MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  idafval Structured version   Visualization version   GIF version

Theorem idafval 18124
Description: Value of the identity arrow function. (Contributed by Mario Carneiro, 11-Jan-2017.)
Hypotheses
Ref Expression
idafval.i 𝐼 = (Ida𝐶)
idafval.b 𝐵 = (Base‘𝐶)
idafval.c (𝜑𝐶 ∈ Cat)
idafval.1 1 = (Id‘𝐶)
Assertion
Ref Expression
idafval (𝜑𝐼 = (𝑥𝐵 ↦ ⟨𝑥, 𝑥, ( 1𝑥)⟩))
Distinct variable groups:   𝑥, 1   𝑥,𝐵   𝑥,𝐶   𝑥,𝐼   𝜑,𝑥

Proof of Theorem idafval
Dummy variable 𝑐 is distinct from all other variables.
StepHypRef Expression
1 idafval.i . 2 𝐼 = (Ida𝐶)
2 idafval.c . . 3 (𝜑𝐶 ∈ Cat)
3 fveq2 6920 . . . . . 6 (𝑐 = 𝐶 → (Base‘𝑐) = (Base‘𝐶))
4 idafval.b . . . . . 6 𝐵 = (Base‘𝐶)
53, 4eqtr4di 2798 . . . . 5 (𝑐 = 𝐶 → (Base‘𝑐) = 𝐵)
6 fveq2 6920 . . . . . . . 8 (𝑐 = 𝐶 → (Id‘𝑐) = (Id‘𝐶))
7 idafval.1 . . . . . . . 8 1 = (Id‘𝐶)
86, 7eqtr4di 2798 . . . . . . 7 (𝑐 = 𝐶 → (Id‘𝑐) = 1 )
98fveq1d 6922 . . . . . 6 (𝑐 = 𝐶 → ((Id‘𝑐)‘𝑥) = ( 1𝑥))
109oteq3d 4911 . . . . 5 (𝑐 = 𝐶 → ⟨𝑥, 𝑥, ((Id‘𝑐)‘𝑥)⟩ = ⟨𝑥, 𝑥, ( 1𝑥)⟩)
115, 10mpteq12dv 5257 . . . 4 (𝑐 = 𝐶 → (𝑥 ∈ (Base‘𝑐) ↦ ⟨𝑥, 𝑥, ((Id‘𝑐)‘𝑥)⟩) = (𝑥𝐵 ↦ ⟨𝑥, 𝑥, ( 1𝑥)⟩))
12 df-ida 18122 . . . 4 Ida = (𝑐 ∈ Cat ↦ (𝑥 ∈ (Base‘𝑐) ↦ ⟨𝑥, 𝑥, ((Id‘𝑐)‘𝑥)⟩))
1311, 12, 4mptfvmpt 7265 . . 3 (𝐶 ∈ Cat → (Ida𝐶) = (𝑥𝐵 ↦ ⟨𝑥, 𝑥, ( 1𝑥)⟩))
142, 13syl 17 . 2 (𝜑 → (Ida𝐶) = (𝑥𝐵 ↦ ⟨𝑥, 𝑥, ( 1𝑥)⟩))
151, 14eqtrid 2792 1 (𝜑𝐼 = (𝑥𝐵 ↦ ⟨𝑥, 𝑥, ( 1𝑥)⟩))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108  cotp 4656  cmpt 5249  cfv 6573  Basecbs 17258  Catccat 17722  Idccid 17723  Idacida 18120
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-ot 4657  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ida 18122
This theorem is referenced by:  idaval  18125  idaf  18130
  Copyright terms: Public domain W3C validator