Detailed syntax breakdown of Definition df-ida
| Step | Hyp | Ref
| Expression |
| 1 | | cida 18071 |
. 2
class
Ida |
| 2 | | vc |
. . 3
setvar 𝑐 |
| 3 | | ccat 17681 |
. . 3
class
Cat |
| 4 | | vx |
. . . 4
setvar 𝑥 |
| 5 | 2 | cv 1539 |
. . . . 5
class 𝑐 |
| 6 | | cbs 17233 |
. . . . 5
class
Base |
| 7 | 5, 6 | cfv 6536 |
. . . 4
class
(Base‘𝑐) |
| 8 | 4 | cv 1539 |
. . . . 5
class 𝑥 |
| 9 | | ccid 17682 |
. . . . . . 7
class
Id |
| 10 | 5, 9 | cfv 6536 |
. . . . . 6
class
(Id‘𝑐) |
| 11 | 8, 10 | cfv 6536 |
. . . . 5
class
((Id‘𝑐)‘𝑥) |
| 12 | 8, 8, 11 | cotp 4614 |
. . . 4
class
〈𝑥, 𝑥, ((Id‘𝑐)‘𝑥)〉 |
| 13 | 4, 7, 12 | cmpt 5206 |
. . 3
class (𝑥 ∈ (Base‘𝑐) ↦ 〈𝑥, 𝑥, ((Id‘𝑐)‘𝑥)〉) |
| 14 | 2, 3, 13 | cmpt 5206 |
. 2
class (𝑐 ∈ Cat ↦ (𝑥 ∈ (Base‘𝑐) ↦ 〈𝑥, 𝑥, ((Id‘𝑐)‘𝑥)〉)) |
| 15 | 1, 14 | wceq 1540 |
1
wff
Ida = (𝑐 ∈ Cat ↦ (𝑥 ∈ (Base‘𝑐) ↦ 〈𝑥, 𝑥, ((Id‘𝑐)‘𝑥)〉)) |