MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  idafval Structured version   Visualization version   GIF version

Theorem idafval 17688
Description: Value of the identity arrow function. (Contributed by Mario Carneiro, 11-Jan-2017.)
Hypotheses
Ref Expression
idafval.i 𝐼 = (Ida𝐶)
idafval.b 𝐵 = (Base‘𝐶)
idafval.c (𝜑𝐶 ∈ Cat)
idafval.1 1 = (Id‘𝐶)
Assertion
Ref Expression
idafval (𝜑𝐼 = (𝑥𝐵 ↦ ⟨𝑥, 𝑥, ( 1𝑥)⟩))
Distinct variable groups:   𝑥, 1   𝑥,𝐵   𝑥,𝐶   𝑥,𝐼   𝜑,𝑥

Proof of Theorem idafval
Dummy variable 𝑐 is distinct from all other variables.
StepHypRef Expression
1 idafval.i . 2 𝐼 = (Ida𝐶)
2 idafval.c . . 3 (𝜑𝐶 ∈ Cat)
3 fveq2 6756 . . . . . 6 (𝑐 = 𝐶 → (Base‘𝑐) = (Base‘𝐶))
4 idafval.b . . . . . 6 𝐵 = (Base‘𝐶)
53, 4eqtr4di 2797 . . . . 5 (𝑐 = 𝐶 → (Base‘𝑐) = 𝐵)
6 fveq2 6756 . . . . . . . 8 (𝑐 = 𝐶 → (Id‘𝑐) = (Id‘𝐶))
7 idafval.1 . . . . . . . 8 1 = (Id‘𝐶)
86, 7eqtr4di 2797 . . . . . . 7 (𝑐 = 𝐶 → (Id‘𝑐) = 1 )
98fveq1d 6758 . . . . . 6 (𝑐 = 𝐶 → ((Id‘𝑐)‘𝑥) = ( 1𝑥))
109oteq3d 4815 . . . . 5 (𝑐 = 𝐶 → ⟨𝑥, 𝑥, ((Id‘𝑐)‘𝑥)⟩ = ⟨𝑥, 𝑥, ( 1𝑥)⟩)
115, 10mpteq12dv 5161 . . . 4 (𝑐 = 𝐶 → (𝑥 ∈ (Base‘𝑐) ↦ ⟨𝑥, 𝑥, ((Id‘𝑐)‘𝑥)⟩) = (𝑥𝐵 ↦ ⟨𝑥, 𝑥, ( 1𝑥)⟩))
12 df-ida 17686 . . . 4 Ida = (𝑐 ∈ Cat ↦ (𝑥 ∈ (Base‘𝑐) ↦ ⟨𝑥, 𝑥, ((Id‘𝑐)‘𝑥)⟩))
1311, 12, 4mptfvmpt 7086 . . 3 (𝐶 ∈ Cat → (Ida𝐶) = (𝑥𝐵 ↦ ⟨𝑥, 𝑥, ( 1𝑥)⟩))
142, 13syl 17 . 2 (𝜑 → (Ida𝐶) = (𝑥𝐵 ↦ ⟨𝑥, 𝑥, ( 1𝑥)⟩))
151, 14eqtrid 2790 1 (𝜑𝐼 = (𝑥𝐵 ↦ ⟨𝑥, 𝑥, ( 1𝑥)⟩))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108  cotp 4566  cmpt 5153  cfv 6418  Basecbs 16840  Catccat 17290  Idccid 17291  Idacida 17684
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-ot 4567  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ida 17686
This theorem is referenced by:  idaval  17689  idaf  17694
  Copyright terms: Public domain W3C validator