 | cfv 6543 |
. . . . . . . . . . . . 13
class ((πβπ)β(π₯(+gβ(πβπ))π¦)) |
41 | 35, 40 | cop 4634 |
. . . . . . . . . . . 12
class
β¨β¨((πβπ)βπ₯), ((πβπ)βπ¦)β©, ((πβπ)β(π₯(+gβ(πβπ))π¦))β© |
42 | 25, 26, 30, 30, 41 | cmpo 7410 |
. . . . . . . . . . 11
class (π₯ β dom (πβπ), π¦ β dom (πβπ) β¦ β¨β¨((πβπ)βπ₯), ((πβπ)βπ¦)β©, ((πβπ)β(π₯(+gβ(πβπ))π¦))β©) |
43 | 42 | crn 5677 |
. . . . . . . . . 10
class ran
(π₯ β dom (πβπ), π¦ β dom (πβπ) β¦ β¨β¨((πβπ)βπ₯), ((πβπ)βπ¦)β©, ((πβπ)β(π₯(+gβ(πβπ))π¦))β©) |
44 | 23, 24, 43 | ciun 4997 |
. . . . . . . . 9
class βͺ π β β ran (π₯ β dom (πβπ), π¦ β dom (πβπ) β¦ β¨β¨((πβπ)βπ₯), ((πβπ)βπ¦)β©, ((πβπ)β(π₯(+gβ(πβπ))π¦))β©) |
45 | 22, 44 | cop 4634 |
. . . . . . . 8
class
β¨(+gβndx), βͺ
π β β ran (π₯ β dom (πβπ), π¦ β dom (πβπ) β¦ β¨β¨((πβπ)βπ₯), ((πβπ)βπ¦)β©, ((πβπ)β(π₯(+gβ(πβπ))π¦))β©)β© |
46 | | cmulr 17197 |
. . . . . . . . . 10
class
.r |
47 | 16, 46 | cfv 6543 |
. . . . . . . . 9
class
(.rβndx) |
48 | 37, 46 | cfv 6543 |
. . . . . . . . . . . . . . 15
class
(.rβ(πβπ)) |
49 | 31, 33, 48 | co 7408 |
. . . . . . . . . . . . . 14
class (π₯(.rβ(πβπ))π¦) |
50 | 49, 29 | cfv 6543 |
. . . . . . . . . . . . 13
class ((πβπ)β(π₯(.rβ(πβπ))π¦)) |
51 | 35, 50 | cop 4634 |
. . . . . . . . . . . 12
class
β¨β¨((πβπ)βπ₯), ((πβπ)βπ¦)β©, ((πβπ)β(π₯(.rβ(πβπ))π¦))β© |
52 | 25, 26, 30, 30, 51 | cmpo 7410 |
. . . . . . . . . . 11
class (π₯ β dom (πβπ), π¦ β dom (πβπ) β¦ β¨β¨((πβπ)βπ₯), ((πβπ)βπ¦)β©, ((πβπ)β(π₯(.rβ(πβπ))π¦))β©) |
53 | 52 | crn 5677 |
. . . . . . . . . 10
class ran
(π₯ β dom (πβπ), π¦ β dom (πβπ) β¦ β¨β¨((πβπ)βπ₯), ((πβπ)βπ¦)β©, ((πβπ)β(π₯(.rβ(πβπ))π¦))β©) |
54 | 23, 24, 53 | ciun 4997 |
. . . . . . . . 9
class βͺ π β β ran (π₯ β dom (πβπ), π¦ β dom (πβπ) β¦ β¨β¨((πβπ)βπ₯), ((πβπ)βπ¦)β©, ((πβπ)β(π₯(.rβ(πβπ))π¦))β©) |
55 | 47, 54 | cop 4634 |
. . . . . . . 8
class
β¨(.rβndx), βͺ
π β β ran (π₯ β dom (πβπ), π¦ β dom (πβπ) β¦ β¨β¨((πβπ)βπ₯), ((πβπ)βπ¦)β©, ((πβπ)β(π₯(.rβ(πβπ))π¦))β©)β© |
56 | 20, 45, 55 | ctp 4632 |
. . . . . . 7
class
{β¨(Baseβndx), π£β©, β¨(+gβndx),
βͺ π β β ran (π₯ β dom (πβπ), π¦ β dom (πβπ) β¦ β¨β¨((πβπ)βπ₯), ((πβπ)βπ¦)β©, ((πβπ)β(π₯(+gβ(πβπ))π¦))β©)β©,
β¨(.rβndx), βͺ π β β ran (π₯ β dom (πβπ), π¦ β dom (πβπ) β¦ β¨β¨((πβπ)βπ₯), ((πβπ)βπ¦)β©, ((πβπ)β(π₯(.rβ(πβπ))π¦))β©)β©} |
57 | | ctopn 17366 |
. . . . . . . . . 10
class
TopOpen |
58 | 16, 57 | cfv 6543 |
. . . . . . . . 9
class
(TopOpenβndx) |
59 | 29 | ccnv 5675 |
. . . . . . . . . . . . 13
class β‘(πβπ) |
60 | | vs |
. . . . . . . . . . . . . 14
setvar π |
61 | 60 | cv 1540 |
. . . . . . . . . . . . 13
class π |
62 | 59, 61 | cima 5679 |
. . . . . . . . . . . 12
class (β‘(πβπ) β π ) |
63 | 37, 57 | cfv 6543 |
. . . . . . . . . . . 12
class
(TopOpenβ(πβπ)) |
64 | 62, 63 | wcel 2106 |
. . . . . . . . . . 11
wff (β‘(πβπ) β π ) β (TopOpenβ(πβπ)) |
65 | 64, 23, 24 | wral 3061 |
. . . . . . . . . 10
wff
βπ β
β (β‘(πβπ) β π ) β (TopOpenβ(πβπ)) |
66 | 19 | cpw 4602 |
. . . . . . . . . 10
class π«
π£ |
67 | 65, 60, 66 | crab 3432 |
. . . . . . . . 9
class {π β π« π£ β£ βπ β β (β‘(πβπ) β π ) β (TopOpenβ(πβπ))} |
68 | 58, 67 | cop 4634 |
. . . . . . . 8
class
β¨(TopOpenβndx), {π β π« π£ β£ βπ β β (β‘(πβπ) β π ) β (TopOpenβ(πβπ))}β© |
69 | | cds 17205 |
. . . . . . . . . 10
class
dist |
70 | 16, 69 | cfv 6543 |
. . . . . . . . 9
class
(distβndx) |
71 | 27, 29 | cfv 6543 |
. . . . . . . . . . . . 13
class ((πβπ)βπ) |
72 | 71 | cdm 5676 |
. . . . . . . . . . . 12
class dom
((πβπ)βπ) |
73 | 37, 69 | cfv 6543 |
. . . . . . . . . . . . . 14
class
(distβ(πβπ)) |
74 | 31, 33, 73 | co 7408 |
. . . . . . . . . . . . 13
class (π₯(distβ(πβπ))π¦) |
75 | 35, 74 | cop 4634 |
. . . . . . . . . . . 12
class
β¨β¨((πβπ)βπ₯), ((πβπ)βπ¦)β©, (π₯(distβ(πβπ))π¦)β© |
76 | 25, 26, 72, 72, 75 | cmpo 7410 |
. . . . . . . . . . 11
class (π₯ β dom ((πβπ)βπ), π¦ β dom ((πβπ)βπ) β¦ β¨β¨((πβπ)βπ₯), ((πβπ)βπ¦)β©, (π₯(distβ(πβπ))π¦)β©) |
77 | 76 | crn 5677 |
. . . . . . . . . 10
class ran
(π₯ β dom ((πβπ)βπ), π¦ β dom ((πβπ)βπ) β¦ β¨β¨((πβπ)βπ₯), ((πβπ)βπ¦)β©, (π₯(distβ(πβπ))π¦)β©) |
78 | 23, 24, 77 | ciun 4997 |
. . . . . . . . 9
class βͺ π β β ran (π₯ β dom ((πβπ)βπ), π¦ β dom ((πβπ)βπ) β¦ β¨β¨((πβπ)βπ₯), ((πβπ)βπ¦)β©, (π₯(distβ(πβπ))π¦)β©) |
79 | 70, 78 | cop 4634 |
. . . . . . . 8
class
β¨(distβndx), βͺ π β β ran (π₯ β dom ((πβπ)βπ), π¦ β dom ((πβπ)βπ) β¦ β¨β¨((πβπ)βπ₯), ((πβπ)βπ¦)β©, (π₯(distβ(πβπ))π¦)β©)β© |
80 | | cple 17203 |
. . . . . . . . . 10
class
le |
81 | 16, 80 | cfv 6543 |
. . . . . . . . 9
class
(leβndx) |
82 | 37, 80 | cfv 6543 |
. . . . . . . . . . . 12
class
(leβ(πβπ)) |
83 | 82, 29 | ccom 5680 |
. . . . . . . . . . 11
class
((leβ(πβπ)) β (πβπ)) |
84 | 59, 83 | ccom 5680 |
. . . . . . . . . 10
class (β‘(πβπ) β ((leβ(πβπ)) β (πβπ))) |
85 | 23, 24, 84 | ciun 4997 |
. . . . . . . . 9
class βͺ π β β (β‘(πβπ) β ((leβ(πβπ)) β (πβπ))) |
86 | 81, 85 | cop 4634 |
. . . . . . . 8
class
β¨(leβndx), βͺ π β β (β‘(πβπ) β ((leβ(πβπ)) β (πβπ)))β© |
87 | 68, 79, 86 | ctp 4632 |
. . . . . . 7
class
{β¨(TopOpenβndx), {π β π« π£ β£ βπ β β (β‘(πβπ) β π ) β (TopOpenβ(πβπ))}β©, β¨(distβndx), βͺ π β β ran (π₯ β dom ((πβπ)βπ), π¦ β dom ((πβπ)βπ) β¦ β¨β¨((πβπ)βπ₯), ((πβπ)βπ¦)β©, (π₯(distβ(πβπ))π¦)β©)β©, β¨(leβndx),
βͺ π β β (β‘(πβπ) β ((leβ(πβπ)) β (πβπ)))β©} |
88 | 56, 87 | cun 3946 |
. . . . . 6
class
({β¨(Baseβndx), π£β©, β¨(+gβndx),
βͺ π β β ran (π₯ β dom (πβπ), π¦ β dom (πβπ) β¦ β¨β¨((πβπ)βπ₯), ((πβπ)βπ¦)β©, ((πβπ)β(π₯(+gβ(πβπ))π¦))β©)β©,
β¨(.rβndx), βͺ π β β ran (π₯ β dom (πβπ), π¦ β dom (πβπ) β¦ β¨β¨((πβπ)βπ₯), ((πβπ)βπ¦)β©, ((πβπ)β(π₯(.rβ(πβπ))π¦))β©)β©} βͺ
{β¨(TopOpenβndx), {π β π« π£ β£ βπ β β (β‘(πβπ) β π ) β (TopOpenβ(πβπ))}β©, β¨(distβndx), βͺ π β β ran (π₯ β dom ((πβπ)βπ), π¦ β dom ((πβπ)βπ) β¦ β¨β¨((πβπ)βπ₯), ((πβπ)βπ¦)β©, (π₯(distβ(πβπ))π¦)β©)β©, β¨(leβndx),
βͺ π β β (β‘(πβπ) β ((leβ(πβπ)) β (πβπ)))β©}) |
89 | 13, 15, 88 | csb 3893 |
. . . . 5
class
β¦(2nd βπ) / πβ¦({β¨(Baseβndx),
π£β©,
β¨(+gβndx), βͺ π β β ran (π₯ β dom (πβπ), π¦ β dom (πβπ) β¦ β¨β¨((πβπ)βπ₯), ((πβπ)βπ¦)β©, ((πβπ)β(π₯(+gβ(πβπ))π¦))β©)β©,
β¨(.rβndx), βͺ π β β ran (π₯ β dom (πβπ), π¦ β dom (πβπ) β¦ β¨β¨((πβπ)βπ₯), ((πβπ)βπ¦)β©, ((πβπ)β(π₯(.rβ(πβπ))π¦))β©)β©} βͺ
{β¨(TopOpenβndx), {π β π« π£ β£ βπ β β (β‘(πβπ) β π ) β (TopOpenβ(πβπ))}β©, β¨(distβndx), βͺ π β β ran (π₯ β dom ((πβπ)βπ), π¦ β dom ((πβπ)βπ) β¦ β¨β¨((πβπ)βπ₯), ((πβπ)βπ¦)β©, (π₯(distβ(πβπ))π¦)β©)β©, β¨(leβndx),
βͺ π β β (β‘(πβπ) β ((leβ(πβπ)) β (πβπ)))β©}) |
90 | 9, 12, 89 | csb 3893 |
. . . 4
class
β¦(1st βπ) / π£β¦β¦(2nd
βπ) / πβ¦({β¨(Baseβndx),
π£β©,
β¨(+gβndx), βͺ π β β ran (π₯ β dom (πβπ), π¦ β dom (πβπ) β¦ β¨β¨((πβπ)βπ₯), ((πβπ)βπ¦)β©, ((πβπ)β(π₯(+gβ(πβπ))π¦))β©)β©,
β¨(.rβndx), βͺ π β β ran (π₯ β dom (πβπ), π¦ β dom (πβπ) β¦ β¨β¨((πβπ)βπ₯), ((πβπ)βπ¦)β©, ((πβπ)β(π₯(.rβ(πβπ))π¦))β©)β©} βͺ
{β¨(TopOpenβndx), {π β π« π£ β£ βπ β β (β‘(πβπ) β π ) β (TopOpenβ(πβπ))}β©, β¨(distβndx), βͺ π β β ran (π₯ β dom ((πβπ)βπ), π¦ β dom ((πβπ)βπ) β¦ β¨β¨((πβπ)βπ₯), ((πβπ)βπ¦)β©, (π₯(distβ(πβπ))π¦)β©)β©, β¨(leβndx),
βͺ π β β (β‘(πβπ) β ((leβ(πβπ)) β (πβπ)))β©}) |
91 | 5, 8, 90 | csb 3893 |
. . 3
class
β¦( HomLimB βπ) / πβ¦β¦(1st
βπ) / π£β¦β¦(2nd
βπ) / πβ¦({β¨(Baseβndx),
π£β©,
β¨(+gβndx), βͺ π β β ran (π₯ β dom (πβπ), π¦ β dom (πβπ) β¦ β¨β¨((πβπ)βπ₯), ((πβπ)βπ¦)β©, ((πβπ)β(π₯(+gβ(πβπ))π¦))β©)β©,
β¨(.rβndx), βͺ π β β ran (π₯ β dom (πβπ), π¦ β dom (πβπ) β¦ β¨β¨((πβπ)βπ₯), ((πβπ)βπ¦)β©, ((πβπ)β(π₯(.rβ(πβπ))π¦))β©)β©} βͺ
{β¨(TopOpenβndx), {π β π« π£ β£ βπ β β (β‘(πβπ) β π ) β (TopOpenβ(πβπ))}β©, β¨(distβndx), βͺ π β β ran (π₯ β dom ((πβπ)βπ), π¦ β dom ((πβπ)βπ) β¦ β¨β¨((πβπ)βπ₯), ((πβπ)βπ¦)β©, (π₯(distβ(πβπ))π¦)β©)β©, β¨(leβndx),
βͺ π β β (β‘(πβπ) β ((leβ(πβπ)) β (πβπ)))β©}) |
92 | 2, 3, 4, 4, 91 | cmpo 7410 |
. 2
class (π β V, π β V β¦ β¦( HomLimB
βπ) / πβ¦β¦(1st
βπ) / π£β¦β¦(2nd
βπ) / πβ¦({β¨(Baseβndx),
π£β©,
β¨(+gβndx), βͺ π β β ran (π₯ β dom (πβπ), π¦ β dom (πβπ) β¦ β¨β¨((πβπ)βπ₯), ((πβπ)βπ¦)β©, ((πβπ)β(π₯(+gβ(πβπ))π¦))β©)β©,
β¨(.rβndx), βͺ π β β ran (π₯ β dom (πβπ), π¦ β dom (πβπ) β¦ β¨β¨((πβπ)βπ₯), ((πβπ)βπ¦)β©, ((πβπ)β(π₯(.rβ(πβπ))π¦))β©)β©} βͺ
{β¨(TopOpenβndx), {π β π« π£ β£ βπ β β (β‘(πβπ) β π ) β (TopOpenβ(πβπ))}β©, β¨(distβndx), βͺ π β β ran (π₯ β dom ((πβπ)βπ), π¦ β dom ((πβπ)βπ) β¦ β¨β¨((πβπ)βπ₯), ((πβπ)βπ¦)β©, (π₯(distβ(πβπ))π¦)β©)β©, β¨(leβndx),
βͺ π β β (β‘(πβπ) β ((leβ(πβπ)) β (πβπ)))β©})) |
93 | 1, 92 | wceq 1541 |
1
wff HomLim =
(π β V, π β V β¦
β¦( HomLimB βπ) / πβ¦β¦(1st
βπ) / π£β¦β¦(2nd
βπ) / πβ¦({β¨(Baseβndx),
π£β©,
β¨(+gβndx), βͺ π β β ran (π₯ β dom (πβπ), π¦ β dom (πβπ) β¦ β¨β¨((πβπ)βπ₯), ((πβπ)βπ¦)β©, ((πβπ)β(π₯(+gβ(πβπ))π¦))β©)β©,
β¨(.rβndx), βͺ π β β ran (π₯ β dom (πβπ), π¦ β dom (πβπ) β¦ β¨β¨((πβπ)βπ₯), ((πβπ)βπ¦)β©, ((πβπ)β(π₯(.rβ(πβπ))π¦))β©)β©} βͺ
{β¨(TopOpenβndx), {π β π« π£ β£ βπ β β (β‘(πβπ) β π ) β (TopOpenβ(πβπ))}β©, β¨(distβndx), βͺ π β β ran (π₯ β dom ((πβπ)βπ), π¦ β dom ((πβπ)βπ) β¦ β¨β¨((πβπ)βπ₯), ((πβπ)βπ¦)β©, (π₯(distβ(πβπ))π¦)β©)β©, β¨(leβndx),
βͺ π β β (β‘(πβπ) β ((leβ(πβπ)) β (πβπ)))β©})) |