MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  idafval Structured version   Visualization version   GIF version

Theorem idafval 17772
Description: Value of the identity arrow function. (Contributed by Mario Carneiro, 11-Jan-2017.)
Hypotheses
Ref Expression
idafval.i 𝐼 = (Ida𝐶)
idafval.b 𝐵 = (Base‘𝐶)
idafval.c (𝜑𝐶 ∈ Cat)
idafval.1 1 = (Id‘𝐶)
Assertion
Ref Expression
idafval (𝜑𝐼 = (𝑥𝐵 ↦ ⟨𝑥, 𝑥, ( 1𝑥)⟩))
Distinct variable groups:   𝑥, 1   𝑥,𝐵   𝑥,𝐶   𝑥,𝐼   𝜑,𝑥

Proof of Theorem idafval
Dummy variable 𝑐 is distinct from all other variables.
StepHypRef Expression
1 idafval.i . 2 𝐼 = (Ida𝐶)
2 idafval.c . . 3 (𝜑𝐶 ∈ Cat)
3 fveq2 6774 . . . . . 6 (𝑐 = 𝐶 → (Base‘𝑐) = (Base‘𝐶))
4 idafval.b . . . . . 6 𝐵 = (Base‘𝐶)
53, 4eqtr4di 2796 . . . . 5 (𝑐 = 𝐶 → (Base‘𝑐) = 𝐵)
6 fveq2 6774 . . . . . . . 8 (𝑐 = 𝐶 → (Id‘𝑐) = (Id‘𝐶))
7 idafval.1 . . . . . . . 8 1 = (Id‘𝐶)
86, 7eqtr4di 2796 . . . . . . 7 (𝑐 = 𝐶 → (Id‘𝑐) = 1 )
98fveq1d 6776 . . . . . 6 (𝑐 = 𝐶 → ((Id‘𝑐)‘𝑥) = ( 1𝑥))
109oteq3d 4818 . . . . 5 (𝑐 = 𝐶 → ⟨𝑥, 𝑥, ((Id‘𝑐)‘𝑥)⟩ = ⟨𝑥, 𝑥, ( 1𝑥)⟩)
115, 10mpteq12dv 5165 . . . 4 (𝑐 = 𝐶 → (𝑥 ∈ (Base‘𝑐) ↦ ⟨𝑥, 𝑥, ((Id‘𝑐)‘𝑥)⟩) = (𝑥𝐵 ↦ ⟨𝑥, 𝑥, ( 1𝑥)⟩))
12 df-ida 17770 . . . 4 Ida = (𝑐 ∈ Cat ↦ (𝑥 ∈ (Base‘𝑐) ↦ ⟨𝑥, 𝑥, ((Id‘𝑐)‘𝑥)⟩))
1311, 12, 4mptfvmpt 7104 . . 3 (𝐶 ∈ Cat → (Ida𝐶) = (𝑥𝐵 ↦ ⟨𝑥, 𝑥, ( 1𝑥)⟩))
142, 13syl 17 . 2 (𝜑 → (Ida𝐶) = (𝑥𝐵 ↦ ⟨𝑥, 𝑥, ( 1𝑥)⟩))
151, 14eqtrid 2790 1 (𝜑𝐼 = (𝑥𝐵 ↦ ⟨𝑥, 𝑥, ( 1𝑥)⟩))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2106  cotp 4569  cmpt 5157  cfv 6433  Basecbs 16912  Catccat 17373  Idccid 17374  Idacida 17768
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-ot 4570  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ida 17770
This theorem is referenced by:  idaval  17773  idaf  17778
  Copyright terms: Public domain W3C validator