| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > idafval | Structured version Visualization version GIF version | ||
| Description: Value of the identity arrow function. (Contributed by Mario Carneiro, 11-Jan-2017.) |
| Ref | Expression |
|---|---|
| idafval.i | ⊢ 𝐼 = (Ida‘𝐶) |
| idafval.b | ⊢ 𝐵 = (Base‘𝐶) |
| idafval.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
| idafval.1 | ⊢ 1 = (Id‘𝐶) |
| Ref | Expression |
|---|---|
| idafval | ⊢ (𝜑 → 𝐼 = (𝑥 ∈ 𝐵 ↦ 〈𝑥, 𝑥, ( 1 ‘𝑥)〉)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | idafval.i | . 2 ⊢ 𝐼 = (Ida‘𝐶) | |
| 2 | idafval.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
| 3 | fveq2 6906 | . . . . . 6 ⊢ (𝑐 = 𝐶 → (Base‘𝑐) = (Base‘𝐶)) | |
| 4 | idafval.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐶) | |
| 5 | 3, 4 | eqtr4di 2795 | . . . . 5 ⊢ (𝑐 = 𝐶 → (Base‘𝑐) = 𝐵) |
| 6 | fveq2 6906 | . . . . . . . 8 ⊢ (𝑐 = 𝐶 → (Id‘𝑐) = (Id‘𝐶)) | |
| 7 | idafval.1 | . . . . . . . 8 ⊢ 1 = (Id‘𝐶) | |
| 8 | 6, 7 | eqtr4di 2795 | . . . . . . 7 ⊢ (𝑐 = 𝐶 → (Id‘𝑐) = 1 ) |
| 9 | 8 | fveq1d 6908 | . . . . . 6 ⊢ (𝑐 = 𝐶 → ((Id‘𝑐)‘𝑥) = ( 1 ‘𝑥)) |
| 10 | 9 | oteq3d 4887 | . . . . 5 ⊢ (𝑐 = 𝐶 → 〈𝑥, 𝑥, ((Id‘𝑐)‘𝑥)〉 = 〈𝑥, 𝑥, ( 1 ‘𝑥)〉) |
| 11 | 5, 10 | mpteq12dv 5233 | . . . 4 ⊢ (𝑐 = 𝐶 → (𝑥 ∈ (Base‘𝑐) ↦ 〈𝑥, 𝑥, ((Id‘𝑐)‘𝑥)〉) = (𝑥 ∈ 𝐵 ↦ 〈𝑥, 𝑥, ( 1 ‘𝑥)〉)) |
| 12 | df-ida 18100 | . . . 4 ⊢ Ida = (𝑐 ∈ Cat ↦ (𝑥 ∈ (Base‘𝑐) ↦ 〈𝑥, 𝑥, ((Id‘𝑐)‘𝑥)〉)) | |
| 13 | 11, 12, 4 | mptfvmpt 7248 | . . 3 ⊢ (𝐶 ∈ Cat → (Ida‘𝐶) = (𝑥 ∈ 𝐵 ↦ 〈𝑥, 𝑥, ( 1 ‘𝑥)〉)) |
| 14 | 2, 13 | syl 17 | . 2 ⊢ (𝜑 → (Ida‘𝐶) = (𝑥 ∈ 𝐵 ↦ 〈𝑥, 𝑥, ( 1 ‘𝑥)〉)) |
| 15 | 1, 14 | eqtrid 2789 | 1 ⊢ (𝜑 → 𝐼 = (𝑥 ∈ 𝐵 ↦ 〈𝑥, 𝑥, ( 1 ‘𝑥)〉)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 〈cotp 4634 ↦ cmpt 5225 ‘cfv 6561 Basecbs 17247 Catccat 17707 Idccid 17708 Idacida 18098 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pr 5432 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-ot 4635 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-ida 18100 |
| This theorem is referenced by: idaval 18103 idaf 18108 |
| Copyright terms: Public domain | W3C validator |