![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > idafval | Structured version Visualization version GIF version |
Description: Value of the identity arrow function. (Contributed by Mario Carneiro, 11-Jan-2017.) |
Ref | Expression |
---|---|
idafval.i | ⊢ 𝐼 = (Ida‘𝐶) |
idafval.b | ⊢ 𝐵 = (Base‘𝐶) |
idafval.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
idafval.1 | ⊢ 1 = (Id‘𝐶) |
Ref | Expression |
---|---|
idafval | ⊢ (𝜑 → 𝐼 = (𝑥 ∈ 𝐵 ↦ 〈𝑥, 𝑥, ( 1 ‘𝑥)〉)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | idafval.i | . 2 ⊢ 𝐼 = (Ida‘𝐶) | |
2 | idafval.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
3 | fveq2 6920 | . . . . . 6 ⊢ (𝑐 = 𝐶 → (Base‘𝑐) = (Base‘𝐶)) | |
4 | idafval.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐶) | |
5 | 3, 4 | eqtr4di 2798 | . . . . 5 ⊢ (𝑐 = 𝐶 → (Base‘𝑐) = 𝐵) |
6 | fveq2 6920 | . . . . . . . 8 ⊢ (𝑐 = 𝐶 → (Id‘𝑐) = (Id‘𝐶)) | |
7 | idafval.1 | . . . . . . . 8 ⊢ 1 = (Id‘𝐶) | |
8 | 6, 7 | eqtr4di 2798 | . . . . . . 7 ⊢ (𝑐 = 𝐶 → (Id‘𝑐) = 1 ) |
9 | 8 | fveq1d 6922 | . . . . . 6 ⊢ (𝑐 = 𝐶 → ((Id‘𝑐)‘𝑥) = ( 1 ‘𝑥)) |
10 | 9 | oteq3d 4911 | . . . . 5 ⊢ (𝑐 = 𝐶 → 〈𝑥, 𝑥, ((Id‘𝑐)‘𝑥)〉 = 〈𝑥, 𝑥, ( 1 ‘𝑥)〉) |
11 | 5, 10 | mpteq12dv 5257 | . . . 4 ⊢ (𝑐 = 𝐶 → (𝑥 ∈ (Base‘𝑐) ↦ 〈𝑥, 𝑥, ((Id‘𝑐)‘𝑥)〉) = (𝑥 ∈ 𝐵 ↦ 〈𝑥, 𝑥, ( 1 ‘𝑥)〉)) |
12 | df-ida 18122 | . . . 4 ⊢ Ida = (𝑐 ∈ Cat ↦ (𝑥 ∈ (Base‘𝑐) ↦ 〈𝑥, 𝑥, ((Id‘𝑐)‘𝑥)〉)) | |
13 | 11, 12, 4 | mptfvmpt 7265 | . . 3 ⊢ (𝐶 ∈ Cat → (Ida‘𝐶) = (𝑥 ∈ 𝐵 ↦ 〈𝑥, 𝑥, ( 1 ‘𝑥)〉)) |
14 | 2, 13 | syl 17 | . 2 ⊢ (𝜑 → (Ida‘𝐶) = (𝑥 ∈ 𝐵 ↦ 〈𝑥, 𝑥, ( 1 ‘𝑥)〉)) |
15 | 1, 14 | eqtrid 2792 | 1 ⊢ (𝜑 → 𝐼 = (𝑥 ∈ 𝐵 ↦ 〈𝑥, 𝑥, ( 1 ‘𝑥)〉)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 〈cotp 4656 ↦ cmpt 5249 ‘cfv 6573 Basecbs 17258 Catccat 17722 Idccid 17723 Idacida 18120 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-ot 4657 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ida 18122 |
This theorem is referenced by: idaval 18125 idaf 18130 |
Copyright terms: Public domain | W3C validator |