MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  idafval Structured version   Visualization version   GIF version

Theorem idafval 18026
Description: Value of the identity arrow function. (Contributed by Mario Carneiro, 11-Jan-2017.)
Hypotheses
Ref Expression
idafval.i 𝐼 = (Ida𝐶)
idafval.b 𝐵 = (Base‘𝐶)
idafval.c (𝜑𝐶 ∈ Cat)
idafval.1 1 = (Id‘𝐶)
Assertion
Ref Expression
idafval (𝜑𝐼 = (𝑥𝐵 ↦ ⟨𝑥, 𝑥, ( 1𝑥)⟩))
Distinct variable groups:   𝑥, 1   𝑥,𝐵   𝑥,𝐶   𝑥,𝐼   𝜑,𝑥

Proof of Theorem idafval
Dummy variable 𝑐 is distinct from all other variables.
StepHypRef Expression
1 idafval.i . 2 𝐼 = (Ida𝐶)
2 idafval.c . . 3 (𝜑𝐶 ∈ Cat)
3 fveq2 6861 . . . . . 6 (𝑐 = 𝐶 → (Base‘𝑐) = (Base‘𝐶))
4 idafval.b . . . . . 6 𝐵 = (Base‘𝐶)
53, 4eqtr4di 2783 . . . . 5 (𝑐 = 𝐶 → (Base‘𝑐) = 𝐵)
6 fveq2 6861 . . . . . . . 8 (𝑐 = 𝐶 → (Id‘𝑐) = (Id‘𝐶))
7 idafval.1 . . . . . . . 8 1 = (Id‘𝐶)
86, 7eqtr4di 2783 . . . . . . 7 (𝑐 = 𝐶 → (Id‘𝑐) = 1 )
98fveq1d 6863 . . . . . 6 (𝑐 = 𝐶 → ((Id‘𝑐)‘𝑥) = ( 1𝑥))
109oteq3d 4854 . . . . 5 (𝑐 = 𝐶 → ⟨𝑥, 𝑥, ((Id‘𝑐)‘𝑥)⟩ = ⟨𝑥, 𝑥, ( 1𝑥)⟩)
115, 10mpteq12dv 5197 . . . 4 (𝑐 = 𝐶 → (𝑥 ∈ (Base‘𝑐) ↦ ⟨𝑥, 𝑥, ((Id‘𝑐)‘𝑥)⟩) = (𝑥𝐵 ↦ ⟨𝑥, 𝑥, ( 1𝑥)⟩))
12 df-ida 18024 . . . 4 Ida = (𝑐 ∈ Cat ↦ (𝑥 ∈ (Base‘𝑐) ↦ ⟨𝑥, 𝑥, ((Id‘𝑐)‘𝑥)⟩))
1311, 12, 4mptfvmpt 7205 . . 3 (𝐶 ∈ Cat → (Ida𝐶) = (𝑥𝐵 ↦ ⟨𝑥, 𝑥, ( 1𝑥)⟩))
142, 13syl 17 . 2 (𝜑 → (Ida𝐶) = (𝑥𝐵 ↦ ⟨𝑥, 𝑥, ( 1𝑥)⟩))
151, 14eqtrid 2777 1 (𝜑𝐼 = (𝑥𝐵 ↦ ⟨𝑥, 𝑥, ( 1𝑥)⟩))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  cotp 4600  cmpt 5191  cfv 6514  Basecbs 17186  Catccat 17632  Idccid 17633  Idacida 18022
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-ot 4601  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ida 18024
This theorem is referenced by:  idaval  18027  idaf  18032
  Copyright terms: Public domain W3C validator