![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > idafval | Structured version Visualization version GIF version |
Description: Value of the identity arrow function. (Contributed by Mario Carneiro, 11-Jan-2017.) |
Ref | Expression |
---|---|
idafval.i | ⊢ 𝐼 = (Ida‘𝐶) |
idafval.b | ⊢ 𝐵 = (Base‘𝐶) |
idafval.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
idafval.1 | ⊢ 1 = (Id‘𝐶) |
Ref | Expression |
---|---|
idafval | ⊢ (𝜑 → 𝐼 = (𝑥 ∈ 𝐵 ↦ ⟨𝑥, 𝑥, ( 1 ‘𝑥)⟩)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | idafval.i | . 2 ⊢ 𝐼 = (Ida‘𝐶) | |
2 | idafval.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
3 | fveq2 6891 | . . . . . 6 ⊢ (𝑐 = 𝐶 → (Base‘𝑐) = (Base‘𝐶)) | |
4 | idafval.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐶) | |
5 | 3, 4 | eqtr4di 2789 | . . . . 5 ⊢ (𝑐 = 𝐶 → (Base‘𝑐) = 𝐵) |
6 | fveq2 6891 | . . . . . . . 8 ⊢ (𝑐 = 𝐶 → (Id‘𝑐) = (Id‘𝐶)) | |
7 | idafval.1 | . . . . . . . 8 ⊢ 1 = (Id‘𝐶) | |
8 | 6, 7 | eqtr4di 2789 | . . . . . . 7 ⊢ (𝑐 = 𝐶 → (Id‘𝑐) = 1 ) |
9 | 8 | fveq1d 6893 | . . . . . 6 ⊢ (𝑐 = 𝐶 → ((Id‘𝑐)‘𝑥) = ( 1 ‘𝑥)) |
10 | 9 | oteq3d 4887 | . . . . 5 ⊢ (𝑐 = 𝐶 → ⟨𝑥, 𝑥, ((Id‘𝑐)‘𝑥)⟩ = ⟨𝑥, 𝑥, ( 1 ‘𝑥)⟩) |
11 | 5, 10 | mpteq12dv 5239 | . . . 4 ⊢ (𝑐 = 𝐶 → (𝑥 ∈ (Base‘𝑐) ↦ ⟨𝑥, 𝑥, ((Id‘𝑐)‘𝑥)⟩) = (𝑥 ∈ 𝐵 ↦ ⟨𝑥, 𝑥, ( 1 ‘𝑥)⟩)) |
12 | df-ida 18015 | . . . 4 ⊢ Ida = (𝑐 ∈ Cat ↦ (𝑥 ∈ (Base‘𝑐) ↦ ⟨𝑥, 𝑥, ((Id‘𝑐)‘𝑥)⟩)) | |
13 | 11, 12, 4 | mptfvmpt 7232 | . . 3 ⊢ (𝐶 ∈ Cat → (Ida‘𝐶) = (𝑥 ∈ 𝐵 ↦ ⟨𝑥, 𝑥, ( 1 ‘𝑥)⟩)) |
14 | 2, 13 | syl 17 | . 2 ⊢ (𝜑 → (Ida‘𝐶) = (𝑥 ∈ 𝐵 ↦ ⟨𝑥, 𝑥, ( 1 ‘𝑥)⟩)) |
15 | 1, 14 | eqtrid 2783 | 1 ⊢ (𝜑 → 𝐼 = (𝑥 ∈ 𝐵 ↦ ⟨𝑥, 𝑥, ( 1 ‘𝑥)⟩)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2105 ⟨cotp 4636 ↦ cmpt 5231 ‘cfv 6543 Basecbs 17151 Catccat 17615 Idccid 17616 Idacida 18013 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-ot 4637 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ida 18015 |
This theorem is referenced by: idaval 18018 idaf 18023 |
Copyright terms: Public domain | W3C validator |