Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > idafval | Structured version Visualization version GIF version |
Description: Value of the identity arrow function. (Contributed by Mario Carneiro, 11-Jan-2017.) |
Ref | Expression |
---|---|
idafval.i | ⊢ 𝐼 = (Ida‘𝐶) |
idafval.b | ⊢ 𝐵 = (Base‘𝐶) |
idafval.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
idafval.1 | ⊢ 1 = (Id‘𝐶) |
Ref | Expression |
---|---|
idafval | ⊢ (𝜑 → 𝐼 = (𝑥 ∈ 𝐵 ↦ 〈𝑥, 𝑥, ( 1 ‘𝑥)〉)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | idafval.i | . 2 ⊢ 𝐼 = (Ida‘𝐶) | |
2 | idafval.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
3 | fveq2 6774 | . . . . . 6 ⊢ (𝑐 = 𝐶 → (Base‘𝑐) = (Base‘𝐶)) | |
4 | idafval.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐶) | |
5 | 3, 4 | eqtr4di 2796 | . . . . 5 ⊢ (𝑐 = 𝐶 → (Base‘𝑐) = 𝐵) |
6 | fveq2 6774 | . . . . . . . 8 ⊢ (𝑐 = 𝐶 → (Id‘𝑐) = (Id‘𝐶)) | |
7 | idafval.1 | . . . . . . . 8 ⊢ 1 = (Id‘𝐶) | |
8 | 6, 7 | eqtr4di 2796 | . . . . . . 7 ⊢ (𝑐 = 𝐶 → (Id‘𝑐) = 1 ) |
9 | 8 | fveq1d 6776 | . . . . . 6 ⊢ (𝑐 = 𝐶 → ((Id‘𝑐)‘𝑥) = ( 1 ‘𝑥)) |
10 | 9 | oteq3d 4818 | . . . . 5 ⊢ (𝑐 = 𝐶 → 〈𝑥, 𝑥, ((Id‘𝑐)‘𝑥)〉 = 〈𝑥, 𝑥, ( 1 ‘𝑥)〉) |
11 | 5, 10 | mpteq12dv 5165 | . . . 4 ⊢ (𝑐 = 𝐶 → (𝑥 ∈ (Base‘𝑐) ↦ 〈𝑥, 𝑥, ((Id‘𝑐)‘𝑥)〉) = (𝑥 ∈ 𝐵 ↦ 〈𝑥, 𝑥, ( 1 ‘𝑥)〉)) |
12 | df-ida 17770 | . . . 4 ⊢ Ida = (𝑐 ∈ Cat ↦ (𝑥 ∈ (Base‘𝑐) ↦ 〈𝑥, 𝑥, ((Id‘𝑐)‘𝑥)〉)) | |
13 | 11, 12, 4 | mptfvmpt 7104 | . . 3 ⊢ (𝐶 ∈ Cat → (Ida‘𝐶) = (𝑥 ∈ 𝐵 ↦ 〈𝑥, 𝑥, ( 1 ‘𝑥)〉)) |
14 | 2, 13 | syl 17 | . 2 ⊢ (𝜑 → (Ida‘𝐶) = (𝑥 ∈ 𝐵 ↦ 〈𝑥, 𝑥, ( 1 ‘𝑥)〉)) |
15 | 1, 14 | eqtrid 2790 | 1 ⊢ (𝜑 → 𝐼 = (𝑥 ∈ 𝐵 ↦ 〈𝑥, 𝑥, ( 1 ‘𝑥)〉)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 〈cotp 4569 ↦ cmpt 5157 ‘cfv 6433 Basecbs 16912 Catccat 17373 Idccid 17374 Idacida 17768 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-ot 4570 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ida 17770 |
This theorem is referenced by: idaval 17773 idaf 17778 |
Copyright terms: Public domain | W3C validator |