Detailed syntax breakdown of Definition df-ida
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | cida 18098 | . 2
class
Ida | 
| 2 |  | vc | . . 3
setvar 𝑐 | 
| 3 |  | ccat 17707 | . . 3
class
Cat | 
| 4 |  | vx | . . . 4
setvar 𝑥 | 
| 5 | 2 | cv 1539 | . . . . 5
class 𝑐 | 
| 6 |  | cbs 17247 | . . . . 5
class
Base | 
| 7 | 5, 6 | cfv 6561 | . . . 4
class
(Base‘𝑐) | 
| 8 | 4 | cv 1539 | . . . . 5
class 𝑥 | 
| 9 |  | ccid 17708 | . . . . . . 7
class
Id | 
| 10 | 5, 9 | cfv 6561 | . . . . . 6
class
(Id‘𝑐) | 
| 11 | 8, 10 | cfv 6561 | . . . . 5
class
((Id‘𝑐)‘𝑥) | 
| 12 | 8, 8, 11 | cotp 4634 | . . . 4
class
〈𝑥, 𝑥, ((Id‘𝑐)‘𝑥)〉 | 
| 13 | 4, 7, 12 | cmpt 5225 | . . 3
class (𝑥 ∈ (Base‘𝑐) ↦ 〈𝑥, 𝑥, ((Id‘𝑐)‘𝑥)〉) | 
| 14 | 2, 3, 13 | cmpt 5225 | . 2
class (𝑐 ∈ Cat ↦ (𝑥 ∈ (Base‘𝑐) ↦ 〈𝑥, 𝑥, ((Id‘𝑐)‘𝑥)〉)) | 
| 15 | 1, 14 | wceq 1540 | 1
wff
Ida = (𝑐 ∈ Cat ↦ (𝑥 ∈ (Base‘𝑐) ↦ 〈𝑥, 𝑥, ((Id‘𝑐)‘𝑥)〉)) |